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Abstract
The moduli space for a flat G-bundle over the two-torus is completely determined by its holonomy representation. 

When G is compact, connected, and simply connected, we show that the moduli space is homeomorphic to a product 
of two tori mod the action of the Weyl group, or equivalently to the conjugacy classes of commuting pairs of elements 
in G. Since the component group for a non-simply connected group is given by some finite dimensional subgroup in 
the centralizer of an n-tuple, we use diagram automorphisms of the extended Dynkin diagram to prove properties of 
centralizers of pairs of elements in G.

Keywords: Moduli space; Lie groups; Representation theory; 
Characteristic classes; Centralizers

Introduction
Classifying the moduli space of gauge equivalence classes of flat 

connections on a principal G-bundle over a compact Riemann surface 
Σg of genus g is of interest from various perspectives. For example, 
Atiyah-Bott [1] proved that this moduli space is equivalent to the finite 
dimensional representation space {Hom(π1(Σg),G)}/G by constructing 
a symplectic structure on the moduli space by symplectic reduction 
from the infinite-dimensional sympletic manifold of all connections. 
If A is a flat connection on a K-bundle over T3 then the holonomy of 
A is defined by the conjugacy classes of commuting triples in K. In 
topological field theory, vacua of Yang-Mills theory correspond to flat 
G bundles. Every nontrivial triple on T3 equals an additional quantum 
vacuum state and determines a distinct component of the moduli 
space G. If the triple is of rank zero (rigid), then it is unique up to 
G-equivalence and every element can be conjugated into the maximal 
torus T for G. If the triple is not of rank zero, then there is an entire 
family of triples with elements lying on some smaller torus inside 
the centralizer Z(x, y, z). Kac-Smilga [2] proved that computing the 
number of quantum vacuum states over T3 is equivalent to classifying 
commuting triples in a simple, compact, simply connected Lie group 
G. Witten [3] proved that the number of extra quantum vacuum states 
for a flat principal G-bundle over a spatial 3-torus T3 is the topological 
invariant called the Witten Index which is equal to g, the dual Coxeter 
number of the Lie group G.

Our primary motivation comes from Borel-Friedman-Morgan [4]. 
Given G as a compact, connected, semisimple Lie group, they proved 
that principal G-bundles z with flat connections over a maximal two 
torus T2 are classified up to restricted gauge equivalence by classifying 
commuting pairs of elements in the simply connected covering G  of 
G that commute up to the center. The first invariant is the nontrivial 
characteristic class [w]∈H2(T2, π1(G))=π1(G). By identifying π1(G) with 
a subgroup of the center G we fix a topological type of the bundle by 
w(z)=c ∈ G. Since the characteristic class is completely defined by the 
holonomy representation  ρ:π1(T2)≅ × →G where the images of ρ 
commute then for any lifts ,x y G∈ 

  , we have [ , ] = [ ] = .x y w c   Elements 
with this property are called c−pairs or “almost commuting”.

Definition 1.1: A pair of elements x, y∈ G commutes if [x, y]=1. A 
c-pair in the simply connected covering G  of G is a pair of elements (x, 
y) where x, y∈ G such that [x, y]=1 and [ , ] = .x y c G∈ 

  

To understand why a flat bundle is determined by its holonomy 

representation note the following. Let G be a compact, connected 
and not necessarily simply connected Lie group and : G Gπ →  the 
universal covering map. Certainly the choice of a lift x  is unique up to 
an element in Ker(π) ≅ π1(G) which is identified as a subgroup of the 
center of the simply connected covering. Extending this for a c-pair: 
for k ∈ Ker(π), [ , ] = [ , ] =x y kx ky c     because k ∈ Ker(π) commutes with 
every element in G  and is also invariant under the choice of x, y. We 
may define conjugation by g G∈ 

  to be 1 1 1[ , ] = [ , ]g x y g gxg gyg− − −
          

satisfying 1 1 1( ) = ( ) = .gxg g x g gxgπ π− − −
     This lift is independent of the 

choice of c G∈   and thus our c-pair is well-defined.

For completeness, we recall some definitions found in [5] on 
Dynkin diagrams and root/coroot systems that we will use throughout 
the paper. Let Φ be a reduced irreducible root system for a compact 
connected Lie group G, and let ∆={a1,…,an} be a choice of simple roots 
for G. Let d be the highest root of Φ with respect to ∆. Set =a d−  and 
let = { }a∆ ∆ ∪

  be the extended set of simple roots. Then ∆Ú is the set 
of coroots aÚ inverse to each root a∈∆. If we define A to be the unique 
alcove containing the origin in the positive Weyl chamber associated 
to ∆ then there is a bijection between the walls of A and .∆  Therefore 

.∆  is the set of nodes for the extended Dynkin diagram ( ).D G  For each 
element c∈G the differential wc∈ of the action of the center on the 
alcove is a linear map normalizing ∆ ⊂ h  and the action of wc on the 
nodes of ( )D G  is a diagram automorphism. Given a maximial torus 
T ⊂ G, denote Lie (T)=h and the exponential map identifies T with h/
Q∨ where = iQ a∨ ∨∑  is the lattice associated to the coroots dual to a 
choice of simple roots ai∈∆ for G. Denote the affine Weyl group by 
Waff. The alcove is defined over the maximal torus T⊆G as A=h/Waff 
(Φ) ⊆ h where Waff (Φ) acts simply transitively on the set of alcoves in 
the vector space V; thus there is an induced action of the center G on 
the alcove A.
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Component Group of the Centralizer of Commuting 
Pairs

 The work in [4] gave an explicit characterization of the moduli 
space of c-pairs in terms of the extended coroot diagram of a simply 
connected group G and the action of the Weyl group on that diagram. 
This beneficial relationship between the root/coroot system and 
holonomy plays an essential role. Let G be a compact connected Lie 
group. When G is disconnected, there is the appearance of a c-“1-
chain” coming from a component group which may be a finite group 
of a certain order. A group G is reductive if any representation is a 
direct sum of irreducible representations.s Notice that when a group G 
is compact, it is equivalent to being reductive. We will use the following 
theorem by Borel.

Theorem 2.1 (Theorem 5): Let G be a compact, connected and 
simply connected Lie group. Then Z(x) is connected.

The following demonstrates the relationship between the conjugacy 
classes for commuting pairs (x, y) and flat G-bundles over T2:

Proposition 2.2: Assume that G is a compact, connected and 
simply connected Lie group. For any maximal torus S, we have that 
{Hom(π1(T2, x), G)/G}→(S×S)/ is a homeomorphism.

Proof. Fix generators (γx, γy) for π1(T2, x). Notice that we have a 
representation ρ : π1(T2)→G where ρ(γx)=x, ρ(γy)=y and that these images 
define the commutator in G. In fact, the representation determines the 
commutator in the following sense. Let T be the maximal torus in G. 
Then for some g ∈ G, gxg-1∈T and gyg-1∈T since every element in G can 
be conjugated into the maximal torus. We want to show that both x, y 
∈ T. To do this, define conjugation by g ∈ G for the pair (x, y) by g(x, 
y)g-1=(gxg-1, gyg-1)=(x′, y′) where (x, y)∈ T×T and (x′, y′)∈ T×T. The 
fact that G is simply connected implies that ZG(x) is connected (2.1). 
Thus we may restrict to the connected component of the identity Z0(x). 
Since x ∈ ZG(x) we must show that T⊆ZG(x) because this would imply 
that both x, y ∈ T. By definition of the representation, the image [x, 
y]=1 so that y∈T is conjugate to x which implies we may project y to 
an element z y∈. If we conjugate the pair (x, y) by 1( ) ,y g Gζ − ∈  then 

1 1 1 1( )( , )( ) = ( , ) .y y yg x y g x y T Tζ ζ ζ ζ− − − − ′ ′ ′ ′∈ ×  Thus we have shown that 
1( )y gζ −  conjugates elements from T×T to T′×T ′ and 1 .y gζ − ∈

Conversely,  acts by simultaneous conjugation on S×S so that if 
g∈ is a reflection, then gS∈NG(S)/S. Thus ×S→S by (gS, t)  gtg-1 and 
thus we have its action on the pair × (S×S)→S× S by (gS,t,h)  (gtg-1, 
ghg-1). Define the commutator by [t, h]=[gtg-1, ghg-1]. Since elements in 
S commute, if ‹γx,γy› generates π1(T2) and ρ(γx,γy)=[gxg-1, gyg-1]=1 then 
the holonomy determines the commutator and vice versa. Thus we 
have defined conjugacy of pairs by sending a pair homeomorphically 
to S×S because the representation modulo conjugation by G yields a 
commutator.

Given a commuting n-tuple 1= ( , , )nx x x , the next corollary 
follows immediately because the fundamental group of the centralizer 
Z(x1) is trivial, and for  in a simply connected group, the component 
group π0Z(x1) is contained in the fundamental group of the semisimple 
subgroup π1 DZ(x1).

Corollary 2.3: When G is a group of type An, Cn every commuting 
n-tuple can be conjugated into the maximal torus T in G so that the 
moduli space has the form MG=Tn/.

The corollary can also be seen directly as follows. If 
1= ( , , )nx x x

 is a commuting n-tuple such that 1 2[ , ] =x x c G∈    

and 1[ , ] = 1, = 2,3, , ,ix x i n 
  choosing 1x  in the alcove over the 

torus implies that 2x  projects to a Weyl element and therefore 
conjugates back into the maximal torus; every other element has trivial 
commutator and thus can be conjugated to the maximal torus. This 
also works when (xi, xj) for 1≤ i ≤ j ≤ n is an arbritrary n-tuple because 
the lifts [ , ] =i j ijx x c G∈    and for the cases of type An, Cn the center is 
generated by one cyclic element. Hence only one pair in the n-tuple 
determines what happens to the other elements in the n-tuple.

Corollary 2.4: Let 1= ( , , )nx x x  be a commuting n-tuple and S 
a maximal torus in G. If G is simply connected then the component 
group π0Z(S) is a subgroup of /ni, where ni ≤ 6 and corresponds 
to the coroot integer for x∈G which is associated to the node in the 
extended Dynkin diagram ( ).D G

By [4], Lemma 3.1.5: for 1 1 ( ( , , )) ( , , )1 1 1 1 1
( , , ), S ( ) S ( ).n n W x x n DZ x x nn n

x Z x x tab x tab xπ− Φ − −
∈ ≅

 


  

1 1 ( ( , , )) ( , , )1 1 1 1 1
( , , ), S ( ) S ( ).n n W x x n DZ x x nn n

x Z x x tab x tab xπ− Φ − −
∈ ≅

 


 Thus the component group π0Z(x1,…, xn−1) is 

a subgroup of the fundamental group π1Z(x1,…, xn−1), which in turn 
is a finite subgroup of the center 1 1( , , ).nZ x x −



  If the fundamental 
group of the centralizer Z(x1) is trivial, then Z(x1, x2) is a torus T2 and 
hence π0Z(x1, x2) is trivial. So suppose that π1DZ(x1) ≠ {1}. If G is simply 
connected, then Z(x1) is connected and thus π0Z(x1, x2) ⊆ π1DZ(x1). 
Even if G is not simply connected but still connected, choosing x2 to lie 
in the connected component Z0(x1) of the centralizer of Z(x1) will yield 
the same result.

Proposition 2.5: Let G be simply connected and let ∆={a1,…, an} 
be a choice of simple roots. Let 1= { , , , }, ,x ka a a k n∆ ≤

  be a choice 
of simple roots for Z(x) and let h(x) ⊆ h be the real linear span of the 
coroots dual to the roots in ∆x. Then there is an exact sequence 1→Q∨(x) 
→ Q∨Çh(x)→/ni →1.

Proof. By definition of the fundamental group, ni=gcd (gk+1,…, 
gn) knowing that all the coroot integers for both the classical and 
exceptional groups are less than or equal to six, ni ≤ 6. Dividing each of 
the coroot integers in any group G by ni we may define a new integer 

= /r r ig g n′  for r > k. By definition, this element will have order ni 
in the central subgroup Q∨Çh/Q∨(x) and thus is a generator for the 
cokernel. Hence Q∨Çh/Q∨(x) ≅ /ni.

Proposition 2.6: For an arbitrary compact, connected simple group 
G and for a commuting n –tuple 1( , , ),nx x x=   the component group 
of the centralizer of the n-tuple can be defined in terms of the roots as:

/
0

( )
( ) = .

( ( ))
L Q

Stab x
Z x

x
π

∨

Φ

Proof. If G is not simply connected, then under complexification 
T=h/L, where Q∨⊆ L ⊆ P∨. If Φ(x) is a subset of roots which annihilate 
x we must determine how Stab (x) is defined with respect to this 
smaller subset of roots. If x corresponds to some node ai in the extended 
Dynkin diagram such that 1ai

g ≠  then ( ) = { | 1}.kx a kΦ ∈ ∆ ≠  Since 
Q ⊆ L ⊆ P∨ we have the nesting of tori h/P∨⊆ h/L ⊆h/Q∨. Thus for the 
lift h/L → h/Q∨ sending x x  its kernel consists of all the roots in L 
not in Q∨ i.e. L/Q∨. Therefore the roots which annihilate x are the same 
as those annihilating .x

Let (Φ(x)) be a subgroup in  defined by a subroot system when 
viewed as characters which annihilate x. The faithful action of aff on 
h/Q∨ yields a split exact sequence 1 → P∨/Q∨ →aff →  →1 and since the 
kernel is central, aff=P∨/Q∨× is a direct product because the action 
of the Weyl group is trivial on the center. Restrict the Weyl group to 

: = / .L
affL L Q∨ ×   The torus action of L/Q∨ on h/Q∨ provides the 
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quotient (h/Q∨)/(L/Q∨)=h/L. This implies that Stab(x)⊆LQ∨× and 
the projection π : (h/Q) → (L/Q) satisfies 1( ) =x xπ −

  as the unique lift to 
the alcove. Therefore we may define 

/
( ) = ( )

L Q aff
Stab x Stab x∨   in the 

sense that the roots which annihilate x  can be used to define a subset 
S ⊆ L/Q∨, where S=π0Z(x1,…, xn). This allows for a component group 
larger than the fundamental group and therefore it is not necessarily 
cyclic. Since S ⊆ G it induces a well-defined cyclic permutation on 
the vertices in the alcove and its fixed space hS may be something other 
than the barycenter. L is defined as follows. For Z(x1) the vector space 
is h and its coroot lattice is the entire Q∨. Because we are considering 
commuting elements, we choose x2 ∈ Z(x1) to lie in h(x1)/L1 where h(x1) 
is the vector space associated to DZ(x1). Because Z(x1) is not necessarily 
connected, the associated lattice is Q∨ ⊆ L1⊆ P∨. By induction, the 
element xn ∈ h(x1,…, xn−1)/Ln−1 and Q∨⊆ L1⊆⋅⋅⋅⊆Ln−1⊆ P∨ so that L=Ln-1 as 
the associated lattice to the centralizer of the prior n−1 elements. From 
the definition of these lattices, when they are quotiented out by the 
coroot lattice, they will either be a cyclic subgroup of the center whose 
order divides the order of the center or will be the entire center. Thus 
we have the above conclusion since S ⊆ L/Q∨⊆ P∨/Q∨.

Properties of Centralizers
 In general, the component group of the centralizer of an 

ordered n-tuple is some subquotient of the Weyl group and lies in 
the connected component Z0(x1,…, xn). Let 1= { , , , }na a a∆ 

  be the 
set of extended simple roots for a Lie group G. Any closed subset of 
the extended simple roots for G gives a subdiagram of the extended 
diagram. We are interested in the subset of roots ∆x that annihilate 
the n-tuple. In particular, the simple root system for the centralizer 
Z(x) for any x ∈ G is defined as by ∆x={a∈∆|α(x)∈} which has an 
associated Weyl group (Φ(x)).Let 1= ( , , )nx x x  be a commuting 
n-tuple. Any element 0 ( )Gx Z xπ∈  can be represented by ( )g Z x∈  
since g normalizes ( )Z x  and therefore via conjugation defines a map 
{x}×I→G defining the path components of G. Let 

x
S∆  be the maximal 

torus in the centralizer Z(x1,…, xn) generated by the roots in ∆x given by 
its Lie algebra = K ( ).

a x

er a
∈∆


s  Since G is reductive, there is a standard 

decomposition given by G=(G)0×FDG where (G)0 is a central torus 
in the semisimple subgroup DG of G. and F=(G)0Ç DG is a finite 
subgroup of the center of DG. Thus we get a decomposition of the the 
centralizer into ( ) = ( ).Fx x xx

Z S S DZ S∆ ∆ ∆∆
×  The obstruction to a lift 

will lie in the center of Z(x1) which means that given the equivalence 
classes above, the obstruction will lie in F. The action of F must be 
nontrivial in order to get the semidirect product by F.

Example 3.1: Let G=SU (2). There is a nontrivial central action c 
∈ 2 on the alcove over A1 given by switching the two vertices, leaving 
the barycenter as the only fixed point. As described above, we may 
consider 

2
(2) (2)SU SU×  where the nontrivial central element acts 

"diagonally" on each SU (2) component, switching the vertices of the 
alcove over each copy of A1. We denote by A1× A1 the join of the alcoves 
over each A1. In this case, the join of the two 1-simplices is a 2-simplex 
given as a square with the barycenter b={b1, b2} as the only fixed point 
under the central action. The join can be thought of as the Minkowski 
sum of two simplices: S1+S2={s1+s2: s1∈S1, s2∈S2}.

In order to determine the component group of the centralizer 
of an n-tuple in a non-simply connected group we note that the 
finite diagonal subgroup contained in the center of each centralizer 
Z(x1,…xk), for some k, at some point becomes the component group 
and therefore defines the singularities in the moduli space. For the 
classical groups, Z(x1) will be a product of type An, Bn or Dn and for 

the exceptional groups, Z(x1, x2) will be of type An, Dn. Therefore, it 
sufficies to consider the diagonal group action of the fundamental 
group π1DZ(x1) on groups of these types. Since the fundamental group 
is a subgroup of the center of the simply connected covering, for type 
Bn we only consider the /2 action on the alcove given by flipping two 
vertices; the action of any higher order central cyclic group is trivial.

Example 3.2: Consider a group of type B3. Select x  to correspond 
to the vertex in the 3-simplex associated to the trivalent node 2α ∨ . The 
centralizer Z(x) is the set of those elements which annihhilate x. In the 
Lie algebra, these elements are precisely the generators for the maximal 
torus Lie(S)=h in the Lie algebra LDZ(x). When we remove the node 2α ∨  
from the diagram, we are left withn 3 nodes, each orthogonal to each 
other. Thus we get LDZ(x)=SU(2)×SU(2)×SU(2). By [6], if a root system 
has a node x with torsion prime p then there exists a diagonal element 
c∈Z(x) of order p. For B3, p=2 and hence the finite diagonal subgroup 
is ∆=(−1, −1, −1) of order 2 in the center 

2 2 2( ) = .DZ x × ×   ∆ 
acts on LDZ(x) by flipping the two vertices corresponding to each copy 
of SU(2). We write 23

( ) = ( ) / = (2) / .DZ x LDZ x SU∆ × 

In order to obtain a commuting triple, the choice for y must come 
out of DZ(x) since y∈Z(x) normalizes Z(x). If y  is chosen so that it 
does not lie in the fixed point space under the diagonal action, the 
component group π0Z(x, y) is trivial. However, if y  lies somewhere in 
the fixed space under the action of the center, there will be a nontrivial 
component group π0Z(x, y). The alcove for SU(2)=T/=T1/2 is 
a 1-simplex. Thus the 3-simplex determined by the join of three 
1-simplices is a cube and is DZ(x). If y  is in the interior of the cube, 
then since 2 stabilizes y, and we have Z(x, y)=T3×2. The maximal 
torus in Z(x, y) is (2)

3. Select z ∈2 because we require [y, z]=1 but 
[ , ] = .y z c G∈ 

    Therefore, Z(x, y, z)=(2)
4.

Notice that the centralizer of a commuting triple will depend on the 
choices for each of the elements x, y, and z. If instead, we select x  to 
correspond to the node 3 ,α ∨  then the Lie algebra of the semisimple part 
of the centralizer is LDZ(x)=SU(4). The real dimension of the maximal 
torus is zero thus Z(x)=DZ(x). The diagonal element must be in the 
center  SU(4)={ ωI : ω4=1}. In this case, ∆ is simply the trivial action 
(multiplication by +1).

Definition 3.3: Define the rank rk(x1,… , xn) of an n-tuple to be 
the rank of Z(x1,… , xn). An n-tuple has rank zero if and only if 
Z(x1,…., xn) is a finite group. A c-pair (x, y) is in normal form with 
respect to the maximal torus T in the alcove A if x ∈ T is the image 
under the exponential map of cx ∈ h  and y ∈ NG(T) projects to wc ∈ 
. Note wc ∈W is the differential action of c∈G that, as a group of 
affine isometries of the Lie algebra t of the maximal torus T normalizes 
the alcove A.

Example 3.4: Consider G=SU(3) and x∈T, the maximal torus of 
G. Then the centralizer Z(x)=T. In the Lie algebra of G, select x  to 
be regular (in the interior of the alcove) so that ( )Z x  is a connected, 
abelian, reductive subgroup { :[ , ] = 1}.H x∈ h h  By choosing y  to be 
regular, Z(x, y)=Z(x) Ç Z(y)=G and hence (x, y) is a c-pair of rank 
zero.

Remark 0.1: For c∈G, denote by Sc the torus in T fixed under 
the action of the center. The choice of roots ∆(c)={a∈∆|ra∉Z} 
where c=exp(λ) for a

a
r aλ ′

∈∆

′ ′∈∑ t  defining the fixed subtorus Sc ⊂ T 

is independent of the choice of lift λ, let a
a

r aλ ′
∈∆

′ ′∈∑ t  be such that 
exp(λ′)=c′. Then under exp: t → T, the kernel of this map is an integral 
lattice defined with respect to T. Namely, Ker(exp)Q∨, thus for λ−λ′∈ 
Ker(π) this implies that a ar r Z′− ∈  and hence ∆(c)=∆(c′) if and only if 
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0(mod )a ar r Z′− ≡  which we have since .a ar r Q∨
′− ∈  Therefore, ∆(c) 

depends only on the choice c∈G≅P∨/Q∨ and any two elements in the 
Lie algebra t differ by an element in the coroot lattice Q∨. By definition 
of a c− pair of rank zero, c∈DZ(Sc). Thus the moduli space is precisely 
M=(T×T)/W(T,G). It certainly will not be true that for a general non-
simply connected group that every element of a commuting n-tuple 
can be put inside the maximal torus.

We show that the fundamental group of the centralizer is finite 
cyclic by using diagram automorphisms.

Proposition 3.5: Under a cyclic permutation of the vertices in the 
extended root diagram of a group of type An where the permutation is 
given by the fundamental group π1DZ(x1)=k, the quotient space has 
the form:

1
1/ ( ) k

n k l kk
A A T −

−≅ × × 

Where n+1=kl, π1DZ(x1) ≅ k, with 1 ≤ k ≤ 6, and 1lk
A −×  is the 

product of k groups of type Al−1 or equivalently as the join of k,(l−1)-
simplices.

Example 3.6:  The diagram quotient space 1
5 2 22

/ = { (3) (3) }A SU SU T× × ×   
has a nontrivial action of 2 on A2×A2 by switching the vertices in the 
alcove over each A2 and the outer automorphism acts by switching the 
two copies of A2.

Proof. Since any inner automorphism of type An is dihedral, it 
is either a rotation or a reflection. Consider the cyclic permutation 
τ given by rotation. (note: this is an element of a group of affine 
automorphisms of a vector space which normalizes the alcove of a root 
system on that vector space. Such automorphisms are equivalent to 
diagram automorphisms of the extended Dynkin diagram of the root 
system.) If τ∈k has order n+1 then the fixed point set is simply the 
barycenter and thus hτ={0}. If n is odd then τ may have order k (n+1). 

If 
1=

2
nk +

 then either the barycenter is the only fixed point or the 

fixed point set is the join of type A2k−1 or there is a rotation subgroup 
of τ of order exactly k which implies it is an involution of the extended 
diagram which fixes two vertices and thus the quotient coroot diagram 
is a product of type A1. The 2 action on the alcove over A1 is simply to 
switch the two vertices leaving the barycenter fixed.

Specifically, if n +1=kl then every node in the extended diagram 
included in this k-orbit is nonzero which leaves the quotient coroot 
diagram as the join of k,(l−1)-simplicies with the barycenter (since the 
barycenter is the only fixed space under the action of the full center) 
times the remaining torus and semidirect product with rotation group. 
In terms of extended roots in the diagram, if 1= { , , , }na a a∆ 

  is the 
set of simple roots for An then the quotient space An/k is defined by 
the elements in the orbit, 2 ( 1)/ = { , , , , }.k l l k la a a a −∆ 

  Thus the gaps 
between the nodes are of length (l−1). Therefore, the fixed space will be 
given by 1

1/ = ( ) .k
n k l kk

A A T −
−× ×   What we have shown is that in 

An the 1Stab ( ) = .l kk
Aτ −×   The fact that π1DZ(x1) ≅ k where 1≤ k≤ 6, 

follows directly from looking at the coroot integers for all the extended 
Dynkin diagrams.

When the centralizer of an element is in a group other than G, we 
will denote the group in the centralizer notation.

Proposition 3.7: Let G be a simple group of dimension n. The 
centralizer ( ) = .n k n k

k F A Fk
Z A T Z T− −× ×

Proof. Given Ak×F Tn-k and ζ ∈ F, for any element [A, t]=[Aζ, 

ζ−1A]∈Ak×FT
n−k its centralizer is Z([A,t])={[B,s]:[A,t][B,s]=[B,s][A,t]}. 

This implies that [AB,ts]=[BA,st]. But since st=ta∈T, AB=BA. Therefore, 
([ , ]) = ( ) n k

A Fk
Z A t Z A T −×  which is connected and thus Proposition 
3.5 applies. The conclusion follows because the components in the 
almost direct product are simply connected.

Proposition 3.8: Given G1×FG2 where G1, G2 are subgroups of G, F ⊆  
G1 and F ⊆ G2 and F ∈(DG1ÇDG2). Then for [a, b] ∈ G1×FG2,

1 2
{1} ([ , ]) ( ) ( ) .G F GF Z a b Z a Z b F

π
→ → → × →

Proof. Consider the map 1 2 1 2/ / .FG G G F G F
π

× → ×  The 
kernel is ker(π)={[c, d]: c,d∈F}. Thus we have the injective map 

1 2 1 2{1} / / .FG G G F G F
π

→ × → ×  By definition of the centralizer of an 
element in G1×FG2

Z([a,b])={[c, d] : [ac, bd]=[ca, db]}
1 1

1 2 1 1 2 2= { , ,[ , ] [ , ] = [ , ] [ , ]}f f F acf bd ac f bd caf db ca f db− −∃ ∈  

1 1
1 2= {[ , ] :[ , ] = [ , ] = , = , [ , ][ , ] = 1}c d a c f b d f f f f a c b d− −

This demonstrates that the coker of π is F and that π is not 

surjective. Therefore, 
1( ([ ]) ([ ])) = ([ , ]).Z a Z b Z a b

F
π − ×  Note also that by 

the definition of the centralizer of [a, b] ∈ G1×FG2, that the generalized 
Stiefel-Whitney class [7] is w2 (a, c)=− w2(b,d)∈ F. Hence w2 : H

2(T*) → 
Zn defines an obstruction.

Corollary 3.9: Following propsition 3.8, if G1=T for some torus and 
G2 is of type Ar then:

/( ) ([ ]) {1}.A A Fr r
F Z A Z A F

π
→ → → →

Proof. Given a sequence {1} /k k
F r rT T A A F

π
→ → × →  inside 

ZG([t, A]) we have that [t, A][s, B]=[ts,AB]=[st,BA]=[s, B][t,A] 
and in ([ ]) = {[ ] : [ , ] = [ , ]}Ar

Z A B A B B A  which implies that 
1([ , ]) ( ([ ]))G Ar

Z t A Z Aπ −  so that AB=BAζ for ζ ∈ F. Thus they 
are equal up to an element in the finite group. Therefore we have 

1([ , ]) ( ([ ])) .G Ar
Z t A Z A Fπ − →  Suppose that [A] ∈ Ar/F and consider 
its lift rA A∈  arbitrary. Then:

/( ) ([ ]) {1}A A Fr r
F Z A Z A F

π
→ → → →

because the kernel is Ker(π)=F and from what we have already deduced, 
AB=BAζ for ζ ∈ F. Hence:

1( ([ ]))
([ , ]) = .Ar

G

Z A
Z t A

F

π −

We used the simply connected component as follows. If we consider 
[B] such that there exists a B  with = ,AB BA    then mulitiplication 
of the equivalence classes is [ , ][ , ] = [ , = [ , ].s B t A st BA ts AB      Since 
π1(G)={1} when we lift to the universal covering we can say that 
for [ , ] = k

Ft A G T G∈ ×  then ([ , ]) = ( )k
FGZ t A T Z A×



 and more 
importantly that ([ , ])GZ t A



 is connected.

Corollary 3.10: Consider a subgroup in G of the form Ak×FAr, for r 
+ k=n+1, then the centralizer of an element [a, b]∈ Ak×FAr, for r + k=n 

+1, is ( ( ) ( ))
([ , ]) = ,A F Ak r

G

Z a Z b
Z a b

F
′×  where = .A Ak r

F DZ DZ F′ ∩ ⊇ 

Corollary 3.11: Consider a subgroup in G of the form Ak×FDn−k. 
then the centralizer of an element [a,b]∈Ak×FDn−k is of the form:

( ( ) ( ))
([ , ]) = ,A F Dk n k

G

Z a Z d
Z a d

F
′ −

×

→

→
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where = .A Dk n k
F DZ DZ F

−
′ ∩ ⊇ 

It does not necessarily follow that π0Z(x1,…,xn)⊂π1DZ(x1) because 
DZ(x1) is not necessarily connected. The fact that for G of type Dn 
that π1Dn= Dn≅× and that the characteristic class for a principal 
G-bundle over Tn lies in H2(Tn;π1(G))≅× means that there is a 
possibility that the component group of the centralizer of an n-tuple 
inside a group of type Dn will not be finite cyclic.

Conclusion
 We have shown that for an arbitrary compact, connected simple 

group G and a commuting n-tuple, that the component group of the 
centralizer can be defined in term of the roots and therefore, we may 
use diagram automorphisms to define the moduli space of commuting 
elements. We have also seen that the centralizer of a commuting n-tuple 
is determined by the order and choice of elements. For example, we 
can generate a commuting n-tuples of rank zero of arbitrary length 

by finding a nontrivial triple, say, and then adding arbitrarily many 
elements from the torus, thereby not altering the centralizer.
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