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Introduction
In randomized trials, statistical inference of the average causal effect

(ACE) of a treatment in comparison with a control treatment is desired
with a focus on a particular outcome. Often, in addition to estimation
of the ACE, the confidence interval (CI) is calculated, and a hypothesis
test is performed. Nevertheless, many tests employed in randomized
trials that are currently underway do not allow any statistical inference
to be made about the ACE unless strict assumptions are satisfied. For
example, the permutation test, which corresponds to Fisher’s exact test
in the case of a binary outcome, is a hypothesis test for the sharp causal
null hypothesis (i.e., the causal effect of treatment is the same for all
subjects), but not for the weak causal null hypothesis (i.e., the causal
risks are equal in the two groups). In this article, I discuss causal
inference in the context of randomized trials with a binary outcome.
First, I state that a hypothesis test for the sharp causal null hypothesis
is generally different from that for the weak causal null hypothesis, as I
showed in a recent publication [1]. Next, I demonstrate that previously
proposed CIs linking to exact tests are not informative in terms of the
ACE; I use hypothetical data to make this point. Finally, I discuss the
future prospects for causal inference in randomized trials.

Sharp and Weak Causal Null Hypothesis
For demonstration purposes, I use hypothetical data with a small

sample in Table 1, where X denotes a treatment, and Y the outcome.
Let Y(x) denote the potential outcome for each subject under X = x; let
nst denote the number of subjects with (Y(1), Y(0)) = (s, t), where s, t =
0, 1; and n is the total number of subjects. Then, all subjects belong to
either (Y(1), Y(0)) = (1, 1), (1, 0), (0, 1), or (0, 0); and Σs,t nst = n. In
randomized trials, it is generally sought to derive inferences about the
ACE and thus to compare Pr(Y(1) = 1) and Pr(Y(0) = 1). The null
hypothesis of interest is thus the following weak causal null hypothesis:

H0: Pr(Y(1) = 1) = Pr(Y(0) = 1).

Outcome

Group Y = 1 Y = 0 Total

X = 1 1 4 5

X = 0 3 2 5

Table 1: Hypothetical data with a small sample size.

Using nst, Pr(Y(1) = 1) and Pr(Y(0) = 1) can be expressed as (n11 +
n10)/n and (n11 + n01)/n, respectively, and then the weak causal null
hypothesis corresponds to

H0: n10 = n01.

Although the null hypothesis of interest is the weak causal null
hypothesis, the hypothesis tests that are commonly used do not explore
this null hypothesis. For instance, Fisher’s exact test, which is the exact
test most commonly used to evaluate two-by-two contingency tables, is
a hypothesis test for the following sharp causal null hypothesis [1,2]:

H0: Y(1) = Y(0) for all subjects.

Under this null hypothesis, the combination of (Y(1), Y(0)) is
limited to (Y(1), Y(0)) = (1, 1) or (0, 0). Because subjects with (Y(1),
Y(0)) = (1, 0) or (0, 1) do not exist, the sharp causal null hypothesis
corresponds to

H0: n10 = n01 = 0.

Clearly, the sharp causal null hypothesis is a special case of the weak
causal null hypothesis, and the proposition “the weak causal null
hypothesis holds if the sharp causal null hypothesis holds” is true.
However, the inverse “the weak causal null hypothesis does not hold if
the sharp causal null hypothesis does not hold” is not true. This can be
illustrated using the hypothetical data in Table 1 as follows. Assume
that the 10 subjects in Table 1 comprise (n11, n10, n01, n00) = (4, 1, 1, 4).
Then, Table 1 is obtained as a result that (1, 0, 1, 3) of (n11, n10, n01,
n00) = (4, 1, 1, 4) is randomly assigned to the group X = 1. Because n10
= n01 = 1, the sharp causal null hypothesis does not hold, but the weak
causal null hypothesis does hold. This shows that the sharp causal null
hypothesis can be rejected even when Pr(Y(1) = 1) – Pr(Y(0) = 1) = 0.
In other words, rejection of the sharp causal null hypothesis does not
mean that Pr(Y(1) = 1) – Pr(Y(0) = 1) ≠ 0.

Nevertheless, the inverse is true under the following monotonicity
assumption [3]:

Monotonicity assumption: Y(1) ≤ Y(0) for all subjects.

This assumption implies that there is no subject with (Y(1), Y(0)) =
(1, 0); i.e., n10 = 0. Then, n01 > n10 = 0 corresponds to the situation that
the sharp causal null hypothesis does not hold, and if this is the case,
the weak causal null hypothesis also does not hold. Consequently, the
sharp causal null hypothesis is equivalent to the weak causal null
hypothesis under the monotonicity assumption.

Confidence Interval
Next, I discuss previously proposed CIs linking to exact tests. The

limits of the CI for the ACE cannot be outside the nonparametric
bounds [4], which are given by

Pr(Y = 1, X = x) ≤ Pr(Y(x) = 1) ≤ 1 – Pr(Y = 0, X = x).

This is because the nonparametric bounds are the range within
which the ACE must exist. For the data in Table 1, the nonparametric
bounds for the causal odds ratio (OR) are 0.028 ≤ causal OR ≤ 3.500.
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However, the usual and matching exact CIs based on the
hypergeometric distribution [5], which links to Fisher’s exact test, yield
95% CIs of (0.003, 4.586) and (0.005, 3.172), respectively. Note that the
conditional maximum likelihood estimator yields an OR of 0.203. Both
lower limits are smaller than the lower bound of 0.028. This shows that
these 95% CIs include values that the causal OR cannot take.
Consequently, these exact CIs for the OR are not the exact CIs for the
causal OR.

On the risk difference (RD) scale, Santner-Snell CI [6], which is an
exact CI linking to Barnard’s exact test, yields a 95% CI of (-0.867,
0.305), while the bounds for the causal RD are -0.700 ≤ causal RD ≤
0.300 [7]. This also shows that the Santner-Snell CI is not the exact CI
for the ACE.

Discussion
Finally, I discuss future prospects for causal inference in

randomized trials. As mentioned above, inference about the ACE is
generally of most interest. Nevertheless, in general, the existing
hypothesis tests and the CIs linking to them are not appropriate for
evaluating the ACE. Fisher’s exact test, which is the exact test
commonly used to evaluate two-by-two contingency tables, is a
hypothesis test for the sharp causal null hypothesis, but unfortunately,
in general, rejection of the sharp causal null hypothesis does not mean
that Pr(Y(1) = 1) – Pr(Y(0) = 1) ≠ 0.

To increase the quality of statistical inferences about ACE in
randomized trials, hypothesis tests for the weak causal null hypothesis
and CIs linking to them require further attention. Although a few
methods have recently been developed on binary outcomes [1,8-10],
no well-established method exists yet. Also, new methods of sample
size calculation are required, and it is necessary to create an algorithm
permitting efficient use of such newly developed methods.

Furthermore, according to trial design, the methods need
improvement. Such methods must be applicable to not only superiority
but also non-inferiority trials; the methods will differ in the type of
randomization applied. If simple (or equally complete) randomization
is employed, the method must not require that the number of subjects
assigned to each group is fixed. For randomized trials with restrictions,
a stratified analysis is better than a crude analysis.

Outcome

Group Y = 1 Y = 0 Total

X = 1 1 69 70

X = 0 8 62 70

Table 2: Hypothetical data used in Chiba [1].

It is also important, in some settings, to consider whether an
assumption made actually holds. For instance, the monotonicity
assumption will be reasonable in many vaccine trials, in which there is
no subject who would become infected if a vaccine was received, but
would not become infected if a vaccine was not received. For the
hypothetical data in Table 2, Chiba’s conditional exact test [1] yields an
RD of -0.100 (95% CI: -0.200, -0.014; two-sided p-value = 0.034) under
the monotonicity assumption, but an RD of -0.100 (95% CI: -0.207,
0.007; two-sided p-value = 0.074) without the assumption. The latter
result may give a somewhat more negative impression than the former.
Thus, the conclusions drawn from the randomized trial may be in
error, because the monotonicity was (or was not) assumed by mistake.
When considering assumptions, cooperation between clinicians and
biostatisticians is essential.

The hypothesis tests and CIs in randomized trials are not a new
problem (indeed, the problem arose several decades ago). However, the
ACE-related concerns described above are indeed new. Further work is
needed.
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