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Introduction
Glioblastoma (GBM) is the most common and fatal primary brain 

tumor in humans. Since no cure currently exists, and the median overall 
survival of afflicted patients remains between 14 to 15 months, the need 
for new and better therapies is urgent [1]. GBM is most common in the 
sixth and seventh decade of life, and more commonly occurs in men 
than women. All patients with GBM universally experience disease 
recurrence [2]. Currently, the standard treatment approaches for 
patients with GBM include safe optimal surgical resection, followed by 
radiotherapy, and chemotherapy [3]. GBMs, however, are notoriously 
known to resist conventional tumor therapies [4].

Recent evidence points to casein kinase 2 (CK2) as a promising 
therapeutic target for GBM. CK2 is a messenger-independent serine/
threonine oncogenic protein kinase composed of two catalytic alpha 
subunits (CK2α and CK2α’) and two regulatory beta subunits (CK2 β) 
[5]. Over 400 substrates have been identified for CK2 indicating that 
this kinase can regulate a multitude of cellular pathways including: 
proliferation, survival, apoptosis, tRNA and rRNA synthesis and cellular 
transformation [6]. CK2 is known to phosphorylate tumor suppressors 
such as AKT, PTEN, and p53 causing inhibition of apoptosis in cancer 
cells [5]. On the other hand, p21, STAT3 (indirectly), NF-kB/p65, and 
c-Myc represent known oncogenes that CK2 activates leading to cell 
survival and proliferation in cancers (Figure 1) [5]. Apart from its 
key involvement in regulating normal cell growth and development, 
enhanced CK2 activity was observed in a variety of cancers, including 
breast, prostate, lung, leukemia, and brain [7,8]. Numerous reports have 
recently demonstrated that the subunit, CK2α, plays an important role 
in GBM tumorigenesis. CK2α (CSNK2a1) had frequent gene dosage 
gains in more than fifty percent of the tissue in human GBM cases 
that correlated with increased mRNA and protein levels [9,10]. Many 
experiments have also confirmed that down-regulation of CK2α by 
siRNA induced cell death in GBM cell lines [11]. Recently a phospho-
proteomic study indicated that a variant of the epidermal growth factor 
receptor (EGFRvIII) may regulate the activity of CK2α in GBM through 
the ERK1/2 pathway, however, the downstream mechanism by which 
CK2α increases susceptibility to GBMs is still being uncovered.
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Figure 1: CK2 signaling pathways in tumorigenesis (Apoptosis=red, Cell 
growth=blue).
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Recently a new concept has evolved suggesting that CK2 could 
induce tumorigenesis in a novel method. Numerous reports indicate 
that CK2 may be involved in the growth and maintenance of cancer 
stem cells (CSC). CSCs are a subpopulation of tumor cells that 
possess stem-like characteristics such as self-renewal and the ability to 
differentiate into different cell types found within the heterogeneous 
tumors. There are a number of different pathways that were found to 
be involved in maintaining glial CSC phenotypes [12] (Figure 2). Our 
review will discuss what is known about the CK2-CSC connection and 
focus on three major CSC pathways, Gli1, Notch, and Wnt/β-catenin. In 
addition, a great deal of research has focused on identifying inhibitors 
to CSCs with the hope of preventing tumor reoccurrence. If CK2 does 
play an essential role in GBM CSC maintenance, then a CK2 inhibitor 
could be an integral therapeutic for GBM. Consequently, we will also 
discuss a potent and selective CK2 inhibitor, CX-4945, that is currently 
being evaluated and tested in preclinical non-GBM and GBM studies 
and non-GBM clinical trials.

CK2 and Cancer Stem Cells
Recent evidence suggests that CK2 is involved in maintaining a 

subpopulation of cells in the tumor that are responsible for initiating 
and maintaining tumor growth. This subpopulation, known as CSCs 
is capable of self-renewal, asymmetric division and multi-lineage 
differentiation [13,14]. The “cancer stem cell hypothesis” poses that the 
CSCs are responsible initiating the tumor and for the heterogeneous 
population of cells found in the tumor [15,16]. Consequently it is 
necessary (and sufficient) to eradicate CSCs for therapeutic efficacy in 
multiple forms of cancer [15,17].

CSCs were first identified in hematopoietic malignancies [18,19], 
multiple myelomas [20], colorectal, prostate and hepatocellular 
carcinomas [21-24]. CSCs in GBM have been widely studied, yet 
studies are still being conducted to further elucidate the pathways in 
glial stem cells. Recent reports suggest that CK2 could play a vital role 
in GBM CSC growth and maintenance, but currently more studies are 
needed. CK2 was found to regulate the expression and/or activity of 
important stem cell factors and markers in a variety of different types of 
cancers. We have highlighted three major pathways that CK2 was found 
to regulate that are well known players in GBM CSCs: Hedgehog/Gli, 
Notch, and β-catenin (Figure 3).

Hedgehog/gli1 pathway

The hedgehog (HH) signaling pathway plays important roles 
in mammalian development and in stem cell maintenance during 

embryonic development [25]. The HH pathway is initiated at the cell 
surface by the HH ligand binding to its receptor Patched (Ptc), resulting 
in de-repression of the G-protein-coupled receptor, Smoothened 
(Smo) [26]. Ultimately, Smo activates the Gli family of transcription 
factors and target genes [27,28]. Hyperactivation of this pathway or 
activation of Gli1, by either mutation or deregulation, has recently 
been recognized to cause tumorigenesis in a wide variety of tissues. 
For instance, enhanced Gli1 activity was discovered in non-small cell 
lung cancer (NSCLC), leukemia, lung, gastrointestinal, lung, ovarian, 
breast and prostate cancers [27] and GLI1 is amplified in human 
glioma in basal cell carcinoma [29,30]. Recently HH/Gli signaling was 
found to be involved in maintaining GBM CSCs. For example, human 
gliomas including GBM displayed enhanced Gli1 signaling and HH-
Gli1 signaling regulates self-renewal, sustained growth and survival of 
GBM CSCs [31]. In addition Gli1 was shown to regulate key factors in 
maintaining GBM CSCs including: Bmi1, a transcriptional repressor 
of polycomb group of transcription factors and known regulator of 
the self-renewal of glioma stem cells [32-34] and ATP-binding cassette 
transporter member 2 of G family protein (ABCG2) [35,36].

Two recent investigations have demonstrated that CK2 can 
regulate the HH/Gli1 pathway. Jia et al. [37] initially showed that in 
Drosophila CK2 can positively regulate HH/Gli signaling through 
the phosphorylation and activation of Smo. In addition, inhibition of 
CK2α expression decreased HH target gene expression and resulted 
in the loss-of-Hh wing phenotype consistent with mutation of Smo 
[37]. Zhang et al. expanded on Jia et al’s discovery and determined that 
CK2 can regulate the stem-like side population in human lung cancer 
cells [38]. Zhang et al. discovered that inhibition of CK2α using small 
molecule inhibitors or siRNAs reduced expression of Gli1 mRNA 
and protein, and also decreased Gli1 transcriptional activity [38]. In 
addition, decreasing CK2α expression altered ABCG2 expression 
which consistently led to a reduction in the cancer stem cell-like side 
population in the lung cancer cells.

Figure 3: CK2 regulated pathways in the development of CSC characteristics 
(Wnt/β-catenin=purple lines, Hedgehog/Gli1=orange, Notch=green).

Figure 2: Pathways in glial cancer stem cell maintenance.
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Notch pathway

Notch signaling has a critical role in regulating cell-to-cell 
communication during embryogenesis, cellular proliferation, 
differentiation, and apoptosis [39]. Notch signaling is also critical 
for normal hematopoiesis, breast development, colorectal epithelial 
maturation, immune regulation, and neural stem cell survival [40]. 
Mammalian-membrane-bound Notch ligands consist of two structurally 
distinct families, delta-like ligands (DLLs) and jagged ligands, which 
interact with the Notch family receptors. Once ligand–receptor binding 
occurs, the Notch receptor undergoes a conformational leading to its 
cleavage and release of the active Notch intracellular domain (NICD) 
into the cytoplasm. NICD undergoes nuclear translocation and binding 
to the transcription initiation complex and core binding factor-1 (CBF-
1), thus modulating Notch-specific gene expression. 

The oncogenic role of Notch is highlighted by the presence of 
activating mutation and amplification in the Notch pathway in variety 
of human CSCs including GBM. Over-expression of a constitutively 
active Notch1 protected GBM stem cells from radiation and inhibition 
of Notch1 impaired xenograft tumor formation [41]. Previous reports 
demonstrate that Notch activation in neural stem cells leads to 
increased self-renewal and survival [42-45], while inhibition of Notch 
pathway by γ-secretase inhibitor treatment attenuated proliferation and 
self-renewal of GBM stem cells and induced neuronal and astrocytic 
differentiation [46].

CK2 has been demonstrated to be a regulator of the Notch pathway 
through the phosphorylation of NICD. Using mapping and mutational 
studies, Ranganathan et al. identified multiple CK2 phosphorylation 
sites, located in the ankyrin domain of Notch [47]. Phosphorylation 
of both sites resulted in decreased binding of NICD to DNA and 
consequently lower transcriptional activity. Subsequent studies have 
confirmed that CK2 regulates Notch1 signaling; however, in lung cancer 
cells CK2 was found to be a positive regulator of Notch1. Zhang et al. 
found that Notch1 protein levels were reduced after CK2α expression 
was silenced in lung cancer cells [38]. In addition, inhibition of CK2 
using a small molecule inhibitor decreased Notch1 transcriptional 
activity and reduced the stem-cell like CD44+/CD24- cell population.

Wnt/Beta-catenin

The Wnt/β-catenin pathway regulates stem cell pluripotency and 
cell fate decisions during development. The Wnt family of proteins 
serves as ligands for the Frizzled (Fz) and low-density-lipoprotein-
related protein (LRP) 5/6 transmembrane receptors [48]. Wnt 
binding to the Fz receptors initiates three distinct signaling cascades, 
the most well known being the canonical pathway. In the absence of 
Wnt, the destruction complex (comprising of GSK3β, adenomatosis 
polyposis coli (APC), Axin) phosphorylates β-catenin targeting it for 
proteasomal degradation. Upon Wnt binding to Fz and LRP5/6, the 
scaffolding protein Dishevelled (Dvl) becomes phosphorylated by 
GSK3b and Casein-Kinase Iγ. Consequently, the destruction complex 
components are recruited to the receptor complex, leading to β-catenin 
stabilization. Stabilized β-catenin translocates to the nucleus, where 
it binds to lymphoid enhancer factor-1 (Lef-1)/T-cell factor (Tcf) 
transcription factors and regulates expression of Wnt target genes. 
Aberrant Wnt signaling has been reported in gliomas [28,49,50], 
and was shown to have a negative correlation with patient prognosis 
[51,52]. Together these results show the importance of Wnt/β-catenin 
in GBM tumorigenesis. The canonical Wnt signaling also was found to 
have a key role in the regulation of tissue self-renewal [53] and has been 
well studied in GBM CSCs. β-catenin was demonstrated to regulate 

numerous genes associated with GBM CSC including OCT4 and 
NANOG and enhanced β-catenin activity lead to increased CD133+ 
GBM cells [54].

Numerous reports have demonstrated that CK2 plays an important 
role in regulating the expression and transcriptional activity of 
β-catenin. In vitro mapping studies identified the Thr393 site in the 
central armadillo repeat domain of β-catenin as a CK2 phosphorylation 
site [55]. Mutation of Thr393 site reduced β-catenin transcriptional 
activity and induced proteasomal-dependent degradation. Additionally 
studies suggest that CK2 can regulate β-catenin activity indirectly as 
well. In vitro studies show that CK2 can phosphorylate AKT/PKB, a 
known activator of β-catenin [56,57]. When CK2α is over-expressed, 
AKT/PKB becomes hyperactivated leading to an increase in β-catenin 
subcellular localization and transcriptional activity, while also 
enhancing cell resistance to apoptosis. CK2 was also found to prevent 
the inhibitory effects of α-catenin on β-catenin by phosphorylating 
α-catenin at Ser641 [58]. These studies suggest that CK2 may positively 
regulate β-catenin activity in a direct or indirect manner. Interestingly, 
multiple regulators of CK2 were found to dictate CK2-dependent 
β-catenin activity. In the more canonical Wnt/β-catenin pathway, 
Wnt3a was found to activate CK2 kinase activity through Dvl thereby 
increasing β-catenin transcriptional activity [59]. However, the mitogen 
activated protein kinase (MAPK) ERK1/2 was also shown to regulate 
β-catenin activity by phosphorylation of CK2α [59].

CK2 Inhibitors
The intricate, yet still uncharted role that CK2 plays through these 

pathways in maintenance of CSCs in a wide array of human cancers 
amplifies the need for an effective and selective CK2 inhibitor in 
order to decrease tumor proliferation and differentiation. One class 
of inhibitors, ATP-competitive CK2 inhibitors, includes derivatives of 
TBB (4,5,6,7-tetrabromobenzimidazole) and IQA (indoloquinazoline-
based compounds), both of which are being studied [60]. Researchers, 
however, are trying to identify non-competitive CK2 inhibitors that 
may prove to be more selective; examples include inhibitors that 
disrupt CK2α and CK2β subunit interactions (Pc peptide or W16) [61], 
specifically target the CK2β subunits (P1 Peptide) [62], allosterically 
inhibit CK2 (polyoxometalates, or POMs) [63], or target the substrates 
of CK2 (P15 peptide) [64] (Figure 4). Within the first class of inhibitors, 
attention is now being focused on CX-4945, an ATP-binding site CK2 
inhibitor [65].

Among the various available CK2 inhibitors, CX-4945 has proven 
to be the most selective inhibitor available. CX-4945 is a “first-in-class,” 
CK2α small molecule ATP-binding site inhibitor, also known as 5-(3- 
chlorophenylamino) benzo[c][2,6] naphtylridine-8-carboxylic acid 
(Figure 5) [66]. According to a recent study, ATP-site directed inhibitors 
of CK2 fall into the following five chemical categories: (i) Flavonoids; (ii) 
Derivatives of hydroxyantraquinones/xantenones; (iii) Derivatives of 

Figure 4: Small molecule inhibitors to inhibit the activity of the CK2 tetramer. 
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hydroxycoumarines; (iv)  Derivatives of tetrabromotriazole/imidazole; 
(v) Derivatives of indoloquinazolines [67]. Compared to the two most 
prominent CK2 inhibitors being researched, TBB and IQA, CX-4945 is 
the only one with high bioavailability [68].

Most of the recent in vitro, in vivo and clinical research on CX-
4945 inhibition of CK2 has been conducted in non GBM cancer cells. 
Following these studies, there has only been one pre-clinical study 
in which CX-4945 has been evaluated specifically in GBM. We have 
highlighted the major experiments that have been conducted in pre-
clinical in vitro cancer cell lines and in vivo mice and human xenograft 
tumor models, and in human clinical trials that have been conducted 
most recently (Figure 6) [5,7,66,69,70].

Pre-clinical studies: in vitro and in vivo

Recent in vitro studies in a broad spectrum of human cancer cell 
lines demonstrated significant inhibition of survival and angiogenesis 
in the cells when treated with CX-4945. CX-4945 functioned by 
suppressing the PI3K/Akt signaling in breast, human umbilical vein 
endothelial cells (HUVEC), and CLL cancer cells [10,69,71] and by 
inactivating PTEN in chronic lymphocytic leukemia (CLL) [70]. In an 
in vivo study involving pancreatic cancer and breast cancer-inoculated 
xenograft models, administration of CX-4945 exerted partial or 
complete anti-tumor efficacy [66,72,73]. Following these studies, 
similar experiments were done in GBM cell lines and GBM orthotopic 
models using primary human GBM xenografts in mice.

In human immortalized GBM cell lines, treatment with CX-4945 
decreased cell adhesion and migration, and caused a retracted and 
rounded phenotype in affected cells [10]. Moreover, these reports 
showed that CX-4945 played a strong regulatory role through 

activation of several inhibitors of cell cycle progression and initiators 
of apoptosis. CX-4945 also dephosphorylated inhibitor proteins p21 
and p27 and reinitiated apoptotic activity in cells by activating caspase 
3/7 [66]. Among the pre-clinical in vivo studies, researchers found that 
when GBM was injected into the flank in a mice xenograft model, the 
treatment significantly inhibited tumor growth. In the same study, 
intracranial xenograft models in mice revealed even more significant 
results with regard to CX-4945 inhibition of CK2 in GBM. Following 
tumor implantation in mice, CX-4945 treatment increased median 
survival time from 38 days (95% confidence interval: 35.6-40.4) to 59 
days (95% confidence interval: 50.2-67.8). Along with this, CX-4945 
treatment was shown to significantly deactivate the STAT-3, NF-κB p65, 
and AKT pathways, all of which are known to cause GBM growth [10].

The findings from these pre-clinical studies show that specific 
targeting of CK2 using CX-4945 could be the most strategic method 
of CK2 inhibition due to the effect on multiple downstream pathways 
[10]. These studies confirm the efficacy of CX-4945 and that it is well 
tolerated in several primary human xenograft models. Treatment 
with CX-4945 did not affect body weight, white and/or red blood 
cell counts, or the level of hemoglobin in these cases. Furthermore, 
the results of several pharmacokinetics studies show that the profile 
of CX-4945 boasts acceptable features such as long half-life and high 
oral bioavailability. The CK2 inhibitor also exhibited non-mutagenicity, 
nongenotoxicity and non-cardiac toxicity in these pre-clinical studies 
providing evidence for future success in clinical trials [66,71,74].

CX-4945 clinical trials

Cylene Pharmaceuticals has developed an orally available CX-4945 
treatment with high potency (Ki=0.38 nM) and is currently planning 
phase II clinical trials, after two conclusive phase I trials were completed 
(http://clinicaltrials.gov, NCT00891280). The two phase I trials were 
conducted in a total of 44 patients with advanced solid tumors in 
successive escalating dose cohorts. Tumor types evaluated in this study 
included prostate, lung, breast, thyroid, ovarian pancreatic, colorectal, 
and eight others. Oral administration of CX-4945 followed two different 
dosing schedules (2 or 4 times daily) for the first 3 consecutive weeks of 
the 4 week cycle. Patient safety and pharmacokinetic/pharmacodynamic 
analyses were evaluated regularly throughout the study.

Inhibition of CK2 was evaluated based on specific biomarker 
measurements for phospho-proteins in peripheral blood mononuclear 
cells. The downstream inhibition of Akt and p21 pathways, along with 
reduction in circulating tumor cells (CTCs) and interleukin 6 and 8 
(IL-6/8) (angiogenesis promoters) levels in peripheral blood were 
evaluated to assess the impact of CX-4945. CTCs are cells that have 
been shed from a primary tumor and subsequently begin circulating 
in the bloodstream. The reduction in CTCs in this study gives evidence 
to the role CX-4945 may play in inhibiting the metastatic potential of 
cancer cells [75].

Therapy continued until the patient showed signs of intolerance 
to CX-4945, or evidence of disease progression. Though generally 
well-tolerated, two cases of diarrhea and one case of hypokalemia 
provided the dose limiting toxicities (DLTs). These toxicities were 
reversible with drug discontinuation, anti-diarrheal use, and potassium 
supplementation. Twenty percent of the treated patients showed signs 
of stable disease for at least 16 weeks, with the most durable stabilization 
in patients with the highest percentage decreases in IL-6 and IL-8 
levels. Beyond the 16 week marker, nine patients demonstrated disease 
stabilization. Following these phase I trials, Cylene Pharmaceuticals is 
planning rational drug combination phase II trials in multiple cancers.

Figure 5: CX-4945 competes with ATP for binding in the ATP-binding pocket 
of CK2α. (blue=CK2α ATP-binding pocket).

Figure 6: CX-4945 treatment and results (research in GBM and non-
GBM=blue, research only in non-GBM=orange).
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Conclusion
Cancer stem cells in GBM are both chemoresistant and radioresistant, 

leading to unhindered tumor progression and reoccurrence even with 
the most aggressive GBM treatments. GBM is highly aggressive and is 
diffusely infiltrating, meaning that the tumors invade into normal brain 
tissues, preventing successful surgical resection [76]. Many researchers 
are developing new methods of targeting CSCs to treat GBM; whether 
it is a new chemotherapeutic agent specific to CSCs, radiosensitizers to 
enhance traditional radiotherapy, or an agent that promotes CSCs to 
differentiate into normal cells [77]. One promising avenue, however, 
is the ongoing research targeting specific signal pathways known 
to regulate glioma CSC growth. This review has discussed one such 
pathway. CK2 is a serine/threonine protein kinase that has been shown 
to be critical in the formation and maintenance of many cancer types. In 
vitro and in vivo experiments have demonstrated an important role for 
CK2 in gliomagenesis. Our manuscript has reviewed the role of CK2 in 
the maintenance of the highly differentiable and self-renewable cancer 
stem cells. We have highlighted three CSC maintenance pathways that 
CK2 is known to regulate: Hedgehog/Gli, Notch, and β-catenin. While 
there are therapeutics that singularly target each of these pathways, the 
novelty of targeting CK2 is that all three pathways will be affected, and 
the therapeutic effect may be multiplicative. Further research studying 
the role CK2 plays in GBM specific CSCs is ongoing.

CX-4945 is the first CK2 inhibitor to reach clinical stage testing for 
the treatment of multiple types of cancer. CX-4945 represents a new 
class of highly selective ATP-binding site competitive CK2 inhibitors. 
In a recent study, two analogues of CX-4945 (CX-5011 and CX-5279) 
demonstrated even greater specificity in inhibiting CK2 [78]. In this 
review we have discussed the preclinical and clinical testing of CX-4945 
for GBM and non GBM cancers. We look forward to the results from 
the phase II studies using this novel therapeutic.
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