Case Based Discussion: Hantavirus Infection Presenting as Pulmonary Syndrome in an Immunocompetent Adult Male

Pradeep Kumar Vyas*, Vidhyadhara Lakkappan, Rajesh Uchil, Suhas Thorat and Vijay Khatri
Department of Critical Care Medicine, Holy Family Hospital, St. Andrews Road, Bandra (West), Mumbai, India

Abstract
Hantaviruses are rodent-borne virus infection manifested as haemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome. HCPS is a severe, fatal, respiratory disease caused by infection with hanta viruses. Anyone who comes in contact with rodents that carry hanta-viruses is at risk of HCPS. Rodent infestation in and around the home remains the primary risk for hanta-virus exposure. Clinical presentation of hanta-virus infections is not very much clear, sero-conversion and rising anti-hantavirus IgG titers were taken as evidence. Here we present a case of a 46-year-old male diagnosed to have hanta virus pulmonary syndrome treated successfully.

Keywords: Hanta virus; HFRS; HPS; HCPS; ARDS; Haemorrhagic fever

Introduction
Hantavirus are members of bunyavirus family. This group was first indentified as causing hemorrhagic fevers with renal failure. Hantavirus pulmonary syndrome became more prominent when it was first described in USA [1].

Epidemiology
Hantavirus spread from mammals to mammals by exposure to aerosolized faeces, infected urine or other body secretions. It has been found in rodents and other species in the world. Hemorrhagic fever with renal failure is the most common presentation of hanta-virus. In USA the most notifiable hantavirus is Sin-Nombre virus which is associated with severe pulmonary syndrome, found in 10-80% of deer mice mostly in rural regions. Spread is from rodents to humans through contact with rodent habitat.

Microbiology
Hantavirus is spherical particles 80-120 nm in diameter has an envelope contains two glycoproteins which encloses three nucleocapsids. These nucleocapsids consists three separate strands of RNA, RNA dependent RNA polymerase and two non-structural proteins.

Pathogenesis
In HFRS and HCPS the primary lesion is leakage of plasma and erythrocytes through the vascular endothelium. In HFRS the kidneys are affected with hemorrhagic necrosis, while in HCPS the lungs are affected.

Clinical findings
HPS starts with a prodrome of fever, headache, myalgia, and gastrointestinal symptoms lasted for 4-5 days, followed by cough and dyspnea associated with tachycardia, tachypnea and hypotension. The respiratory symptoms may progress to ARDS and respiratory failure. HPS should be suspected in young healthy subjects who presents with fever, ARDS and history of exposure to rodents.

Laboratory investigations
There are no specific laboratory finding in HPS, but hemoconcentration, leukocytosis with left shift, abnormal or raised lymphocytes, thrombocytopenia, prolonged PTT in more severe cases and progressive worsening of lung function.

Radiology
Diffuse bilateral interstitial pulmonary infiltrates present in HPS.

Differential diagnosis
Acute severe pneumonia of various etiology must be differentiated specially Influenza-A virus, Legionella spp, Chlamydia pneumoniae or Pneumocystis jiroveci have similar presentation but the epidemiology, age and other factors can provide clue to the diagnosis. Cardiopulmonary oedema ARDS caused by other etiology, are other differential diagnosis.

Complications
Acute respiratory failure and severe lung impairment of lung function and pulmonary disability.

Diagnosis
SeroLOGY-IgM specific assays are the main method to diagnose active infection. Sero-conversion or a fourfold increase in IgG antibody is useful for recent infection.

Treatment
There is no specific treatment but Ribavirin has been used to treat HPS but its efficacy is not established. Supportive therapy for ARDS is essential for survival. Immunotherapy has shown that administration of human neutralizing antibodies during acute phases of Hantavirus might prove effective. A strong neutralizing antibody could effectively reduce the presence of the virus as well as promote recovery. However,

Copyright: © 2020 Vyas PK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Corresponding authors: Pradeep Kumar Vyas, Holy Family Hospital St. Andrews Road, Bandra (West) Mumbai 91400050, India, Tel: 09920696710; E-mail: drvyaspradeep@gmail.com

Received November 15, 2019; Accepted December 24, 2019; Published December 30, 2019


© 2020 Vyas PK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
no published reports of controlled clinical trials except for studies done on mice, hamsters, and rats have been shown.

**Prognosis**

Poor prognosis i.e., 30-50% mortality.

**Prevention and control**

The disease is prevented by interrupting contact between humans and rodents. Rodent control also decreases transmission.

**Vaccine**

There is no commercially available vaccine that is effective for hantavirus. A vaccine known as Hantavax has been under study since 1990. As of 2016, the development is in clinical phase 3 trial stage.

**Case History**

A 34-year-old male non-smoker presented with history of fever cough, breathlessness for 2 days. He was conscious, dehydrated, febrile, tachycardic, tachypnoea, icteric, and pale. Respiratory examination revealed bilateral crackles and scattered wheez, with hepatosplenomegaly and oliguria, no bleeding escher. No exposure history or contact with rodents. Investigations revealed normal haemogram with mildly raised liver enzymes, serum bilirubin and serum creatinine. X-chest shows bilateral infiltration (Figure 1). ABG suggestive of mild hypoxaemia. Meropenem and Clarithromycin, with other symptomatic treatment started. Next day he had worsening breathlessness requiring NIV support. His routine investigations show gradually increasing trend of WBC, low hemoglobin and platelets. Widal dengue NS1, IgM, malaria, H1N1 and Leptospira IgM were negative. HBsAg, HCV, HIV1 and 2 were non-reactive. Hantavirus IgM and IgG both were positive. X-ray chest shows worsening infiltration (Figures 2-4). Next day early morning patient had episode of haemoptysis, in view of respiratory distress and hypoxemia. He was intubated and put on mechanical ventilatory and inotropic support. X-ray chest (Figure 5 and Figure 6) showing worsening infiltrates. ET secretion culture were positive for *Klebsiella pneumoniae* resistant to Clarithromycin and Meropenem therefore antibiotics escalated to Colistin and Levofloxacin. Patient gradually improved so on 7th day inotropic support was stopped. Subsequently WBC and creatinine level came to normal, X-ray chest improved, so patient extubated on 10th day in view of hemodynamic stability and satisfactory ABG (Figures 7-10).
Figure 5: Chest X-ray 8th October after admission.

Figure 6: Chest X-ray 10th October after admission.

Figure 7: Chest X-ray 11th October after admission.

Figure 8: Chest X-ray 12th October after admission.

Figure 9: Chest X-ray 13th October after admission.

Figure 10: Chest X-ray 14th October after admission.
Discussion

HPS is a rare pulmonary syndrome with a 30-50% fatality [2]. It results from inhalation of aerosolized viral particles causing infection of endothelial cells, resulting in capillary leakage, which in turn leads to the clinical features and laboratory abnormalities [2-8]. Incubation period is 4-33 days. There is an early phase of fever with symptoms like headache, nausea, anorexia, diarrhoea, abdominal pain, and malaise [1] and a late or cardio- pulmonary phase with breathlessness leading to respiratory distress and failure, diffuse bilateral pulmonary infiltrates, hypoxia, hemodynamic instability, and shock, which can worsen over 24 to 48 hours. The diagnosis of HPS suspected on the symptoms, history of contact with rodents or exposure to areas where rodents live, lack of an alternative diagnosis, and/or laboratory tests that show characteristic changes. Immediate aggressive management required due to rapid progression [8].

Blood examinations

Blood examinations reveal hemoconcentration, raised and abnormally enlarged WBC (atypical lymphocytes), absence of myeloid toxic changes, increased thrombocytopenia on smear and thrombocytopenia. Hepatic transaminase values mildly elevated, but serum LDH is markedly increased. The development of fibrinogen. Disseminated intravascular coagulation develops when activated partial thromboplastin time with a normal level of but serum LDH is markedly increased. A mild elevation of the thrombocytopenia. Hepatic transaminase values mildly elevated, myeloid toxic changes, increased immunoblasts on smear and abnormally enlarged WBC (atypical lymphocytes), absence of required due to rapid progression [8].

Imaging studies

The chest radiograph typically shows a pattern of non-cardiac pulmonary edema, cardiac silhouette is not enlarged, perihilar haziness (shaggy heart sign) is characteristic. Virtually all patients have interstitial edema, which manifests radiologically as peribronchial cuffing or Kerley B lines. Pleural effusions are common. The case under discussion presents typical signs and symptoms of hantavirus infection confirmed serologically and treated successfully.

Conflict of Interest

None to declare.

Acknowledgement

Our sincere thanks to Executive Director Sister Lucin. Ex Medical Director Dr. Armeeda Fernades, Medical Director Dr. Ntraj Uttamani, Asst. executive Director Dr.(Sister) Beena, Medical Suptd. Dr. M. Methias. ICU “B” wing staff and Radiology department for the kind help provided in preparing this manuscript.

References


<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HB</td>
<td>8.6</td>
<td>9.1</td>
<td>7.1</td>
<td>9.9</td>
<td>9</td>
<td>8.4</td>
<td>9</td>
<td>8.6</td>
<td>9</td>
<td>8.6</td>
</tr>
<tr>
<td>WBC</td>
<td>6690</td>
<td>13560</td>
<td>11530</td>
<td>30240</td>
<td>39060</td>
<td>26450</td>
<td>24630</td>
<td>18030</td>
<td>19180</td>
<td>24690</td>
</tr>
<tr>
<td>PLT</td>
<td>50K</td>
<td>46K</td>
<td>120K</td>
<td>178K</td>
<td>185K</td>
<td>250K</td>
<td>333K</td>
<td>386K</td>
<td>496K</td>
<td>506K</td>
</tr>
<tr>
<td>BUN</td>
<td></td>
</tr>
<tr>
<td>CREAT</td>
<td>1.5</td>
<td>1.3</td>
<td>1</td>
<td>0.8</td>
<td>0.8</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>SGOT</td>
<td></td>
</tr>
<tr>
<td>SGPT</td>
<td></td>
</tr>
<tr>
<td>DEN GUE</td>
<td>-VE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS IgG/ IgM</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM</td>
<td></td>
</tr>
<tr>
<td>LEPTOSPIRA</td>
<td></td>
</tr>
<tr>
<td>IgG/ IgM</td>
<td>-VE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1N1</td>
<td>-VE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANTA IgG/</td>
<td></td>
</tr>
<tr>
<td>Ig M</td>
<td>+VE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Blood picture on admission till the recovery.

