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Introduction
Quercetin, a flavonoid, exists as quercetin glycosides in food, 

beverages and herbs, and in plasma, as mainly glucuronids or sulfates 
of quercetin and unconjugated quercetin [1,2]. Quercetin can exhibit 
significant vasodilatation of rat arteries. In general, flavonoids are 
vasodilator [3] and scavenger for free radicals [4], and reduce the 
incidence of cardiovascular diseases and carcinogenesis [5]. Thus, 
quercetin exerts protective cardiovascular actions through their various 
pharmacological effects [6,7].

The endothelium dependency of quercetin is predominant in aorta. 
Most studies (including our previous reports) have shown the endothelium-
dependency of the quercetin-induced vasodilatation [7,8]. However, 
there are several reports that quercetin is less endothelium-dependent or 
has only a weak endothelium dependency [3,9]. Quercetin can increase 
the intracellular Ca2+ concentration [Ca2+]i in the endothelium [10]. The 
increase of [Ca2+]i leads to endogenous nitric oxide synthase (eNOS) 
activation and NO production [11], and as a result, may involve with 
endothelium-derived hyperpolarizing factor (EDHF) for the quercetin-
induced vasodilatation [12,13]. Plant polyphenols have been reported to 
induce EDHF-type relaxation [14]. The cardiovascular pharmacological 
actions of quercetin we have so far investigated are discussed separately in 
cardiac and vascular pharmacology.

Cardiac Pharmacology
The cells were prepared from tissue taken from the ventricle muscle 

of guinea pig hearts, using the methods similar to those described 
previously [15-17]. Under an anesthesia with sodium pentobarbital (30 
mg/kg, i.p), the chest was opened and the aorta was cannulated in situ. 
The heart was dissected out and perfused with normal Tyrode solution 
on the Langendorff apparatus. The heart was washed out by high-K+ 
and low-Cl- solution (KB solution). The temperature of all solutions 
was maintained at 36.5oC. Effects of quercetin on the action potentials 
and the ionic currents in the cardiomyocytes were investigated using 
an Axopatch patch-clamp amplifier (Axon Instruments, Burlingame, 
CA, U.S.A.) and standard techniques. The composition of the modified 

Tyrode solution was (in mM): NaCl 137, KCl 5.4, CaCl2 1.8, MgCl2 
1, NaH2PO4 0.3, glucose 5, and HEPES 5. The pH was adjusted to 7.4 
with NaOH. Quercetin (Tocris Biosci., Northpoint, UK) was dissolved 
with DMSO. The final concentration of DMSO was diluted 100 to 
2000 times, and never caused any responses. The pipette solution 
contained (in mM): K-aspartate 110, KCl 20, MgCl2 1, EGTA 10, Mg-
ATP 5, creatine phosphate 5, and HEPES 5 (pH 7.2). All values are 
given as mean ± S.E.M. The differences of mean values were analyzed 
by Student’s t-test and ANOVA for paired data, and a p value of 
less than 0.05 was considered significant. All the experiments were 
carried out according to the guidelines laid down by the Nara Medical 
University Animal Welfare Committee, and also under the terms of the 
Declaration of Helsinki.

Effects on the action potentials

Under the current-clamp experiments, the isolated single cell was 
stimulated at 1 Hz. The action potential amplitude (APA) and the 
maximum rate of depolarization (Vmax) significantly decreased by 
approximately 12% (n=8) at 1-3 μM (Table 1). The resting potential 
(RP) was unaffected. Quercetin at 3 µM prolonged the action potential 
duration at 75% (APD75) by 11.9 ± 3.4% (n=8, p<0.05) and at 90% 
repolarizations (APD90) by 17.9 ± 3.0% (n=8, p<0.05), but not at the 
lower concentrations (0.1-1 μM) [6]. The APD means a period for 
the membrane repolarization, making T wave on ECG. The APD 
is clinically reflected directly to QT interval, a period between the 
depolarization and the repolarization of action potential, mainly 
responsible for the alteration of the delayed rectifier K+ current 
(IKrec). Thus, the APD prolongation increases the refractory period 

Abstract
Quercetin, a kind of flavonoids, exerts the cardiovascular actions. In guinea pig ventricular cardiomyocytes, 

quercetin depresses the action potential duration (APD) and inhibited the underlying ionic currents ICaL.,IKrec. IK1 in 
cardiomyocytes. In rat aorta, quercetin (0.1 to 100 µM) relaxed the contraction induced by pretreatment with 5 µM 
norepinephrine (NE) in aconcentration-dependent manner. NG-monomethyl-L-arginine acetate (L-NMMA) at 100 µM 
reduced the quercetin (100 µM)-induced vasorelaxation from 97.0 ± 3.7% (n=10, p<0.05) to 78.0 ± 11.6% (n=5, 
p<0.05). Endothelium removal as well attenuated the vasodilatation. In the presence of both 100 µM L-NMMA 
and 10 µM indomethacin, the quercetin-induced vasorelaxation was further attenuated by high K (30 mM) or 10 
µM tetraethylammonium (TEA). Among KCa channel inhibitors, the quercetin-induced vasodilatation was attenuated 
by 0.3 µM apamin (sensitive to SK), but not by 30 nM charybdotoxin (sensitive to BK and IK). Under KCl-induced 
vasoconstriction, the quercetin-induced vasorelaxation was attenuated by PK-C inhibitors; Gö6983 (α-, β-, γ-, δ and 
ζ-sensitive) produced stronger than Ro-31-8425 (α-, β-, γ- and ε-sensitive). In rat mesenteric artery, the quercetin-
induced vasodilatation was almost resistant to both 100 µM L-NG-nitro arginine methyl ester (L-NAME) and 100 
µM indomethacin. The L-NAME/indomethacin-resistant quercetin-induced vasodilatation was not modified by TEA 
(1 mM), but was attenuated by endothelium removal and 100 μM 18α- and 50 μM 18β-glychrrhetinic acids (gap 
junction inhibitors). Therefore, quercetin dilates the vascular smooth muscle mediated by endothelium-dependent and 
-independent mechanisms.
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and simultaneously elevates [Ca2+]i [15,17]. A washout for 15-20 min 
recovered to approximately 90% of the control value.

Effects on the ionic currents

Whole-cell patch voltage-clamp experiments were performed, 
and test pulses (1 sec duration) were applied to -20 to +60 mV and 
-40 to -120 mV from a holding potential of -30 mV. The average 
capacitance was 86.1 ± 2.0 pF (n=44) [17]. Application of quercetin 
(0.1 to 3 µM) inhibited the L-type Ca2+ current (ICaL) (Figure 1). The 
ICaL at 10 mV decreased by 34.9 ± 3.2% (n=8, p<0.05) at 0.3 µM and by 
56.8 ± 3.3% (n=8, p<0.05) at 3 µM. The responses were produced in 
a concentration-dependent manner. The cells not causing run-down 
were chose and used for the experiments. Simultaneously, the IKrec 
at 60 mV increased by 60.4 ± 2.7% (n=8, p<0.001) at 0.3 µM and by 
89.7 ± 3.3% (n=8, p<0.001) at 3 µM. In general, the IKrec enhancement 
may protect a cell due to an APD shortening and a decline of [Ca2+]i, 
although quercetin prolonged APD. Quercetin decreased the inwardly 

rectifying K+ current (IK1). Quercetin did not affect the IK1 at lower 
concentrations, but at 3 µM inhibited it by 12.4 ± 2.1% (n=8, p<0.05). 
The IK1 is closely related with the RP, and is not yet activated in range of 
-70 to -90 mV of RP. The INa (as a Vmax) decreased by approximately 
18-20% (n=8-9) at higher concentrations (1-3 μM) of quercetin. The 
effect may produce antiarrhythmic actions. These responses were 
almost reversible (80-90% of control) after 20 min washout.

Summary

The experiments in guinea pig ventricular cardiomyocytes showed 
that (1) quercetin prolonged the APD, (2) other action potential 
parameters were unaffected, (3) quercetin inhibited ICaL, IK1, and Vmax 
(INa), but enhanced IKrec, and (4) these responses were almost reversible 
after a washout. The inhibitions finally lead to decline of [Ca2+]i, 
resulting in the suppression of the abnormal excitations. Therefore, 
these electropharmacological effects of quercetin would exert many 
helpful and protective actions upon cardiac muscle cells under the 
diseased conditions.

Vascular Pharmacology
Vasodilating effects on rat aorta

Wistar male rats, weighing 150 to 250 g, 7-16 weeks old (n=32), 
were anesthetized with ether, and euthanized by exsanguination 
[18,19]. The isolated artery was cut into 1 mm rings in length, 
suspended between two stainless steel stirrups in a bath filled with 3 
ml modified Krebs-Henseleit solution. The modified Krebs-Henseleit 
solution contained 118 mM NaCl, 4.6 mM KCl, 1.2 mM MgSO4, 1.2 
mM KH2PO4, 11.1 mM glucose, 27.2 mM NaHCO3, 0.03 mM ethylene 
glycol-O,O’-bis (2-aminoethyl)-N,N,N’,N’-tetraacetic acid (EGTA), 
and 1.8 mM CaCl2. The chamber solution was oxygenated with 95% 
O2 and 5% CO2 at 36.5℃. The removal of endothelial cells was carried 
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Figure 1: Modulation by quercetin of the ionic currents in guinea pig ventricular cardiomyocytes. A: Control. The test pulses were applied 70 mV and -130 mV from a 
holding potential of -30 mV. B: Quercetin 3 μM. C: Modulation of ICaL in the absence and the presence of quercetin. Current traces at 30 to 70 mV are superimposed. 
D: Modulation of IK1 by quercetin. Current traces at -130 to -30 mV are presented.

                  n APA
(mV)

RP
(mV)

APD75
(ms)

APD90
(ms)

Vmax
(V/s)

Control 8 117.4 ± 1.2 -80.9 ± 0.5 77.0 ± 2.2 94.1 ± 2.0 182.8 ± 2.5

Quercetin

0.1 µM 8 117.6 ± 1.2 -80.6 ± 0.6 78.6 ± 2.4 95.0 ± 2.1 182.1 ± 1.2

0.3 µM 8 117.8 ± 1.1 -80.7 ± 1.0 79.8 ± 3.8 97.3 ± 2.0 182.5 ± 2.3

1 µM 8 114.6 ± 1.4 -80.4 ± 2.3 82.9 ± 2.3 100.3 ± 2.6 173.8 ± 2.2
1)

3 µM 8 113.7 ± 1.2 -79.7 ± 2.1 86.2 ± 2.0
1)

110.9 ± 2.3
1)

161.7 ± 2.4
2)

Washout 8 110.7 ± 1.0 -80.0 ± 0.6 79.4 ± 2.2 96.8 ± 2.4 172.3 ± 2.2

Values are represented as mean ± S.E.M. 
1)

: P<0.05, 
2)

: P<0.01, with respect to 
control value.

Table 1: Modulation of the action potential configurations by quercetin in guinea pig 
ventricular cardiomyocytes.
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out by usual methods, and the almost absence through microscopy was 
confirmed after the experiments.

Effects on the endothelial cells

On endothelium-derived releasing factor (EDRF): Rat aorta 
exhibited a strong contraction by 5 µM NE. Quercetin (0.1 to 100 
µM) subsequently administrated exhibited the marked endothelium-
dependent actions (Table 2). Prior administration of L-NMMA 
(100 µM) significantly inhibited the quercetin (100 µM)-induced 
vasodilatation from 97.8 ± 3.7% (n=10) to 78.0 ± 11.6% (n=5, p<0.05). 
Another NOS inhibitor, L-NAME had the similar effects. This is 
enforced by the results that removal of endothelium abolished or 
attenuated the quercetin-induced vasorelaxation. Thus, quercetin 
decreased the relaxing action by NOS inhibitors. Also, both L-NMMA 
(100 µM) and indomethacin (10 µM) attenuated the quercetin-induced 
vasodilatation more than that with L-NMMA alone.

The endothelium-dependency is important in the quercetin-
induced vasodilatation. Quercetin causes vasodilatation mainly through 
NO secretion [19,20], induced by elevating endothelial [Ca2+]i and 
eNOS phosphorylation [21,22]. The [Ca2+]i elevation in endothelium 
facilitates other actions such as a production of hydroxyl hydrogen 
[23], endothelial hyperpolarization [24,25] induced by activation of KCa 
channels [26], and production of endothelium-derived hyperpolarizing 
factor (EDHF) [12,27].

On endothelium-derived hyperpolarizing factor (EDHF): 
Quercetin increases [Ca2+]i in endothelium, stimulating the synthesis of 
EDHF [13]. Plant polyphenols have been shown to induce the EDHF-
type relaxation [14]. The vasodilatation induced by EDHF is considered 
to be resistant to both inhibitors of NOS and cyclooxygenase [28]. 
In the presence of L-NMMA (100 µM) and indomethacin (10 µM), 
quercetin at 100 µM attenuated by 65.2 ± 6.6% (n=5, p<0.001)(Table 
3). In aorta, however, the EDHF-related vasorelaxation is told never to 
observe [29]. So, we examined using rat mesenteric artery as mentioned 
in Section 4.2.

On Ca2+-activated K+ (KCa) channel: The elevation of [Ca2+]i 
induced by quercetin may stimulate the KCa channel. The activation of 
KCa channel to hyperpolarize the membrane produces the vasodilatation 
in rat aorta [19,30]. In endothelium-denuded aorta, TEA significantly 
decreased the quercetin-induced relaxation from 77.9 ± 2.3% to 62.5 
± 4.9% (n=5, p<0.05). The relaxation involved with KCa channel 
was examined in the presence of indomethacin and L-NMMA. The 
L-NMMA/indomethacin-resistant relaxation induced by quercetin 
(100 µM) was significantly reduced by high K+ (30 mM) to 41.0 ± 
5.7% (n=5, p<0.05) (Table 3). In high K+ solution, furthermore, TEA 
attenuated the L-NMMA/indomethacin-resistant relaxation to 43.8 ± 

9.5% (n=5, p<0.05). These results indicate that quercetin modulates the 
KCa channel.

The KCa channels are classified by their conductances as follows: 
BK channel (200 pS), IK channel (37 pS), and SK channel (32 pS) [31]. 
TEA is sensitive to all KCa channels [32,33], apamine to SK channels 
[34], and carybdotoxin to BK and IK channels [35]. Apamin (0.3 µM), a 
SK channel inhibitor, strongly decreased the L-NMMA/indomethacin-
resistant relaxation induced by 30 µM quercetin from 30.4 ± 6.2% to 
9.4 ± 2.7% (n=5, p<0.05), and from 65.2 ± 6.6% to 47.1 ±11.4% (n=5, 
p<0.05) by 100 µM quercetin. But charybdotoxin (30 nM), a BK and 
IK channel inhibitor, had less or no effect. Therefore, quercetin would 
possess possibly a selective sensitivity to SK channel, but less to BK and 
IK channels.

On prostaglandin (PG) I2: The pretreatment with both 
indomethacin and L-NMMA reduced the relaxation to a greater extent 
than the pretreatment with L-NMMA alone (but not significantly). 
The PGI2 secretion from endothelium may also partly contribute to the 
relaxation, as reported previously [20]. Therefore, the endothelium-
dependent vasorelaxation induced by quercetin is produced due to 
EDRF and EDHF, and also partly to PGI2.

Effects on vascular smooth muscle

On L-type Ca2+ channel: L-type Ca2+ channel is regulated by 
the signal transductions such as cAMP, cGMP and PK-C [15,36,37]. 
4-β-phorbol-12,13-dibutyrate (PDB, a PK-C activator) has small 
stimulation of the ICaL in A7R5 cells [38,39]. Quercetin at 100 µM 
significantly decreased the vasorelaxation from 97.8 ± 3.7% (n=10) in 
normal solution to 67.5 ± 3.7% (n=5) in Ca2+-free solution (p<0.01) 
[7,18]. The quercetin-induced vasorelaxation was also attenuated by 
nicardipine, and by a switch from normal Krebs’ solution (Ca2+=1.8 
mM) to Ca2+-free solution. Also, quercetin dilated the KCl-induced 
vasoconstriction [3,19]. These findings demonstrate the vasorelxation 
due to its Ca2+ channel inhibitory action. Satoh [17] has already reported 
that quercetin is an inhibitor of ICaL channel in cardiomyocytes. These 
are summarized in Table 3.

On protein kinase C: The Ca2+ mobilization mediated by PK-C 
stimulation might be dependent on kinds of smooth muscles [40]. 
PDB caused the vasoconstriction. Quercetin possesses the inhibitory 
actions of PK-C [3,4]. Quercetin at 100 µM dilated the PDB (300 
nM)-induced vasoconstriction by 84.8 ± 6.0% (n=5, p<0.01) (Table 
3). Under NE-induced vasoconstriction, staurosporine (100 nM), a 
PK-C inhibitor, decreased the relaxation induced by 100 µM quercetin 
by approximately 40%. It has been shown that PK-Cα and/or δ are 
necessary for phorbol ester-mediated constriction of aortic smooth 
muscle, but are not essential for NE-, vasopressin-, or K+-induced 

Quercetin

n 0.1 0.3 1 3 10 30 100 µM

Control 10 1.7 ± 0.5 3.6 ± 0.91) 6.9 ± 0.91) 12.4 ± 1.12) 32.0 ± 5.72) 54.1 ± 8.43) 97.8 ± 3.73)

Endothelium-denuded 5 1.5 ± 1.3 3.1 ± 1.6 6.9 ± 1.8 11.2 ± 2.4 30.8 ± 4.9 44.1 ± 4.2a) 77.9 ± 2.3a)

L-NAME 100 μM 5 1.9 ± 0.9 3.6 ± 1.1 7.1 ± 2.1 13.2 ± 3.7 21.1 ± 4.6 33.0 ± 5.3a) 69.5 ± 6.1a)

L-NMMA 100 μM 5 1.9 ± 0.6 4.1 ± 1.3 7.3 ± 1.8 12.0 ± 2.4 25.4 ± 4.8 38.7 ± 6.0a) 78.0 ± 11.6a)

L-NMMA 100 μM

+ Indomethacin 10 μM
5 1.9 ± 0.8 4.1 ± 1.3 6.8 ± 1.3 11.0 ± 2.0 18.2 ± 4.7 30.4 ± 6.2a) 65.2 ± 6.6a)

Values (%) represent mean ± S.E.M. 1) and a) : p<0.05, 2) : p<0.01, 3): p<0.001. Symbols of 1), 2), and 3) mean significant differences in comparison between the 
effects of quercetin itself at each concentration and the maximal constriction induced by NE. Symbol of a) indicates significant difference as compared with control 
(quercetin alone) values.

Table 2: Endothelium-dependent vasodilatation induced by quercetin in rat aorta.
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constriction [41]. Furthermore, PK-Cα and δ isozymes are dominant 
in cultured rat aortic vascular smooth muscle cell, and both isozymes 
are completely down-regulated by prolonged (16-24 hr) stimulation 
with the PK-C activator [42]. PK-Cε can modulate phenylephrine-
induced contraction in mesenteric artery via calcium-independent 
pathways [43].

To examine which subtypes of PK-C are related with the quercetin-
induced constriction, two different types of PK-C inhibitors were 
chosen; Gö6983 sensitive to α, β, γ, δ and ζ isozymes, and Ro-31-
8425 to α, β, γ and ε isozymes of of PK-C [44]. Ro-31-8425 (0.1 μM) 
attenuated the quercetin (100 µM)-induced vasorelaxation by 80.8 
± 2.6% (n=5, p<0.001). Gö6983 (0.1 μM), also had similar effects by 
84.6 ± 7.6% (n=5, p<0.001). Under the KCl-induced vasoconstriction, 
both Gö6983 and Ro-31-8425 attenuated the quercetin (100 µM)-
induced vasorelaxation by 49.5 ± 7.9% (n=5, p<0.01) and by 75.5 ± 
7.9% (n=5, p<0.001), respectively (Table 3). Thus, quercetin might 
inhibit possibly mediated through PK-Cδ, although it is still difficult 
to clearly distinguish. In addition, PK-C phosphrylates tyrosin kinase 
and vasodilator-stimulated phosphoprotein (VASP) as a substrate 
of cGMP-dependent protein kinase (cGMP-PK) [45]. In this study, 
however, genistein (tyrosine kinase inhibitor) at 50 µM failed to 
affect the quercetin-induced constriction (by just 0.7% decrease). 
The activation of MLCK is abolished by PK-C [40,46]. Furthermore, 
quercetin inhibits the phosphorylation of mitogen-activated protein 
kinases (MAPKs); extracellular signal-regulated kinase (ERK) 1/2, p38 
MAPK, and c-jun amino-terminal kinase (JNK) in cultured aortic cells 
and phosphatidylinositol 3-kinase (PI3-kinase)/protein kinase B (Akt) 
[47,48].

On Ca2+-activated K+ (KCa) channels: Flavonoids have been shown 
to produce vasodilatation due to the KCa channel to hyperpolarize the 
membrane of vascular smooth muscle [30]. The [Ca2+]i in smooth muscle 

cells initially increases, and then, facilitates the other physiological 
actions. The vasorelaxation of quercetin is also due to KCa activation 
involved with EDHF [9]. Recently, quercetin has been demonstrated to 
activate BK channel in coronary arteries via production of H2O2 [49]. 
In addition, glibenclamide (a KATP channel inhibitor) have not been 
reported to affect the quercetin-induced vasodilatation in rat aorta [9]. 
Anyway, the vasodilatation is responsible for SK channel activation 
(though not distinguish in endothelium or smooth muscle cells) (Table 
3).

Summary: The vasodilation mechanisms in rat aorta were due 
to the inhibitions of (1) NOS by L-NMMA or L-NAME and removal 
of endothelium, (2) ICaL by Ca2+ antagonist, in Ca2+ free solution and 
under the KCl constriction, (3) PK-C activation mediated through 
possibly the PK-Cδ subtype, and (4) KCa channel by apamin but not 
by charybdotoxin. Furthermore, the vasodilation was produced by (5) 
both L-NMMA and indomethacin, (6) L-NMMA and indomethacin 
plus TEA during exposure to high K+ solution, and (7) TEA in 
endothelium-denuded aorta (Figure 2). Therefore, quercetin’s effect 
is due to endothelium-dependent actions mediated through the 
NO (EDRF), EDHF and partly PGI2 syntheses. As well it is due to 
endothelium-independent actions mediated through the Ca2+ channel, 
the KCa channels selective to SK channel, and PK-C [7,18].

Vasodilating Effects on Rat Mesenteric Artery
For this investigation, the similar methods to rat aorta experiments 

were performed. Mesenteric artery was removed from the same Wistar 
male rats [18,19]. The isolated mesenteric artery was cut into 1 mm 
rings in length, suspended between two stainless steel stirrups in a bath 
filled with modified Krebs-Henseleit solution. The isometric force was 
recorded using the force-displacement transducer (UL-10GR, Minebea 
Co., Tokyo, Japan). Rat mesenteric artery also caused the contraction by 
an application of 1 µM NE. Quercetin (0.1-100 µM) caused the significant 

Values (%) represent mean ± S.E.M. 1) and a) : p<0.05, 2) and b):p<0.01, 3): p<0.001.
I: A) The symbols of a), b) indicate significant difference as compared with control (endothelium (+)) values. B) The symbol of a) indicate indicates significant difference as 
compared with endothelium-denuded. C) The symbol of a), b) indicates significant difference as compared with L-NAME+indomethacin.  Ⅱ: A) Symbols of 1), 2), and 3) 

mean significant differences in comparison between effects of quercetin itself at each concentration and the maximal constriction induced by KCl. The symbol of a) indicates 
significant difference as compared with control (quercetin alone) values.

Table 3: The alteration of endothelium-independent vasodilatation induced by quercetin in rat aorta.

Quercetin
n 0.1 0.3 1 3 10 30 100 μM

Ⅰ Constriction induced by Norepinephrine
A)
Control (Endothelium+) 10 1.7±0.5 3.6±0.91) 6.9±0.92) 12.4±1.12) 32.0±5.73) 54.1±8.43) 97.8±3.73)

Ca2+-free 5 2.1±1.5 3.1±1.4 9.0±2.0 12.8±3.3 22.6±2.5 45.0±3.3a) 67.5±7.7a)

Nicardipine 5 0.0±0.0 1.4±1.4 1.4±1.4 1.4 ±1.4a) 6.8±3.6a) 15.0±7.2a) 61.2±16.6a)

Ro-31-8425 (0.1μM) 5 1.5±1.0 3.0±1.9 6.6±2.5 12.8±4.0 23.0±4.9 42.8±4.2a) 80.8±2.6b)

Gӧ6983 (0.1μM) 5 1.0±0.6 2.0±1.2 2.8±1.7 8.1±2.5 18.8±3.5 40.0±6.2a) 84.6±7.7a)

B)
Endothelium-denuded 5 1.5±1.3 3.1±1.6 6.9±1.8 11.2±2.41) 30.8±4.92) 44.1±4.22) 77.9±2.33)

 +TEA (100μM) 5 1.0±0.75 3.0±1.3 5.5±2.6 9.2±3.6 17.9±4.2a) 31.7±4.9a) 62.5±4.9a)

C) 
L-NMMA(100μM )+Indomethacin (10μM) 5 1.9±0.8 4.1±1.3 6.8±1.31) 11.0±2.02) 18.2±4.72) 30.4±6.23) 65.2±6.63)

  +high K+(30mM) 5 0.5±0.3 2.6±1.5 5.1±1.6 9.4±2.3 13.6±1.9 24.4±3.9a) 41.0±5.7a)

  +TEA (100μM) 5 1.2±0.5 1.8±1.5 1.8±1.5 4.0±4.0 8.5±5.5 16.8±7.0a) 43.8±9.5a)

  +Charybdotoxin 5 2.1±1.3 3.8±2.6 4.2±2.0 4.5±2.3 16.8±3.6 28.2 ±2.7 63.4±11.8
  +Apamin 5 0.6±0.6 0.8±0.8 1.6±1.6 3.7±2.7 5.1±1.6 9.4±2.4b) 47.1±11.1b)

Ⅱ Constriction induced by KCL
A)
Control 10 0.0±0.0 0.8±0.4 0.9±0.4 0.9±0.4 8.8±2.21) 29.9±6.02) 92.8±4.03)

Ro-31-8425 (0.1μM) 5 0.0±0.0 0.0±0.0 0.3±0.3 1.0±0.6 9.6±3.1 16.0±3.1a) 75.6±7.9a)

Gӧ6983 (0.1μM) 5 0.0±0.0 1.0±1.0 1.1±1.0 1.4±1.2 8.0±1.2 26.8±2.8 49.5±13.7a)
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vasodilatation in a concentration-dependent manner; at 100µM, the 
vasodilatation was 99.6 ± 3.0% (n=10, p<0.001). The quercetin-induced 
vasodilatation was almost consistent with the results in rat aorta [50]. 
But it was weaker blockade than the results in rat aorta (Table 4). 
Similarly both L-NAME (100 µM) and indomethacin (100 µM) failed 
to cause a remarkable change in the quercetin-induced vasodilatation, 
as compared with that with L-NAME alone. Endothelium-denuded 
arteries also contracted at 1 μM NE. Endothelium removal strongly 
decreased the quercetin-induced vasodilatation; at 100 μM quercetin 
by 77.9 ± 2.4% (n=6, p<0.01). Furthermore, endothelium-removal 
more strongly reduced the quercetin-induced vasodilatation in the 
presence of L-NAME and indomethacin, indicating that the relaxation 
is independent of endothelium. Thus, NO may play a minor role for the 
quercetin-induced vasodilatation in mesenteric artery, different from 
aorta.

On KCa channel

The L-NAME/indomethacin-resistant (NO/prostaglandin-
independent) relaxation induced by quercetin was never affected by 
100 μM TEA (Table 4). Increasing TEA concentration to 1 mM tended 
to be reduced the resistant vasodilation at 10 to 30 μM quercetin, 
but not significantly. At 100 μM quercetin, TEA (1 mM) was almost 
identical to the L-NAME/indomethacin-resistant vasodilatation (82.3 
± 2.6, n=8, p<0.001) [50]. Since quercetin stimulates SK channel in rat 
aorta [19], quercetin would similarly activate SK channel in mesenteric 
artery.

On endothelium-derived hyperpolarizing factor (EDHF)

Since the contribution to EDHF-related vasorelaxation is told never 
to observe in aorta [29], the experiments using rat mesenteric artery 
were performed. The hyperpolarization induced by EDHF makes the 
membrane stable, and depresses the ionic channel activity related to 
the vasoconstriction. The quercetin-induced relaxation in the presence 
of indomethacin and L-NMMA was reduced by high K+ or TEA. 
Apamin inhibited the quercetin-induced vasorelaxation. These findings 
strongly demonstrate that the quercetin-induced vasorelaxation is 
closely involved with EDHF. Therefore, it is possible that quercetin 
may increases [Ca2+]i, and then facilitates EDHF synthesis as well as 
NOS in endothelium.

In rat mesenteric artery, quercetin actually produces NO 
from endothelium. However, endothelium removal attenuated 
the quercetin-induced vasodilatation to a greater extent than both 
L-NAME and indomethacin (Table 4). This strongly demonstrates that 

the endothelium of mesenteric artery plays an important role in the 
quercetin-induced vasodilatation, mainly dependent on EDHF rather 
than NO. In resistant vessels than aorta, the EDHF-type relaxation 
is relatively more predominant [29]. ACh causes the EDHF-type 
relaxation mediated through KCa channels in fetal aorta [51]. L-NAME 
attenuated (though be a weak blockade) the quercetin-induced 
vasodilatation. Thus, NO plays a minor role for the quercetin-induced 
vasodilatation of mesenteric artery. As well, it may be considered 
that quercetin is responsible for EDHF-type relaxation, which which 
is attenuated by high K+ or TEA [32,52]. Moreover, the EDHF-type 
relaxation is attenuated by bothapamin and charybdotoxin [53].

EDHF hyperpolarizes to dilate smooth muscle cells. Some candidates 
for EDHF have already been shown: K+ [52,53], epoxyeicosatrienoic 
acids (EETs) [52,54], and H2O2 derived from endothelium [23]. In our 
studies, two mechanisms for the EDHF-induced hyperpolarization 
have been inferred: (1) EDHF hyperpolarizes smooth muscle cells 
by stimulating KCa channels [13,28], and (2) the EDHF-mediated 
response is due to gap junctions, which is confirmed by the electrical 
communications between endothelium and smooth muscle cells 
[27,52]. Furthermore, the gap junction for EDHF-type relaxation has 
already identified by using antibody analysis [55,56].

On gap junction

In our experiments, the quercetin-induced relaxation in the 
presence of indomethacin and L-NAME was not reduced by high 
TEA (1 mM). Additional pretreatment with 100 μM 18α- or 50 μM 
18β-glychrrhetinic acids (18α- and 18β-GAs) significantly inhibited 
the L-NAME/indomethacin-resistant vasodilatation from 82.0 ± 2.4% 
(n=6) to 63.3 ± 5.5% (n=9, p<0.01) (Table 4). 18α- and 18β-GAs are 
the selective blockers of gap junctions [57]. Endothelium removal also 
attenuated the quercetin-induced vasodilatation to the same extent as 
the presence of the inhibitors such as L-NAME, indomethacin, and 
18α- and 18β-GAs. So, these findings indicate that the gap junctions 
contribute to the quercetin-induced vasodilatation. Both 18α- and 
18β-GAs reduced the quercetin-induced vasodilatation to a greater 
extent, as compared with the effect of TEA.

The discrepancy between the results of TEA and 18α- and 18β-GAs 
might be due to both mechanisms: (1) quercetin elevates endothelial 
[Ca2+]i and then, activates KCa channels, and (2) quercetin itself has a 
stimulatory actions on KCa channels. The elevation of [Ca2+]i induced by 
quercetin activates SK channels [19] to hyperpolarize the endothelium 
[58,59]. Quercetin would activate SK channel in endothelium via both 

Quercetin

n 0.1 0.3 1 3 10 30 100 µM

Control
A 10 1.6 ± 0.94 8.0 ± 1.71) 23.4 ± 3.22) 33.9 ± 2.72) 55.5 ± 3.23) 69.8 ± 3.43) 99.6 ± 3.03)

Endothelium-denuded 6 1.8 ± 0.55 3.8 ± 1.6b) 8.5 ± 1.9b) 13.0 ± 2.6b) 30.8 ± 4.9)b) 44.2 ± 4.2b) 77.9 ± 2.4b)

L-NAME 100 µM 8 1.3 ± 0.9 3.2 ± 1.8 19.2 ± 3.4 31.0 ± 2.8 51.2 ± 2.0 62.3 ± 4.7 86.0 ± 7.0a)

B

L-NAME+Indomethacin (100 µM) 8 1.9 ± 0.75 4.1 ± 1.3 19.0 ± 7.3 31.2 ± 6.3 52.5 ± 7.8 63.2 ± 6.9 82.0 ± 2.2

+TEA(100µM) 6 1.3 ± 0.80 7.5 ± 2.9 20.2 ± 5.7 32.0 ± 3.0 52.5 ± 2.6 67.8 ± 2.4 82.0 ± 2.4

+glycyrrhetinic acids 9 2.2 ± 1.3 5.5 ± 2.8 11.5 ± 5.0 20.5 ± 5.3 35.0 ± 6.0a) 51.1 ± 4.3a) 63.3 ± 5.5b)

Values (%) represent mean ± S.E.M. 1) and a): p<0.05, 2) and b) :p<0.01, 3): p<0.001.
Symbols of 1), 2), and 3) mean significant differences in comparison between effects of quercetin itself at each concentration and the maximal contraction induced by NE. 
A) The symbol of a), b) indicate significant difference as compared with control (quercetin alone) values. B) The symbol of a), b) indicate significant difference as compared 
with L-NAME and indomethacin.

Table 4: Modulation of endothelium-dependent relaxation induced by quercetin in rat mesenteric artery.
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mechanisms. Thus, TEA failed to inhibit KCa channels in endothelium. 
Although the effect of TEA on the quercetin-induced vasodilatation 
is affected by both mechanisms, the transduction of the endothelial 
hyperpolarization to smooth muscle cells is blocked by 18α- and 
18β-GAs, and also the endothelial removal. Therefore, the gap junctions 
involved with EDHF would be responsible for the quercetin-induced 
vasodilatation [50].

Summary

Rat mesenteric artery possesses almost the similar characteristics 
to the aorta (Figure 2); (1) quercetin caused a concentration-
dependent vasodilatation, (2) the quercetin-induced vasodilation was 
attenuated by L-NAME, (3) the addition of indomethacin did not cause 
further modifications, (4) TEA (1 mM) tended to reduce L-NAME/
indomethacin-resistant vasodilatation, (5) at high concentrations (100 
μM) of quercetin, TEA failed to produce any effects on L-NAME/
indomethacin-resistant vasodilatation, (6) L-NAME/indomethacin-
resistant vasodilatation was reduced by 18α- and 18β-GAs, (7) 
endothelium removal strongly attenuated the quercetin-induced 
vasodilatation, and (8) 18α- and 18β-GAs reduced the quercetin-
induced vasodilatation to the same significant extent as the endothelium 
removal.

The vasodilatation in rat mesenteric artery is also endothelium-
dependent. Quercetin produces NO in endothelium, but plays minor 
role in the quercetin-induced vasodilatation. The vasodilatation 
induced by quercetin is mainly due to the gap junctions, closely 
involved with EDHF.
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