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Abstract

Cardiovascular diseases, especially myocardial infarction (MI) are the leading cause of death all over the world.
Current treatment strategies of myocardial infarction include drug regimens, percutaneous coronary
revascularisation and coronary artery bypass grafting (CABG). Despite the considerable contribution of the
interventions mentioned above, the long term benefits remain unsatisfactory. Existing treatments fail to regenerate
myocardium that has gone through necrosis or apoptosis. So seeking for new approaches will not only minimize
patient suffering but also significantly reduce the cost and resource burdens on a healthcare system that is already
stretched to the limit. Recently, transplantation of cardiac stem cells has become a hot topic on regenerative
medicine. Mammalian heart has been traditionally regarded as a terminally differentiated organ with no potential for
regeneration. However, studies over the past decade have suggested the existence of cardiac stem cells (CSCs)
that reside in the heart itself both in normal and pathological states. These cells are self-renewing, clonogenic, and
multipotent, i.e, they are capable of differentiating into myocytes, vascular smooth muscle cells, and endothelial cells
in appropriate conditions. This review mainly discusses the current research on CSCs, various subpopulations of
CSCs and their repair mechanisms in MI.
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Introduction
Different stem cell populations have been intensively studied in the

last decade as a potential source of new cardiomyocytes to ameliorate
the injured myocardium, compensate for the loss of ventricular mass
and contractility and eventually restore cardiac functions. An array of
cell types has been explored in this respect, including embryonic stem
cells (ESCs), skeletal myoblasts, bone marrow derived stem cells
(BMSCs), and more recently cardiac stem cells (CSCs) [1]. Although
ESCs have an exceptional capacity for proliferation and differentiation,
the clinical application of ESCs is limited by their pluripotent nature,
teratomas potential and ethical concern. Skeletal myoblasts are not
suitable cells, because transplanted myoblasts are unable to turn into
cardiomyocytes and they are also associated with life-threatening
arrhythmias. However, the BMSCs do not become functional
cardiomyocytes in vivo, instead they exert their benefits mainly
through indirect paracrine mechanisms [2,3]. So it is pressing to find a

logical cell source for cell transplantation after MI, which can
differentiate into cardiomyocytes directly and effectively. More
importantly, overcome ethical, immunological, and safety issues.

In 1994, Soonpaa’s group delivered ESCs isolated from transgenic
mice directly into the infarcted myocardium of syngeneic hosts, 2
months later, the results suggested that grafted cells could attenuate
the development of scar formation and prevent cardiac failure
secondary to myocardial infarction [4]. Then mitosis was observed in
small amounts of cardiomyocytes both in the peri-infarct zone and
normal myocardial tissues, providing that some cardiomyocytes are
self-renewal even in pathological condition [5]. The adult heart is
composed predominantly of postmitotic cells, but it is not a terminally
differentiated organ. It contains replicating myocytes responsible for
myocardial regeneration.

The year of 2003, Beltrami first isolated and expanded so-called
CSCs capable of committing to the myogenic lineage and reversing
cardiac dysfunction in the infarcted heart [6]. The next year, Messina
successfully identified and characterized a kind of self-renewal cells
from the adult human and murine heart. These cells are clonogenic,
express stem and endothelial progenitor cell antigens/markers, and
appear to have the properties of adult cardiac stem cells [7]. Other
studies reported similar results that CSCs possess the fundamental
properties of stem cells and they differentiate into or give rise to all
three major cardiac lineages [8-10]. All this compelling evidence has
demonstrated the existence of multipotent CSCs in adult heart.

Subpopulations of CSCs
Multipotent cardiac stem cells are relatively abundant, accessible,

and autologous compared to other cell source, which makes them the
most attractive and suitable cell type for the treatment of myocardial
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injury. Different subpopulations of CSCs have been identified
according to their properties and surface markers. These distinct CSC
populations include c-kit+ CSCs, cardiosphere-derived CSCs (CDC),
Sca-1+ CSCs, side population (SP) CSCs, Islet-1+ CSCs.

C-kit+ CSCs
One of the most well-known stem cells is the c-kit+ CSCs.

Quantitative data in the animal and human heart have demonstrated
that there is one CSC per~30,000–40,000 myocardial cells [11]. CSCs
exist in small clusters with a highest density in the atria and the
ventricular apex, especially the right atrial appendage [12]. These cells
are characterized by expression of c-kit and absence of CD45,
additionally, they are blood lineage negative and express transcription
factors associated with early cardiac development, such as GATA-4,
Nkx2.5, and Mef2C [6,13,14]. Moreover, they are the most extensively
studied cell source with the ability to form all three cardiac lineages in
vitro, which have been applied into clinical trials.

Cardiosphere-derived CSCs
Another type of CSC that has been exploited in cardiac

regeneration therapy is the CDC. The cells yielded from mild
enzymatic digestion of the tissue specimens are small, round, phase-
bright and will form spheroid aggregates in suspension culture, thus
are named as Cardiosphere-derived CSCs (CDCs) [7]. CDCs are
composed of proliferating c-kit positive cells primarily in their core
and differentiating cells expressing cardiac and endothelial cell
markers on their periphery [15,16]. Abundant evidence suggests that
CDCs have the ability of self-renewal, clonogenicity, and
differentiation into cardiomyocytes and endothelial cells [7,17]. A
head-to-head comparison of CDCs, bone marrow-derived
mesenchymal stem cells, adipose tissue-derived mesenchymal stem
cells, and bone marrow-derived mononuclear cells showed that CDCs
were superior in terms of paracrine factor secretion, angiogenesis,
cardiomyogenic differentiation, ischemic tissue preservation,
antiremodeling effects, and functional benefit [18]. A Phase I clinical
trial has also been performed using CDCs [19].

Sca-1+ CSCs
Sca-1+ CSCs were identified as another predominant cardiac stem

cell population in the adult mouse heart that express stem cell
antigen-1 (Sca-1) but not c-kit or blood lineage markers [20]. When
treated with oxytocin, Sca-1+ CSCs expressed genes of caridac
transcription factors including Nkx-2.5, GATA4 and contractile
proteins such as sarcomeric α-actin, cardiac troponin I, and MHC, at
the same time, a small fraction (~1%) of Sca-1+ cells exhibited
spontaneous beating activity [21]. Furthermore, transplantation of
Sca-1+ cells into the acutely infarcted mouse heart resulted in
functional promotion by secretion of various cytokines and proteins
related to caridac proliferation and regenaration, which show their
reparative roles in MI [22,23].

SP CSCs
Side population (SP) cells are characterized by their expression of

the ATP binding cassette transporter ABCG2 and their ability to
exclude Hoechst 33342 dye [24,25]. Hierlihy et al. was the first to
isolate SP cells and found that these cells comprised ~1% of all cells in
the mouse heart [26]. SP CSCs are subdivided into two distinct
populations according to their cell phenotype, namely, CD31-/Sca-1+

SP CSCs and CD31+/Sca-1+ SP CSCs. However, only CD31-/Sca-1+
SP CSCs show high cardiomyogenic potential [27]. Still, SP CSCs
demonstrate their ability to differentiate into mature cardiomyocytes
after 2–3 weeks of co-culture with adult rat ventricular cardiomyocytes
[28]. Two years later, SP CSCs from neonatal rat hearts were
successfully induced into functional cardiomyocytes through oxytocin
or trichostatin A without co-culture with other cell types [29].
Recently, human SP Cells were isolated from biopsies of left atrium
[30,31]. The properties of these cells will need to be further
characterized in the future.

Islet-1+ CSCs
Islet-1+ CSCs could be isolated from neonatal mouse hearts, and

these cells could express the cardiac transcription factors Nkx2.5 and
GATA4, but not Sca-1, CD31, or c-kit [32-34]. Islet-1+ cells are crucial
for the formation of the right ventricle, atria, and outflow tract [35].
However, Islet-1+ cells can be found only in neonatal and fetal tissues,
yet reduce to low or nonexistent levels in adult hearts, which limits
their clinical potential [36].

Mechanisms of CSCs in Cardiac Regeneration
Until now, the mechanisms involved in cardiac repair caused by

CSCs transplantation have been summarized as Cardiomyo
Angiogenesis and paracrine mechanisms.

Cardiomyo angiogenesis
Lots of animal researches and clinical trials have demonstrated that

transplanted CSCs could differentiate into new myocytes and vessels.
Current researches inform that IP3R-mediated Ca2+ oscillations
control CSCs growth and their regenerative potential. In the
unfavorable environment of the necrotic tissue post-myocardial
infarction, the highly expressed ATP increases the frequency of Ca2+
oscillations among neighboring CSCs, which initiates and enhances
the engraftment, proliferation, and regeneration of a myocyte progeny
[13,37]. Additionally, the latest research revealed that the heart
contains two distinct subpopulations of CSCs: myogenic CSCs
(mCSCs), characterized by expression of c-kit, which are mainly
responsible for regenerating cardiomyocytes [38], and vasculogenic
CSCs (vCSCs), which express c-kit as well as KDR, are more
committed to the turnover of coronary vessels [39]. Both of these two
subpopulations possess the fundamental properties of stem cells: self-
renewing, clonogenic, and multipotent [40]. All this evidence
described above provides convincing proof that the improvement of
cardiac function by CSCs therapy is mediated partially by cardiomyo
angiogenesis mechanism if not all.

Paracrine and exosomes
Although transplantation of CSCs has showed its beneficial effects

in mediating cardiac protection, it is believed that the positive
outcomes of stem cell transplantation are regulated mainly through
production and secretion of growth factors and cytokines by the
engrafted stem cells [41]. The paracrine factors secreted by the large
number of injected stem cells could contribute to rearrange the post-
ischemic microenvironment and promote angiogenesis, inhibit
apoptosis, and stimulate myocyte proliferation [42-44]. CSCs possess
growth factor receptor systems such as IGF-1/IGF-1R, HGF/c-Met,
and SDF-1/CXCR4, when integrated with growth factors, the
downstream signalling pathways will be activated to induce cell
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migration, proliferation and differentiation [45,46]. Several growth
factors and cytokines have been identified, and these include VEGF,
HGF, IGF-1, SDF-1, etc. They play their role in cardiac functional
improvement through corresponding receptors and signalling
pathways. For example, delivery of IGF-1 exerts a prosurvival effect on
CSCs through induction of the IGF-1 receptor and PI3K/Akt/
GSK-3beta signalling [47]. While VEGF shows it’s prosurvival and
anti-apoptosis potential via activating SDF-1/CXCR4 axis and
downstream STAT3 and ERK1/2 pathway [48-50]. Overall, paracrine
effectors are crucial regulators involved in CSCs homing, expansion
and differentiation.

Exosomes are membrane vesicles with a diameter of 40–100 nm,
which are emerging as an attractive vector of paracrine signals
delivered by CSCs. Exosomes are stored intracellularly in endosomal
compartments and are secreted when these multivesicular structures
fuse with the cell plasma membrane [51-54]. Exosomes carry a specific
set of proteins derived from the plasma membrane, endocytic
pathway, and the cytosol, which play important roles in cell
penetration, invasion and fusion events, and regulate exosome docking
and membrane fusion [55,56]. Exosomes also contain annexins,
metabolic enzymes, ribosomal proteins, signal transduction molecules,
adhesion molecules, ATPases, cytoskeletal and ubiquitin molecules,
growth factors, cytokines and miRNA molecules [57], among which,
miRNAs, an important regulators in CSC-mediated cardiac repair
after MI are best studied. A research have recently reported that
miRNA families plays important roles in the transition of cellular
proliferation in CSCs in vivo,and may be an crucial modulator in the
process of bone morphogenetic protein (BMP)-2-regulated myocardial
differentiation due to their repression of cardiac progenitor genes IsI1
and Tbx1 [58-60]. In addition, miRNA could repress CMC progenitor
cell death via targeting receptor interacting protein 1 [61]. Altogether,
exosomes act as vectors for the intercellular exchange of biological
signals and information, which mediate cell activation, phenotypic
changes, and reprogrmming of cell function. Exosomes may be a key
mechanism by which cardiac progenitors communicate with each
other and deliver paracrine signals to neighboring cells [62-65].

Experimental and Preclinical Research on CSCs
In the last years tremendous effort has been undertaken to evaluate

CSCs for their safety, feasibility, and efficacy on cardiac repair and
regeneration, including small animal experimental studies and
preclinical large animal trials.

Experimental research
Small animal models of MI have been widely used to study the

effects of transplanted CSCs and they did document the structural and
functional benefits.

Transplanting CSCs into a rat model with a 90-min coronary
occlusion following by 4 hours of reperfusion, Dawn et al. found that
CSCs were able to induce regeneration, and decrease myocardial
infarct size by 29% [66]. Another study by Wang et al. revealed that
delivery of Sca-1+/CD31- cells into the acutely infarcted mouse heart
attenuated functional decline and adverse structural remodeling as
evidenced by an increased left ventricular ejection fraction, a decreased
end-diastolic and systolic dimension, a significant increase of
myocardial neovascularization, and modest cardiomyocyte
regeneration [67]. Smith et al. transplanted human CDCs into the
border zone of myocardial infarcts in immunodeficient mice. 20 days

later, the percentage of viable myocardium within the infarct zone was
greater in the CDC-treated group(24.9 ± 1.1%) than in the control
group(17.7 ± 1.8%, P0.01); likewise, left ventricular ejection fraction
was significantly higher in the CDC-treated group (42.8 ± 3.3% vs 25.0
± 2.0% for control group) [68]. Abundant studies finished in recent
years further confirmed that administrated CSCs in the setting of MI
produced beneficial structural and functional effects in small animal
models [69-72].

Preclinical research
Similar results have already been obtained in large animal models.

The pig, which is more similar in tissue biology, size, and physiology
to the human than the rodent models commonly used has proven a
very productive and frequently used preclinical large animal model for
regenerative therapy. Johnston et al. administered CDCs to both
healthy and infarcted pigs at 4 weeks after MI through intracoronary
infusion. 8 weeks later, CDCs treatment formed new cardiac tissue,
reduced relative infarct size, attenuated adverse remodeling, and
improved hemodynamics [73]. A randomized, blinded, and placebo-
controlled study showed that Intramyocardial injection of autologous
CDCs effectively halted the deterioration in LVEF and efficiently
improved echocardiographic and hemodynamic indexes after large
scale of anteroseptal myocardial infarction [74]. In a study by Bolli R et
al., autologous CSCs (n=11) or vehicle (n=10) were infused into the
infarct-related artery of pigs 3 months after MI. One month later,
CSCs-treated pigs exhibited significantly greater LVEF (51.7 ± 2.0%
versus 42.9 ± 2.3%, P<0.01), systolic thickening fraction in the
infarcted LV wall, and maximum LV dP/dt, as well as lower LV end-
diastolic pressure. The expression of cardiac markers as troponin I,
troponin T, myosin heavy chain, connexin-43, and α-sarcomeric actin
was a strong reflection of myocardial regeneration. Some engrafted
CSCs also formed vascular structures and expressed α-smooth muscle
actin [75].

In summary, all these animal studies have shown that
transplantation of autologous CSCs improves regional and global left
ventricular function and promotes cardiac and vascular regeneration,
thus laid a solid foundation for clinical trials.

Clinical trials
Cell-based therapies to regenerate the damaged myocardium using

CSCs have been performed in the recently completed SCIPIO and
CADUCEUS clinical trials.

In the open label, randomised phase 1 SCIPIO trial, sixteen patients
with post infarction left ventricular dysfunction (ejection fraction
≤40%) who had undergone coronary artery bypass grafting, received
500,000–1 million of autologous c-kit+ CSCs intracoronary, nearly 4
months after surgery. In the control group no treatment was given.
The primary endpoint was short-term safety of CSCs and the
secondary endpoint was efficacy. LVEF increased progressively from a
mean of 30.3% before CSC infusion to 38.5% 4 months after
transplantation, whereas the LVEF did not change in the control
patients, during the corresponding time interval. Moreover, in the
eight patients who completed the 1 year of follow-up, LVEF increased
by 12 EF points vs. baseline. Cardiac MRI of seven of the treated
patients showed that infarct size decreased by 24% at 4 months and
30% at 1 year [76].

In the prospective, randomized CADUCEUS trial, patients with left
ventricular ejection fraction of 25–45% were consecutively enrolled in
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the treatment and control groups. Autologous CDCs up to 25 million
were infused into the infarct-related artery of the 17 patients assigned
as treatment group, 1.5-3 months after myocardial infarction. 8
patients received standard care and acted as the control group.
Compared with controls at 6 months, MRI analysis of patients treated
with CDCs showed significant reductions in scar size and mass,
increases viable heart mass, regional contractility, and regional systolic
wall thickening. However, changes in end-diastolic volume, end-
systolic volume, and LVEF did not differ between groups at 6 months
[19].

Additionally, two promising clinical trials utilize CSCs for
treatment of ischemic heart diseases are still in progress, the results
have yet to be reported.

In the ALCADIA trial (NCT00981006), 6 patients of ischemic heart
failure after CABG surgery received implantation of autologous CDCs
together with a biodegradable gelatin-hydrogel infused with basic
fibroblast growth factor (bFGF). Preliminary data at 6 months
reported an improvement in LVEF (from 26.7% to 35.8% by 3-D echo
and 22.6% to 34.7% by MRI), a decrease in infarct size by MRI (from
23% to 19.7%), as well as a decrease in wall motion score (from 17.2 to
6.6) [77].

The phase I/II “Allogeneic heart stem cells to achieve myocardial
regeneration” (ALLSTAR) trial (NCT01458405), led by Eduardo
Marban, is ongoing to test the safety of allogeneic CDCs. It is the first
time to investigate the allogeneic use of CSCs in humans, and the
results are awaited [78].

New Strategies to Promote CSCs Survival, and
Proliferation

Growing evidence has suggested that CSCs exert great effects on
cardiac repair post-MI. But only a small percentage of donor cells
could successfully be engrafted into the damaged myocardium due to
the harsh microenvironments after infarction. The unfavourable
microenvironment of the necrotic myocardium together with diffuse
inflammatory infiltrates interferes with homing, survival, and growth
of the administered cells, which are critical variables of successful
myocardial repair. Therefore, it is imperative to look for some new
strategies to enhance the survival rate and long-term engraftment of
CSCs after transplantation.

Delivery of biologic factors
Great efforts have been made to create more conducive myocardial

environment for CSCs proliferation. Different cytokines or growth
factors are used to boost cell survival, persistence, and proliferation. In
the damaged dog and pig heart, CSCs transplantation as well as in situ
activation by co-administered IGF-1and HGF has been shown to be a
practical and effective strategy to prolong cell survival, induce
cardiovascular regeneration, and improve left ventricular function.
Such myocardial reconstitution caused by combination delivery of
IGF-1 and HGF can promote a significant restoration of dead tissue,
resulting in a marked recovery of contractile performance of the
infarcted heart [79,80].

Gene transfection
Based on the observations that HGF gene transferred into human

bone marrow- and adipose tissue-derived stem cells highlights great
regenerative effects [81-84], a novel powerful therapeutic strategy,

gene therapy, has been applied to enhance the ability of CSCs to
promote myocardial regeneration. Overexpression of SDF-1 in the
infarcted mice heart by rAAV1-SDF-1a-eGFP infection resulted in
more CSCs retention to the infarcted myocardium, a higher
percentage of proliferation, and reduced infarcted area via CXCR4/
PI3K pathway [85]. Targeted delivery of human VEGF gene via
complexes of magnetic nanoparticle-adenoviral vectors exhibited
higher capillary and arteriole density and lower collagen deposition
and significantly improved left ventricular function [86].

Precondition with low oxygen and growth factors
CSCs preconditioned by exposure to low oxygen ex vivo are more

resistant to ischemic microenvironment. A study in 2009 provided
evidence that CSCs subjected to ischemic preconditioning markedly
augmented c-kit+ cells recruitment to the ischemic myocardium and
enhanced protection against ischemic cardiac injury after myocardial
infarction. Four weeks after treatment, infarct size and heart function
were significantly better in mice administered hypoxia-preconditioned
CSCs than in mice treated with cells cultured under normoxic
conditions. Furthermore, these effects were largely abolished by the
addition of a CXCR4 inhibitor, indicating that the benefits of hypoxic
preconditioning are mediated by the SDF-1/CXCR4 axis [87].
Subsequent experiments have also reported similar results that
implantation of low O2 pre-cultured CSCs into infarcted hearts of
mice led to greater cell engraftment and better functional recovery
compared with that in normoxic stem cells [88-90]. A newly published
article indicates that hypoxic preconditioningeffect [91].

An alternative method to promote survival is to precondition CSCs
with growth factors prior to delivery into the recipient heart.
Preconditioning Sca-1+ CSCs with IGF-1 before transplantatation
enhanced cell survival via PI3K/Akt-dependent caspase-3
downregulation and reprogramed cardiomyogenic differentiation
[92]. CSCs activated by IGF-1and HGF, ex vivo, formed conductive
and intermediate-sized coronary arteries together with resistance
arterioles and capillaries [38].

Engineered cell delivery
With the rapid progress in the study of biological materials, tissue

engineering has gradually become an alternative strategy on cardiac
cell therapy. The injectable biomaterials such as hydrogels, gelatines,
nanofibers, and self-assembling peptides have been used as vehicles for
cell delivery. These biomaterials can provide a scaffold that mimics
natural extracellular matrix under physiological conditions, reducing
cell washout from the injection site and preventing apoptosis
triggering attributable to anoikis. They also possess a reservoir for
controlled release of growth factors. In addition, embedded in bio-
engineered tissues and supported by extracellular matrix, transplanted
cells would have a better chance to survive and engraft in the cardiac
microenvironment in comparison to direct exposure to injured tissue
via injection [93]. In the rat MI model, nanofibers were used to deliver
IGF-1 along with CPCs. Compared with infarcts exposed to CPCs or
NF-IGF-1 alone, combination therapy resulted in a greater increase in
the ratio of left ventricular mass to chamber volume and a better
preservation of +dP/dt, -dP/dt, and ejection fraction. The number of
newly formed myocytes with combination therapy was 32% and 230%
higher than with CPCs and NF-IGF-1, respectively. Similarly, the
length density of newly formed coronary arterioles with both CPCs
and NF-IGF-1 was 3% and 83% greater than with CPCs and NF-IGF-1
alone, respectively [94]. Similar progress has been made that
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biomaterials carrying cytokines such as bFGF, IGF-1, and VEGF
modulate the post-ischemic microenvironment to enhance CSCs
engraftment and differentiation. This novel strategy demonstrates
significant functional improvements after myocardial infarction and
may potentially represent a therapeutic approach to be studied in a
clinical trial [95-100].

Summary and Conclusions
The findings that the adult heart harbors a regenerative multipotent

cell population conclusively dispel the notion of the heart as a
terminally differentiated organ without self-renewal potential,
representing a paradigm shift in cardiovascular biology. Although
initial encouraging results have been achieved from preclinical and
clinical studies that administration of CSCs can induce cardiogenesis
and neovasculogenesis, additionally, improve recovery of the damaged
heart function, there still remain many challenging problems to be
solved. Currently, the conditions of isolation, augmentation, and
purification of CSCs differ among different laboratories. Time
consuming, and the reliability of autologous CSC culture and
expansion make the clinical application of CSC transplantation much
difficult, especially in their application in the acute post-MI phase. So
it is necessary to establish a standard protocol for isolation and culture
of CSCs in vitro, which is simple, effective, and reproducible. Available
routes of CSC delivery include intravenous, intracoronary, epicardial,
endocardial, and coronary sinus injection, each of which has its own
advantages and disadvantages, respectively. Despite major advances
made in delivering cells to the ischemic heart, low engraftment and
survival rate still remains as one of the major hurdles of current cell
delivery methods. Subsequent years have seen the prosperity of new
ways to deal with the problems of cell survival, persistence, and
proliferation, including cell preconditioning or genetic modification
prior to CSC delivery or codelivery of CSCs directly into the
myocardium with growth factors or degradable biomaterials such as
nanofibers and hydrogels. Furthermore, the mechanisms underlying
the differentiation of CSCs have not been well understood yet, making
it difficult to impose precise regulation on their directed
differentiation. Other controversies remaining in cell dose, optimal
time for injection and whether the application of gene therapy will
lead to cancerization wait to be handled. Though faced with many
challenges, CSC therapy, acting as an exciting and dynamic area of
research, has shown its great potential to improve recovery of
myocardial infarction. With further study of regulation systems and
signal transduction mechanisms and development of more large-scale,
randomized and double-blind controlled trials, CSC transplantation
will bring significant and long-term impact on socioeconomics and
patient well-being.
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