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Introduction
Prostate cancer is the leading cause of death in men in developed 

countries and the second most frequently diagnosed cancer in 
developing countries [1]. World-wide there were 903, 500 new cases of 
prostate cancer and 258,400 estimated deaths in the most recent year 
(2008) for which world-wide statistics are available [2]. In developed 
countries there were 648,400 estimated new cases and 136,500 estimated 
deaths secondary to prostate cancer in 2008 [1,2]. In developing 
countries there were an estimated 255,000 new cases of prostate cancer 
and an estimated 121,900 cases of death secondary to prostate cancer 
in 2008 [2]. With prostate cancer being the leading cause of death in 
men in developed countries and the second leading cause of death in 
men in all countries world-wide [1,2], there is definitely a  need for 
new therapies which can prolong survival and decrease mortality. This 
review will concentrate on four hormones synthesized within the heart 
which decrease up to 97% of human prostate cancer cells in culture [3] 
and their mechanism(s) of doing so.

The heart synthesizes a family of peptide hormones which help 
moderate blood pressure and blood volume in healthy individuals 
[4,5]. When these peptide hormones are given in higher concentrations 
than normally made by the heart they have anticancer effects on human 
tumors (breast, pancreatic, and small-cell lung cancers) growing in 
athymic mice [6-8]. A 126 amino acid (a.a.) prohormone which has 
been designated the atrial natriuretic peptide prohormone since the 4 
peptides contained in the prohormone are synthesized mainly in the 
atrium of the heart during adult life, have salt excreting properties, i.e. 
natriuresis, and are peptides [9,10]. Within the ANP prohormone are 
four peptide hormones, i.e. long-acting natriuretic peptide (LANP), 
vessel dilator, kaliuretic peptide and atrial natriuretic peptide (ANP), 
whose main known biological properties are blood pressure regulation 
and maintenance of plasma volume in animals [4,11-15] and humans 
[5,16,17].

Four cardiac hormones decrease the number of prostate 
adenocarcinoma cells in culture

The addition of 1 µM of long-acting natriuretic peptide (LANP) 
for 24 hours decreases the number of human prostate cancer cells 
32% (p<0.05; Figure 1). Vessel dilator at 1 µM for 24 hours decreased 
the number of human prostate cancer cells the most of the cardiac 
hormones, i.e. 62% (p<0.001) (Figure 1). Kaliuretic peptide at 1 µM 
for 24 hours decreased the number of human prostate adenocarcinoma 
cells by 30% (p<0.05) (Figure 1).

ANP (1 µM) decreased the number of human prostate 
adenocarcinoma cells in culture by 37% (p<0.05). Brain natriuretic 
peptide (BNP) and C-natriuretic peptide (CNP), peptides with similar 
ring structures to ANP but with different amino acids, each at 1 
µM, only decreased the number of human prostate adenocarcinoma 
cells by 0.8% and 1%, respectively, after 24 hours of incubation (not 
significant). Thus, with respect to their ability to inhibit the growth of 
human prostate cancer cells, when these cells were exposed to identical 
concentrations of these peptide hormones for 24 hours, vessel dilator > 
ANP > LANP > kaliuretic peptide [3]. In the wells with the decreased 
number of cells secondary to the cardiac hormones there was evidence 
of cellular debris suggesting that necrosis was occurring [3].
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Abstract
The heart is a sophisticated endocrine gland synthesizing the atrial natriuretic peptide prohormone which 

contains four peptide hormones, i.e., atrial natriuretic peptide, vessel dilator, kaliuretic peptide and long-acting 
natriuretic peptide, which decrease up to 97% of human prostate adenocarcinoma cells in cell culture. Their signaling 
in human prostate cancer cells after binding to specific receptors includes inhibition of up to 95% of the basal activity 
of Ras, 98% inhibition of the phosphorylation of the MEK 1/2 kinases and 96% inhibition of the activation of basal 
activity of the ERK 1/2 kinases mediated via the intracellular messenger cyclic GMP. They also completely block 
the activity of mitogens such as epidermal growth factor’s ability to stimulate ERK and Ras. The final step in their 
anticancer mechanism of action is that they enter the nucleus as demonstrated by immunocytochemical studies to 
inhibit DNA synthesis within cancer cells, which is also mediated by cyclic GMP. These cardiac hormones cause 
cell death of prostate cancer cells but not of prostate cells from healthy individuals.

The present review provides up-to-date information on 4 new potential treatments (cardiac hormones) of 
prostate cancer and their molecular targets (Ras-MEK 1/2-ERK 1/2 kinase cascade).
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Specificity of the ability of the cardiac hormones to decrease 
the number of human prostate adenocarcinoma cells

To determine their specificity, each of the cardiac hormones (at 
1 µM) was incubated with their specific antibodies (Ab, 5 µM). The 
decrease in cancer cell number secondary to vessel dilator alone of 63% 
was reduced to only 1% (89 ± 2 cells in control vs. 87 ± 2 cancer cells 
in Ab plus vessel dilator) [3]. There was no decrease in cell number 
with LANP plus its antibody and kaliuretic peptide plus its antibody 
resulted in only a 0.4% decrease in prostate cancer cell number [3]. 
These antibodies studies also indicated that ANP’s effects were specific 
with only a 2% decrease when its antibody was added. Thus, the 

addition of specific antibody blocked each of these cardiac hormones’ 
ability to decrease cancer cells by 98 to 100% at p<0.0001, suggesting 
that the anticancer effects were specifically due to the respective cardiac 
hormones.

When these specificity experiments were extended to 48, 72, and 96 
hours of incubation of cardiac hormone plus antibody, the decrease in 
number of cancer cells was 1% or 0% at 48, 72, and 96 hours for vessel 
dilator, LANP, kaliuretic peptide, and ANP (p<0.0001) [3].

Decreased cellular proliferation after initial decrease in 
human prostate adenocarcinoma cell number

With the prostate adenocarcinoma cells exposed for 48, 72, and 96 
hours, to vessel dilator, LANP, kaliuretic peptide, and ANP, each at 1 
µM, there was a 31 to 38%  inhibition of proliferation of the prostate 
cancer cells after the initial decrease in the number of these cancer 
cells at 24 hours by these cardiac hormones [3]. Thus, proliferation 
was inhibited by these peptide hormones for 3 days after the initial 
decrease in cell number in the first 24 hours. There was no significant 
decrease (1%) in human prostate adenocarcinoma cancer cell number 
secondary to BNP or CNP (each at 1 µM) at 48, 72, or 96 hours.

Dose-response evaluations of the cardiac hormones on 
human prostate cancer cells

Dose-response studies utilizing 10-, 100- and 1000-fold higher 
concentrations for 24 hours revealed that with each increase in the 
concentrations of the four peptide hormones synthesized by the ANP 
prohormone gene there was a further decrease (p<0.05) in the number 
of prostate cancer cells [3].

Vessel dilator decreased the number of human prostate 
adenocarcinoma cells 60% at 1µM, 72% at 10 µM, 91% at 100 µM, and 
97.4% at 1 mM when incubated for 24 hours [3]. Thus, vessel dilator 
at 1 mM eliminated almost all of the human prostate adenocarcinoma 
cells within 24 hours (i.e. there were only 3 ± 2.24 cells remaining, 
with several of the fields that were examined having no cancer cells 
whatsoever still alive) [3]. Long-acting natriuretic peptide (LANP), 
kaliuretic peptide and ANP decreased the number of cancer cells 87 to 
89% at their 1 mM concentration [3].

Mechanism(s) of action of cardiac hormones in human 
prostate adenocarcinoma cells

Natriuretic Peptide Receptors (NPR) A and C are present in 
human prostate cancer cells: The first step in most hormones action(s) 
is binding to their specific receptors [9,10,18]. ANP works via several 
receptors [9,10,18]. ANP binding to the NPR-A or active receptor 
begins its effects within a cell and it also binds to NPR-C or clearance 
receptor which helps to remove ANP from the circulation [9,10,18]. 
When human prostate adenocarcinoma cells were evaluated by 
Western blots, the NPR-A and –C receptors were found to be present 
in prostate cancer cells [3].

Cardiac hormones inhibit Ras in human prostate cancer cells: 
The Ras mitogen-activated protein kinase (MAPK)/extracellular 
signal-related kinase (ERK) kinase (MEK)-ERK kinase cascade (Figure 
2), hereafter referred to as the Ras- MAPK pathway, is the prototypical 
signal transduction pathway in cancer [19,20]. This pathway is 
aberrantly activated in many types of neoplasms, including prostate, 
with this activation being associated with a poor prognosis [19,20]. 
Structural alteration in the upstream GTPase Ras occurs in 25 to 30% 
of human cancers [21,22]. This is usually due to point mutation in 

Figure 1: Decrease in human prostate adenocarcinoma cells after 24 hour 
exposure to 1 µM of long-acting natriuretic peptide (LANP), vessel dilator, 
kaliuretic peptide, atrial natriuretic peptide (ANP), brain natriuretic peptide 
(BNP) and C-type natriuretic peptide (CNP). The decrease in prostate can-
cer cells was significant at p<0.001 with vessel dilator, p<0.01 with ANP, 
and p<0.05 with kaliuretic peptide and LANP when evaluated by repeated 
analysis of variance (ANOVA). There was no significant decrease in prostate 
cancer cell number secondary to BNP or CNP when evaluated by ANOVA. 
The decrease in number of human prostate cancer cells secondary to vessel 
dilator was significantly greater (p<0.05) than the decrease secondary to any 
of the other natriuretic peptides when evaluated by ANOVA. Cyclic GMP’s 
(cGMP) (1 µM) decrease in prostate adenocarcinoma cells was significant 
at p<0.05 when evaluated by ANOVA (n=60 for each group). Reprinted with 
permission from Eur. J. Clin. Invest. 35:700-710, 2005.

Figure 2: Cardiac hormones inhibit five metabolic targets, i.e. Ras-GTP, 
MEK 1/2,  and  ERK 1/2 kinases of the Ras-MEK 1/2-ERK 1/2 kinase cascade 
by 95-98%. They are also strong inhibitors (i.e. 91%) of DNA synthesis within 
cancer cells. Reprinted with permission from Eur. J. Clin. Invest. 40:408-413, 
2010.
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one of three Ras genes, i.e. H-Ras, K-Ras or N-Ras, which encode for 
highly similar proteins with molecular weight of 21,000 [23]. This point 
mutation abolishes the intrinsic GTPase activity of Ras protein [23]. 
This pathway contributes to enhanced survival of tumor cells while also 
facilitating their metastatic spread to distant organs [24,25]. Ras is a 
small GTPase that cycles between an inactive GDP-bound and an active 
GTP-bound form [26]. A large variety of ligands that stimulate cell 
surface receptors induce the activation of Ras [26]. In dose-response 
and time sequence studies vessel dilator inhibited the activation of Ras 
by a maximum of 95% (p<0.00001) which occurred at 45 minutes at 
its 1 µM concentration (Figure 3) [27]. It was found that vessel dilator 
could inhibit the activation of Ras for 24 hours (p<0.0001) and then the 
effects began to wane at 48 and 72 hours [27].

Kaliuretic peptide (1 µM) caused a significant (64%; p=0.003) 
decrease in Ras activation in 30 minutes with a maximal 90% (p<0.0001) 
decrease in Ras in human adenocarcinoma cells at 60 minutes [27]. 
ANP at a concentration of 0.1 µM inhibited the activation of Ras by 
a maximum of 90% (p<0.00001) at 15 minutes and inhibited Ras 88% 
(p<0.00001) at 30 minutes [28]. LANP at 1 µM caused a maximal (71%; 
p=0.009) decrease in Ras at 30 minutes with a still significant (p<0.03) 
63% decrease in the activation of Ras in human prostate cancer cells 
at 45 minutes [28]. These investigations on Ras kinase indicate that all 
4 cardiac endogenous hormones derived from ANP prohormone can 
significant (p<0.0001) inhibit the activation (i.e. activity) of Ras.

Cardiac hormones inhibit the phosphorylation of MEK 1/2 
kinases in human prostate cancer cells: The next step in the Ras-Raf-
MEK 1/2-ERK 1/2 kinase cascade is two kinases termed MEK 1 and 2. 
With respect to these two kinases, the prototype member, designated 
MAP kinase kinase (MKK-1) or MEK-1, specifically phosphorylates 
the MAP kinase regulatory threonine and tyrosine residues present 
in the Thr-Glu-Tyr motif of ERK 1/2 [29,30]. A second MEK family 
member, namely MEK-2, resembles MEK-1 in its substrate specificity 

but is seven residues longer than MEK-1 with its amino acid sequence 
being 81% identical to MEK-1 [30].

Vessel dilator and kaliuretic peptide (each 10 µM) inhibited the 
phosphorylation of MEK 1/2 kinase by 98% (p<0.0001) (Figure 4) and 
91% (p<0.001) respectively [31]. The inhibition of MEK 1/2 lasted for at 
least two hours, where it was maximal secondary to both peptides [31].  
ANP and LANP, like vessel dilator and kaliuretic peptide, decreased the 
activation of MEK 1/2 over a concentration range of 0.01 µM to 10 µM 
[32]. LANP and ANP (each 10 µM) inhibited the phosphorylation of 
MEK 1/2 kinase by 97% (p<0.00001) and 88% (p<0.00001) respectively 
[32].

Cardiac hormones inhibit ERK 1/2 kinases in prostate cancer 
cells: Extracellular-signal regulated kinase (ERK 1/2) is a mitogen 
activated protein kinase (MAP kinase) important for the growth of 
cancer(s) [33,34]. Growth factors such as epidermal growth factor 
(EGF), fibroblast growth factor, platelet-derived growth factor and 
vascular endothelial growth factor (VEGF), after binding to their 
specific receptor tyrosine kinases, work via ERK 1/2 kinase to cause 
proliferation [33].  EGF, for example, when it binds to its EGF receptor, 
causes this receptor to autophosphorylate on tyrosine residues and 
recruits the Grb2-Sos complex to turn on membrane-associated Ras, 
which then activates the Ras-Raf-MEK 1/2 – ERK 1/2 kinase cascade 
[33]. Of the mitogen- activated protein kinases, ERK 1 and 2, 42 and 
44 kDa proteins, can directly translocate to the nucleus and stimulate 
DNA synthesis and the production of several intermediate early genes 
such as c-fos and c-myc, which are implicated causing cells to divide 
and grow [33,34].

Vessel dilator and kaliuretic peptide decrease the activation (i.e. 
phosphorylation) of ERK 1/2 kinases over a concentration range of 
0.01 µM to 1 µM [35]. Vessel dilator and kaliuretic peptide (each 1 µM) 
inhibit the phosphorylation of ERK 1/2 kinases by 96% (p<0.0001) and 
70% (p<0.001), respectively [35]. The inhibition of ERK 1/2 lasts for at 
least two hours secondary to both [35].

Figure 3: Dose response of vessel dilator on the activation of Ras in human 
prostate cancer cells at 1 µmol/L in time-sequenced experiments at 5, 15, 
30, 45 and 60 minutes. These was a significant (p<0.0001) inhibition of the 
activation of Ras at each time point when evaluated by analysis of variance 
(ANOVA). Ras-GPT (i.e. active Ras) is at 21 kD. The relative intensity in 
this bar graph is a comparison of Western blots against the positive control 
(untreated Ras-GPT) with one typical Western blot illustrated. The illustrated 
negative control in this graph is Ras- GDP at 21 kDs. Reprinted with permis-
sion from Anticancer Res. 29:971-975, 2009.

Figure 4: Vessel dilator at 10 µM inhibits 98% of the phosphorylation of mi-
togen-activated protein kinase kinase (MEK 1/2), ,which was maximal at two 
hours and significant at p<0.00001 when evaluated by analysis of variance 
(ANOVA). MEK 1/2  is at 45 kDa while B-actin(loading control) is 42 kDa. 
The relative intensity in the bar graphs is a comparison against untreated 
MEK 1/2 (100% intensity). Reprinted with permission from Anticancer Res. 
27:1387-1392, 2007. 
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ANP and LANP, likewise, decrease the activation of ERK 1/2 
kinases over a concentration range of 0.01 µM to 10 µM [36]. ANP and 
LANP’s maximal inhibition the phosphorylation of ERK 1/2 kinases 
were 94% and 88% (p<0.0001), respectively [36]. The inhibition of 
ERK 1/2 kinases lasted for at least two hours, where it was maximal, 
secondary to ANP and LANP [36].

Mitogens such as epidermal growth factor’s stimulation of Ras 
and ERK 1/2 kinases are also blocked by the cardiac hormones: 
Epidermal growth factor (EGF) has been shown to directly activate 
Ras [37-40]. Vessel dilator, LANP, ANP and kaliuretic peptide, each 
at 1 µM, inhibit 73%, 79%, 33% and 45%, respectively, of 5 ng/mL 
EGF stimulation of Ras [41]. Another mitogen, i.e. insulin’s, ability 
to contribute to cancer formation and proliferation is thought to be 
mediated in part by its ability to convert inactive GDP-Ras to active 
GTP-Ras [42]. Vessel dilator, LANP, ANP and kaliuretic peptide, each 
at 1 µM, inhibit 88%, 94%, 56% and 47%, respectively, of insulin’s (1 
µM ) activation of Ras [43].

Growth promoting hormones such as insulin and epidermal 
growth factor (EGF) also work by stimulating ERK 1/2 kinases to 
cause growth [33,34]. Insulin (1 µM) and EGF (10 ng/mL) each 
enhance the phosphorylation of ERK 1/2 by 66% [44]. This enhanced 
phosphorylation of ERK 1/2 by EGF and insulin is decreased to 10%, 
8%, 27% and 13% above non-stimulated ERK 1/2 by vessel dilator, 
kaliuretic peptide, LANP and ANP, respectively [44].

Cardiac hormones’ ability to decrease prostate cancer cell 
number and inhibit Ras, MEK 1/2 and ERK 1/2 kinases is mediated 
by the intracellular messenger cyclic GMP: Cyclic GMP, the 
intracellular messenger of the cardiac hormones [45,46], decreases the 
number of human   prostate cancer cells is culture itself by 33% [3]. 
Further, the use of cyclic GMP antibody incubated with the respective 
cardiac hormones blocks their ability to decrease prostate cancer cells 
numbers, strongly suggesting that cyclic GMP mediates their effects on 
prostate adenocarcinoma cells [3].

Cyclic GMP antibody also inhibits the ability of the cardiac 
hormones to block the basal activity of Ras [27,28], MEK 1/2 [31,32] 
and ERK 1/2 kinases [35,36]. Cyclic GMP itself inhibits the activation 
of Ras by 89% [27], the phorylation of MEK 1/2 by 93% [32], and the 
activation of ERK 1/2 kinases by 83% [36]. Cyclic GMP, thus, appears 
very important for mediating the offset on prostate cancer cells, in 
general, and on each step of the kinase cascade in Figure 2.

Cardiac hormones inhibit DNA synthesis within the nucleus 
of prostate cancer cells: Vessel dilator, LANP, kaliuretic peptide 
and ANP, each at 1 µM concentration, inhibit DNA synthesis when 
incubated with human prostate adenocarcinoma cells for 24 hours 
by 89%, 68%, 76% and 79%, respectively (p<0.001 for each) [3]. 
Immunohistochemical studies have revealed that each of these cardiac 
hormones enter the nucleus of cancer cells [47,48] where they can 
inhibit DNA synthesis. 8-bromo cyclic GMP, the cell permeable 
antibody of cyclic GMP, inhibits DNA synthesis in adenocarcinoma 
cells by 56% [3]. Since cyclic GMP mimics the effects of the cardiac 
hormones on DNA synthesis in human prostate cancer cells, this 
suggests that cyclic GMP is one of the mediators of these cardiac 
hormones’ effects to inhibit DNA synthesis in cancer cells.

Four cardiac hormones cause cell death of human prostate 
cancer cells but not of prostate cells from healthy individuals: 
Exposure to the cardiac hormones for 2 hours causes cell death in up 
to 28% (p<0.001) of prostate cancer cells over a concentration range of 

100 pM to 10 µM [49]. Cell death of the human prostate cancer cells 
was quantified by measurement of nuclear matrix protein 41/7 which is 
a function of the number of dead or dying cells [50]. There was no cell 
death of prostate cells from healthy individuals [49]. 

Thus, cardiac hormones do not cause cell death of healthy prostate 
cells at the same concentrations that cause cell death of prostate cancer 
cells. These findings suggest that healthy prostate cancer cells are spared 
cell death at concentrations which have anticancer effects in mice [49].

Conclusions
Vessel dilator, long-acting natriuretic peptide, atrial natriuretic 

peptide and kaliuretic peptide each significantly decrease up to 97% 
of human prostate cancer cells in culture. After binding to specific 
receptors, their signaling in prostate cancer cells involves at 95% 
inhibition of the activation of Ras, 98% inhibition of the activity of 
MEK 1/2 kinases, and 96% inhibition of the phosphorylation of  ERK 
1/2 kinases mediated by cyclic GMP. They also inhibit DNA synthesis 
within prostate cancer cells mediated by cyclic GMP.
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