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Abstract
Carbon nanotubes (CNTs) possess exceptional mechanical and electrical properties, therefore researches and 

developments are performed in various fields. In recent years application to the medical field of CNTs attracted 
attention, and a large number of studies have begun to be performed. An applied study to cancer diagnosis and 
treatment, and a study to use for scaffold for regenerative medicine, besides, a study to compound in CNTs for the 
improvement of the function and durability of conventional biomaterials. In the applied study that properties of all CNTs 
were fully made use of in, development in the future is expected. In this review, we state it about the contents of a 
performed study for medical application of CNTs now, and introduce in particular the basic studies that are performed 
to apply CNTs to biomaterials in detail.
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Introduction
Carbon Nanotubes (CNTs) are fibrous carbon materials with a 

cylindrical structure of the nanometer order in diameter (10-9 m), 
where each cylinder forms from a rolled graphene sheet consisting of 
a honeycomb of benzene rings in the same plane. Oberlin et al. first 
reported CNTs in 1976 [1]. As CNTs have novel characteristics, such 
as mechanical strength, thermal resistance, and high electrical and 
thermal conductivities, they have been applied in many fields [3-7]. 
There is increasing interest in their medical applications. Many of 
these applications are related to diagnosis and therapy of cancer [8-12], 
application as scaffolds for regeneration [13-17], and for enhancing 
the performance of existing biomaterials [18,19]. These studies made 
good use of the characteristics of CNTs (Figure 1), and are expected 
to make significant progress. Here, we summarize the current medical 
applications of CNTs and present details of our basic research work.

Application if CNTs in Cancer Therapy
The most important considerations in cancer therapy are to find 

the lesion and achieve complete cure. A number of methods for finding 
cancer cells, such as imaging studies (Computed Tomography (CT), 
Magnetic Resonance Imaging (MRI), Positron Emission Tomography 
(PET)) and use of tumor markers, have been developed for early 
diagnosis. However, it is difficult to specify all cancers in the subclinical 
stage, and many cases are identified at the terminal stage. To improve 
this situation, the electronic, mechanical, and thermal characteristics of 
CNTs are expected to be useful for early diagnosis by detecting molecules 
associated with early cancer cells. Improvements of sensing capability 
of Prostate Specific Antigen (PSA) [20,21], Carcinoembryonic Antigen 
(CEA) [22,23], Carbohydrate antigen (CA)19-9 [24,25], and Alpha-
Fetoprotein (AFP) [26,27] have been reported. These results suggest 
the possibility of very early diagnosis using CNTs.

Although several methods, including chemotherapy, radiotherapy, 
thermotherapy, and gene therapy, are applicable to cure cancers, 
each of these methods has a number of disadvantages. For example, 
chemotherapy has a number of adverse effects due to the systemic 
administration of medications, which results in difficulty of targeting 
a particular organ. On the other hand, medicines, peptides, nucleic 
acids, and other useful molecules can be attached to the edges and/or 
surface of CNTs due to their large specific surface [12]. Furthermore, 
functionalized CNTs can permeate through cell membranes via 
biological mechanisms such as endocytosis by which materials are 

introduced into cells [28]. Using this mechanism, it may be possible 
to target these molecules specifically to cancer cells by use of cell 
recognition by peptides and/or ligands on CNTs that selectively bind 
to receptors [29]. An ideal Drug Delivery System (DDS) can deliver 
the necessary amount of material to the target site with the appropriate 
timing, and CNTs can potentially fulfill these requirements. It is also 
predicted that CNTs will be useful for gene therapy [30-33].

CNTs generate heat by microwave emission [34-36]. This may 
cause cell damage due to excess heat without appropriate regulation of 
energy output and protocols must be designed carefully.

Regenerative Medicine
Regenerative medicine involves the regeneration of disease- and/

or injury-damaged organs and tissues using artificially developed cells 
and tissues. This has become an area of active research since the first 
report of induced Pluripotent Stem cells (iPS cells) in 2007 [37]. It is 
important to introduce an appropriate scaffold because tissues are 
induced to generate by cells, genes, and proteins, such as cytokines or 
growth factors.

There have been several previous reports regarding such scaffolds. 
Vascular endothelial cells show not only proliferation but also regulate 
thrombogenesis on CNT/polycarbonate urethane composite scaffolds 
[38]. CNTs have been used as scaffolds for neuronal proliferation [39-
41].

CNT/polycarbonate urethane composite films have shown good 
results for chondrocytic adhesion and cartilage regeneration [42]. 
Combination of collagen with CNTs improves the properties as scaffold 
[43,44]. In addition to the studies mentioned above, it has been reported 
that CNTs can effectively enhance neurogenic cell differentiation 
by embryonic stem cells [45]. These observations suggested the 
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effectiveness of CNTs as scaffolds in regenerative medicine. In addition, 
there have been reports of similar effects in regeneration of bone tissue 
[46-53]. Our exploratory work has indicated the effects of CNTs in 
bone formation as described in Section 5 below.

Biomaterials
Biomaterials are those that make contact with living tissues, 

including cells. The table 1 lists the major biomaterials that have been 
developed to date (Japan Society of Medical Electronics and Biological 
Engineering, 1999) [54]. However, these materials have unresolved 
disadvantages, such as the lack of durability of artificial organs. Here, 
we will present a discussion of biomaterials used for plastic surgery.

Various materials are used for treatment of fractures, including 
plates, screws, wires, artificial joints, etc. Titanium composite used for 
osteosynthesis surgery shows good bone-tissue compatibility and has 
good weight characteristics. However, it must have a certain thickness 
to compensate for the strength required to withstand bending-
stretching motion. The thickness of such implants is often problematic 
for patients. In addition, such plates sometimes show deterioration 
following rupture. Thus, lighter and tougher Ti composite is required. 
Polyethylene, which is used for sliding parts of artificial joints, 
has problems related to abrasion. The micropowders generated by 
wear of polyethylene during its long-term use are phagocytosed by 
macrophages, which causes the release of inflammatory cytokines, 
such as Tumor Necrosis Factor (TNF)-a, Interleukin (IL)-1β, and 
IL-6. These molecules then induce osteoclast formation resulting 
in osteolysis around the implant. As a result, the artificial joint may 
then become loose [55]. However, ceramic components used in the 
sliding parts of artificial joints are resistant to abrasion but are prone 
to breakage with repeated impact (Figure 2) [56-58]. In both cases, a 
second operation is required to correct the problems that arise.

To improve the above cases, we are developing materials 
strengthening with CNTs as a reinforcing agent to extend the lives 
of such implants [59]. Indeed, the number of patients requiring a 
second operation has increased dramatically over the past several 
years; our objective is to reduce the number of reoperations using CNT 
polyethylene composite and/or CNT ceramic composite biomaterials 
to significantly prolong the life of implants. Note that it is necessary 
to evaluate the affinity of CNTs to bone in these applications, which is 
shown as in vivo test in Section 5.

Influence of CNTs on Bone Tissues
We introduce in particular the basic studies that are performed to 

apply CNTs to bone tissue regeneration and biomaterials in contact 
with bone [60].

Materials used in this evaluation

Multi-walled carbon nanotubes with an average diameter of 80 
nm, length of 10 – 20 µm, and 99.9% purity as carbon synthesized 
by the Chemical Vapor Deposition (CVD) method were obtained 
from Showa Denko (VGNF; Tokyo, Japan). Graphite with an average 
particle diameter of 4 m obtained from ITO Graphite Inc. (X-3M; Mie, 
Japan) was used as a control. Tween 80 (Polysorbate 80) as a surfactant 
was obtained from NOF Inc. (NOFABLE-9920HX; Tokyo, Japan).

Experimental methods and results

Subperiosteal experiment: The periosteum of the skull of male 
ddY mice (6 weeks old) was opened and the CNT solution was instilled 
subperiosteally by injection. As a sham operation control, isotonic 
sodium chloride solution with the surfactant was instilled into another 

group of mice. To make tissue slice samples, mice from each group were 
sacrificed at 1 and 4 weeks, and the skulls were removed. The samples 
were fixed, decalcified, and cut into sections, which were stained and 
observed by light microscopy.

The sham group showed recovery of the bone tissues after 1 week 
of exposure and very minor inflammation was seen. After 4 weeks, 
the bone tissues were restored completely. The CNT group showed 
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Figure 1: Characteristics of Carbon nanotubes and medical applications.

Figure 2: Damaged ceramics removed at second operation. 

Collagen
[2]mg

rhBMP2
5µg CNT

Freeze dry

2 weeks

3 weeks

Soft Xray picture observation
Bone Mineral Content
Tissue evaluation

dorsal muscles of mice

Collagen/BMP/
CNT composite

CNT(+)

CNT(-)
         (control)

1cm

Figure 3: Scheme of bone formation experiment.
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tissue recovery after 1 week of exposure, similar to the sham group. 
CNT particles remained in the subperiosteum and resulted in minimal 
inflammation, while slight lymphocyte and fibroblast infiltrates were 
seen. Macrophages accumulated around the CNT particles. After 4 
weeks, the CNT group showed complete subperiosteal restoration. 
CNT particles and macrophages after phagocytosis of the particles 
remained in the subperiosteum. Inflammation was reduced compared 
to that seen after 1 week of exposure, while no osteolysis was seen at 
CNT contact points.

These results indicated that CNTs did not cause severe 
inflammation or osteolysis at the CNT contact points, and showed 
good biocompatibility with the bone tissues.

Bone healing experiment: A hole was drilled in the left tibial 
diaphysis of male ddY mice (6 weeks old) 0.7 mm in diameter and 2 mm 
in depth using Kirschner wire. The same CNT solution as described 
above was injected into the hole. The sham operation group was treated 
similarly except graphite solution was injected into the hole.

The sham group showed significant bone formation at the hole after 
1 week of exposure, and the hole had healed completely after 4 weeks. 
The graphite group showed insufficient healing in comparison with 
the sham group after 1 week of exposure, where the graphite particles 
remained inside the bone marrow only and were not taken up into the 
newly healed bone matrix. Bone healing was markedly stunted after 4 
weeks of exposure, when the cortical and trabecular bone did not heal 
to the original thickness. Graphite particles remained within the bone 
marrow but were not taken up into the matrix. The CNT group showed 
the same rate of bone healing as the sham group, and CNTs were taken 
up into the new bone matrix. After 4 weeks, the cortical bone and bone 
marrow were healed completely and the CNTs were taken up into not 
only the bone marrow but also into the bone matrix.

These experiments indicated that CNTs were taken up and came 
into direct contact with the bone matrix without any inhibition of 
repair. Therefore, CNTs showed high biocompatibility with bone 
matrix similar to the subperiosteum experiments.

Ectopic bone formation experiments using bone morphogenetic 
protein: Recombinant human Bone Morphogenetic Protein 2 
(rhBMP2) deposited on collagen as carrier and implanted under the 
dorsal muscle of mice gives rise to ectopic ossification and heterotopic 
bone formation [61,62]. Using this assay, freeze-dried pellets were 
made with a mixture of 2 mg of atelopeptide type 1 collagen including 5 
µg of rhBMP2 and 500 µg of CNTs. Control pellets were made without 
the CNTs. The pellets were implanted under the dorsal muscles of male 
ddY mice (5 weeks old, 16 mice per group). Eight animals in each group 
were sacrificed at 2 and 3 weeks postimplantation, and the heterotopic 
bones were removed (Figure 3). These bones were analyzed by soft 
X-ray analysis, observation of those tissue samples and Bone Mineral 
Content (BMC) was determined using a bone mineral analyzer.

The soft X-ray pictures of heterotopic bones 2 weeks 
postimplantation showed significantly larger bone shadows and higher 
BMCs than the controls (P = 0.016). The tissue samples in both groups 
showed enchondral ossification with the same extent of maturation. 
CNTs were taken up into the bone matrices of newly formed bones, 
similar to the bone healing experiment described above. At 3 weeks 
postimplantation, there was no difference in bone shadow between the 
two groups on soft X-ray pictures. BMC of the CNT group was higher 
than that of the control group, but the difference was not statistically 
significant (P = 0.41). There was no difference in those tissue samples 
at 3 weeks postimplantation, while trabecular structures and bone 
marrow growth were seen by observed along with normal bone growth 
(Figure 4). 

In this experiment, CNTs accelerated ectopic bone formation by 
rhBMP2 and the CNT particles were taken up and came into direct 
contact with the new bone matrix.

Hydroxyapatite crystallization test: The contents of crystals 
formed from standing CNT solution in Phosphate Buffered Saline 
(PBS) (+) at 37°C, which was sonicated, were analyzed by X-Ray 
Diffraction (XRD) [63]. The crystal shapes at 6 h, 2 days, and 2 weeks of 
standing at 37°C were examined by FE-SEM.

PMMA; Polymethyl methacrylate
PTFE; Polytetrafluoroethylene

Table 1: Major biomaterials. Modificaton from ref [54].

Organ Term Major materials
Eyes Contact lens PMMA, MPC polymer

Intraocular lens PMMA
Teeth Artificial tooth, Dental prosthesis PMMA

Cavity fill material Methacryl acid derivative polymer
Esophagus Artificial esophagus Polyethylene / Natural rubber

Heart Mechanical heart Segmented polyurethane
Prosthetic cardiac valve Pylorite carbon

Lungs Oxygenator
(extracorporeal circulation)

Porous polypropylene

Mamma Mammary prostheses Silicone
Liver Artificial liver Activated carbon, Porous polymer beads

Kidney Artificial kidney Cellulose, PMMA, Polysulfone
Blood

vessel
Artificial vessel Stretched PTFE

Hip joint Artificial joint 
(the part of main body)

Titanium alloy, Cobalt-chromium alloy,
Ceramics (Alumina, Zirconia)

Knee joint Artificial joint (articular part) Ultra high molecular weight polyethylene
Phalangeal

joint
Artificial finger joint Silicone

Ligament Artificial ligament Polyester, PTFE
Bone Artificial bone Hydroxyapatite

Bone cement PMMA
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The crystals in both the CNT and graphite control groups were 
shown to be hydroxyapatite (HA) based on the corresponding peaks 
(Figure 5).

SEM observations indicated that ball-shaped crystals formed over 
the CNT surfaces after 6 h, the coralline form was observed after 2 
days, and crystal growth was seen after 2 weeks. On the other hand, 
the graphite group showed separation of cotton ball-like crystals after 
6 h. The growth rate was much lower in the graphite group than in the 
CNT group (Figure 6).

Extensive HA crystallization was observed using CNTs as the nuclei 
in PBS (+) solution. As bone formation occurs through calcification 
of HA deposits on the bone matrix consisting of collagen secreted by 
osteoblasts, these results indicated that HA crystallization occurred 
around CNTs as nuclei and enhanced bone formation in PBS (+) 
solution.

These results indicated that CNTs have good bone tissue 
compatibility and do not inhibit bone healing. CNTs were included in 
the bone matrix of newly formed bone. Furthermore, CNTs promoted 
and enhanced bone formation, as HA crystallization was promoted by 
CNTs as nuclei. These results indicated that CNTs have advantages for 
use as biomaterials that come into contact with the bone matrix and 
therefore may be effective as scaffolds in regenerative medicine.

Conclusions 
Medical applications of CNTs were discussed based on their 

influence on bone tissues. CNTs are currently under investigation 
for application as DDS, biosensors, and other uses based on their 
unique characteristics, and are anticipated to be advantageous in 
medical applications. CNTs show good biocompatibility with tissues, 
particularly bone tissues, and therefore CNTs have been applied in new 
medical composites and scaffolds for regenerative medicine. The most 
important consideration for medical application is safety. The results 
of several evaluations have been reported, but there is still insufficient 
qualitative and quantitative information regarding their safety [64-
71]. Very recently, we reported that carbon nanotubes for use as 
biomaterials have basic safety properties comparable to an optimal 
nano-sized reference material [72]. 

As CNTs have great potential for use in medical technology, 
further studies to determine their safety and most suitable applications 
are urgently required.
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