
Volume 5(3): 061-064 (2013) - 061 
J Bioanal Biomed    
ISSN:1948-593X JBABM, an open access journal

Open Access

Hashemian and Mansoori, J Bioanal Biomed 2013, 5:3 
DOI: 10.4172/1948-593X.1000080

Short Communication Open Access

Introduction
According to the US National Cancer Institute [1] “Nanotechnology 

will change the very foundations of cancer diagnosis, treatment, and 
prevention…. To help meet the goal of eliminating death and suffering 
from cancer by 2015, the NCI is engaged in efforts to harness the power 
of nanotechnology to radically change the way we diagnose, image, 
and treat cancer”.  We have already seen how nanotechnology, an 
extremely wide and versatile field, can affect many of its composing 
disciplines in amazingly innovative and unpredictable ways [2]. In 
fact, nanotechnology and the ideas and methods that it encompasses 
can be applied to almost any problem that leading researchers face 
today. Even the most seemingly impossible problems like cancer [3] 
and Alzheimer’s disease [4,5] become only obstacles in the path to 
solutions, if we take an imaginative approach. 

The development of specialized nanoparticles for use in the 
detection and treatment of cancer is increasing. Methods are being 
proposed and tested that could target treatments more directly to 
cancer cells, which could lead to higher efficacy and reduced toxicity, 
possibly even eliminating the adverse effects of damage to the immune 
system and the loss of quickly replicating cells [3,6,7]. In this short 
report we focus on recent studies that employ folatenanoconjugates to 
target the folate-receptor. Folate-receptors are highly overexpressed on 
the surface of many tumor cell types. This expression can be exploited 
to target both imaging molecules and therapeutic compounds directly 
to cancerous tissues. We specifically report the details of advances 
made in attachment of gold nanoparticles to folic acid and it’s its in 
vitro internalization into cancerous cells [7-13].

Folate and Folate-Receptor
The folate-receptor, a glycosylphosphatidylinositol anchored cell 

surface receptor, is overexpressed on the vast majority of cancer tissues, 
while its expression is limited in healthy tissues and organs. Folate-
receptors are highly expressed in epithelial, ovarian, cervical, breast, 
lung, kidney, colorectal, and brain tumors. When expressed in normal 
tissue, folate-receptors are restricted to the lungs, kidneys, placenta, 
and choroid plexus. In these tissues, the receptors are limited to the 
apical surface of polarized epithelia [14-17].

Folate, the folic acid (Figure 1) salt, also known as pteroylglutamate, 
is a non-immunogenic water-soluble B vitamin that is critical to DNA 
synthesis, methylation, and repair. 

Folic acid is small (441 Da), stable over a broad range of 
temperatures and pH values, inexpensive, and non-immunogenic, and 
it retains its ability to bind to the folate-receptor after conjugation with 
drugs or diagnostic markers [18]. After folate attaches to the receptors 
located within caveolae, it is internalized through the endocytic 
pathway (Figure 2). As the pH of the endosome approaches five, the 
folate dissociates from the receptor and the drug is released.

Folate conjugates for cancer detection and treatment 

The folic acid/folate-receptor interaction can be targeted for 
imaging cancer cells by the attachment of imaging probe molecules to 
folate.  Folic acid conjugated functionalized carbon nanotubes, gold 
nanoparticles (AuNPs), magnetic nanoparticles, liposomes loaded 
with quantum-dots, and photon emission tomography (SPECT and 
PET) tracers are studied for use as imaging probes in various imaging 
methods [18-25]. Gold nanorods strongly absorb and scatter light in 
the visible and NIR region, and have been tested as novel MRI contrast 
agents [24,26-29]. 
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Figure 1: The molecular structure of folic acid [8,9,12].

Figure 2: Attachment of nanoconjugate of gold nanoparticle with folate 
(AuNP-Linker-Folate) to cell’s folate-receptor and its internalization through 
the endocytic pathway [13].
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In a 2004 study the efficacy of nanoscale-sized folate-receptor-
targeted doxorubicin aggregates were tested for the treatment of 
cancer [15]. Doxorubicin-polyethylene glycol-folate (DOX-PEG-
FOL) conjugate micelles produced were 200 nm in average diameter. 
The polymeric micelles exhibited enhanced and selective targeting 
to folate-receptor-positive cancer cells in vitro. More DOX-PEG-
FOL nanoaggregates accumulated in folate-receptor-positive human 
epidermal carcinoma KB cells than in folate-receptor-negative 
A549 cells. When including unconjugated folate along with the 
nanoaggregates, the folate competitively inhibited binding of the DOX-
PEG-FOL nanoaggregrates to the folate-receptor-positive cells. During 
in vivo animal experiments, the nanoaggregates caused significant 
tumor suppression. In human tumor xenograft nude mice, DOX-PEG-
FOL nanoaggregates had a superior antitumor effect compared to 
other doxorubicin aggregates and free doxorubicin. In the mice treated 
with DOX-PEG-FOL nanoaggregrates, tumor volumes decreased by 
approximately 40% more than in mice treated with free doxorubicin. 
The enhanced antitumor effect of the nanoaggregrates was attributed 
to passive targeting through leaky vasculature in addition to active 
targeting of the nanoaggregates to folate-receptors. Furthermore, the 
DOX-PEG-FOL nanoaggregates exhibited a sustained release effect 
because of prolonged circulation time in the bloodstream. Overall, 
the aggregates exhibited enhanced cellular uptake, increased targeting 
capacity, and increased cytotoxicity of folate-receptor-positive cells.

In a 2005 study targeting of folate-linked methotrexate dendrimers 
was tested in immunodeficientathymic nude female mice and Fox 
Chase severe combined immunodeficient female mice [14]. Mice were 
first injected with KB folate-receptor-positive human cell lines. Tumors 
were allowed to grow for 2 weeks and reached a volume of 0.9 cm3. 
Then the mice were injected with the nanoconjugates twice a week via 
a lateral tail vein. Folic acid conjugates were delivered at an equimolar 
concentration with methotrexate, based on the number of methotrexate 
molecules present in each type of nanoparticle.  The results from the 
study showed that conjugated methotrexate in dendrimers significantly 
lowered toxicity and resulted in a 10-fold higher efficacy compared to 
free methotrexate at an equal cumulative dose. Because of the ability 
to deliver a higher dose of methotrexate as the conjugate compared 
to the free drug, mice survived longer. However, the optimal dose of 
the targeted drug was not definitively established because no toxic dose 
of the drug conjugate could be determined from either gross clinical 
evaluation or histopathology.

Brandenburg et al. [30] compared the original design of 
a cancer nanotechnology process involving folate-conjugated 
nanoparticles in 2005 and they reported their design results in early 
2006. Simultaneously, Mansoori developed a biosynthesis method 
for industrial-scale production of metallic nanoparticles [31]. As a 
result of these two initial findings we undertook a comprehensive in 
vitro project on cancer nanotechnology treatment designing various 
folate-conjugated gold-nanoparticles [8,9,12] as shown in Figure 3. 
Meanwhile two related papers by other groups [32,33] have reported of 
other folate-AuNPnanoconjugates.  

In a recent publication Mansoori et al. [13] made a detailed 
comparison of the efficacy of two folates conjugated gold nanoparticles 
which were designed for cancer treatment. Our group actively targeted 
a gold nanosphere for use in the heat ablation of folate-receptor-
positive cancer cells [8,9,12]. A combination of gold nanoparticles and 
an intense pulsed light, along with an incubation time, resulted in the 
significant death of cells with a high level of folate-receptor expression 

and no significant cell death in cells with a low level of folate-receptor 
expression. The two conjugates which were designed during our studies 
included folate-4-aminothiophenol-gold nanoparticles (FOL4Atp-
AuNP) and folate-6-mercapto-1-hexanol-gold nanoparticles (FOL-
MH-AuNP). Both conjugates have an absorption peak at a wavelength 
of ~560 nm. Twenty pulses (3 ms) of intense pulsed light, with a 
wavelength of 560 nm, were used to heat the gold nanoparticles that 
were taken up by the cells that expressed a high level of folate-receptors. 
During testing we found that using up to 20 pulses of intense pulsed 
light had no harmful effects, and that nanoconjugate concentrations 
used in the study showed no toxicity. Treatments were evaluated at 
multiple time durations after heating. Results from the study indicated 
that a longer treatment time is favorable over increased concentrations 
of the nanoconjugate. The highest level of cell death was observed 
after 4 hours of incubation and 5 mg/mL of either nano-conjugate. 
The FOL-4ATP-AuNP was slightly more effective than the FOL-MH-
AuNP at lower concentrations. Our in vitro experimental results show 
that a combination of gold nanoparticles and 20 pulses of intense 
ultraviolet (UV) light resulted in approximately 98% lethality of the 
cells expressing high level of folate-receptors and only approximately 
9% lethality of cells expressing a low level of folate-receptors. For in 
vivo applications, IR and/or NIR lights might be more effective than 
UV light as they penetrate deeper into tissues. Replacing the gold 
nanosphere moiety with nanoshells and nanorods, which absorb light 
more efficiently near IR wavelengths, could also be used for in vivo 
testing in the future. In addition, fiber optics might serve as an in vivo 
method for the deeper penetration of the light into the tissue. 

Recently several groups have used mesoporous particles as targeted 
delivery agents [34,35]. In 2010, researchers found that mesoporous 
particles are well tolerated by mice, with a maximum dose of 100 mg/
kg [34]. In a 2012 study, the cytotoxicity of folate targeted mesoporous 
silicon doxorubicin drug conjugates was tested [36]. It was found 
that the mesoporous drug conjugates exhibited a substantially higher 
toxicity for tumor cells compared to free doxorubicin [36]. Using 
folate as a targeting agent was clearly shown to enhance the toxicity of 
functionalized mesoporous silicon drug conjugates [36]. The ability of 
CNTs to be easily functionalized makes them a promising candidate 
for cancer treatment. However, there are two major barriers to their 
use as cancer therapeutics. These include non-specificity and low 
potency [36]. In 2010, Li et al. tested folate and iron difunctionalized 
MWCNTs for the delivery of doxorubicin into HeLa cells. The 
efficiencies of the drug conjugates were tested on HeLa cells in 96-well 
assays [37]. The MWCNTs were shown to have sufficient load capacity 
and controlled release by near IT radiation [37]. Results from this study 
demonstrated a six-fold increase in doxorubicin delivery compared to 
free doxorubicin alone [37].

More recently, in 2012, publications have appeared in the 
literature using folate-receptor-directed dendrimers for the delivery of 
methotrexate to cancerous cells [38-40]. One study cited a 4,300-fold 
higher affinity for folate-receptor-mediated methotrexate dendrimers 

Figure 3: Schematics of nanoconjugate of gold nanoparticle with folate 
(AuNP-Linker-Folate) [8,9,12].



Citation: Hashemian AR, Mansoori GA (2013) Cancer Nanodiagnostics and Nanotherapeutics through the Folate-Conjugated Nanoparticles. J 
Bioanal Biomed 5: 061-064. doi:10.4172/1948-593X.1000080

Volume 5(3): 061-064 (2013) - 063 
J Bioanal Biomed    
ISSN:1948-593X JBABM, an open access journal

than free drug alone [39]. Dendrimers were used to deliver siRNA in 
order to improve its specificity and transfer activity [40]. Results from 
the study indicated no inflammatory or interferon response, common 
non-specific effects of siRNA, suggesting future use as a potential cell-
selective delivery method.

Conclusions 
Overall, folate-conjugated nanoparticles have great potential for 

cancer detection and treatment. Methods are being proposed and 
tested that could make diagnosis and treatment of cancer non-invasive, 
targeting tumors directly through their overexpressed folate-receptors. 
Folate-receptors are highly overexpressed on the surface of many 
tumor cell types. This expression can be exploited to target therapeutic 
compounds directly to cancerous tissues using many avenues. While 
these studies prove to be promising, the use of folate directed cancer 
treatments in human subjects still needs further development and 
testing. Nevertheless, the successful use of folate conjugates indicates 
that receptor targeted nanoparticle treatments are a likely candidate 
for managing cancer.
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