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Introduction
The phenomenon of the spontaneous regression of cancer has 

been observed for a long time. From the outset, it has given rise to a 
lot of controversy, but now it is accepted as an indisputable fact [1,2]. 
The definition of spontaneous regression is “the partial or complete 
disappearance of a malignant tumor in the absence of treatment or in 
the presence of therapy inadequate to affect a significant influence on 
the disease” [3]. 

Recently, it has become clear that the phenomenon of spontaneous 
regression is much more frequent that has been estimated, mainly 
because of the development of more efficient diagnostic techniques 
[4-8]. It seems that cases “in the absence of treatment” are rare and 
probably connected with epigenetic changes that are the effect of diet. 
Such types of influence are observed for a caloric restriction diet and/
or a ketogenic diet [9]. Cases “in the presence of therapy inadequate 
to affect a significant influence on the disease” have been known for 
a long time and include nonspecific immune system stimulation with 
bacterial vaccination [4]. The vaccine was discovered by Coley and 
is named Coley’s toxin after him [4,10]. It is a mixture of heat-killed 
Streptococcus pyogenes and Serratia marcescens. However, initially, 
many different strains of bacteria were used and a good therapeutic 
effect was observed with the infection of tumor patients with diphtheria, 
gonorrhea, hepatitis, influenza, malaria, measles, smallpox, syphilis 
and tuberculosis [4-8]. One interesting observation is evident: efficacy 
is correlated with the degree of fever induced by the toxins/bacteria.

Patients treated with Coley’s toxin that develops a fever between 
38-40°C respond three times better than patients with a lower body
temperature [4]. Clearly, the energy crisis of the whole system (due
to the fever) has a beneficial effect on the spontaneous remission of
cancer tissue. The mechanism of tumor directed stimulation of the
immune system is not clear and many hypotheses have been presented, 
generally focused on the stimulation of cytokine synthesis. Recently,
a Phase I trial was initiated with a new and improved biochemically-
defined vaccine, synthesized according to good manufacturing practice 
and highly promising results have been presented [3]. In this report
we would like to compare these data with known literature data
concerning carcinogenesis and tumor growth in the attempt to explain 

the remaining puzzling facts. This should indicate a new approach 
leading to better anticancer therapies.

A New Look at Carcinogenesis
It has become clear that cancer cells suffer from a constant 

shortage of energy supply. Extensive production of reactive oxygen 
species (ROS) and the required higher antioxidative shield (mainly 
high concentrations of glutathione) as well as intense proliferation 
need a large amount of fuel to satisfy cancer cell requirements. At 
the same time, dysfunction of the mitochondria observed in most, 
if not all cancer cells [9] limits the amount of ATP synthesized by 
oxidative phosphorylation (OXPHOS), and induces a few alternative 
routes for ATP synthesis. These include glycolysis, glutaminolysis and 
fermentation of other amino acids. Different types of tumor cells use 
these alternatives to different degrees (because of differences in tumor 
cells and their environment), as reported in recent papers [10,11]. Any 
inhibition in even one of these pathways (eg. by calorie restriction, 
ketogenic diet or partial inhibition of respiratory chains) will result in 
cancer cell death due energy crisis (apoptosis) [12].

It is a common view that overproduction of ROS is the main cause of 
carcinogenesis. During the normal process of mitochondrial oxidative 
phosphorylation, a leakage of ROS, mainly superoxide anions, takes 
place and it has been estimated that about 0.1-2.0% of total oxygen 
consumption is transferred to superoxide anions. Under normal 
conditions, an antioxidative shield of cells is able to scavenge these by 
the action of enzymes such as superoxide dismutases (SOD), catalases, 
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Abstract
The spontaneous regression of cancer is still a mysterious phenomenon but an understanding of it, at least 

partially, could lead to new and better cancer treatment. On the basis of new data concerning cancer energy 
biochemistry, the authors here present a hypothesis to understand and explain the phenomenon of the spontaneous 
regression of cancer, together with its implications for new approaches to cancer treatment. Such treatment involves 
the manipulation of the energy metabolism and/or redox status of cancer cells.
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lactoperoxidases, glutathione peroxides, peroxiredoxin and small 
molecule antioxidants, such as ascorbic acid (vitamin C), tocopherol 
(vitamins E), uric acid and glutathione. However, the problem becomes 
seriously dangerous if the shield is broken or when the antioxidant 
activity of a system is not sufficient to manage to scavenge all the ROS 
efficiently. In this way, chronic inflammation, aromatic hydrocarbon or 
viruses induce overproduction of ROS, thus initiating carcinogenesis. 
To this list, we would like to add hyperglycemia, a more common 
and physiologically even more relevant and frequently occurring 
phenomenon. For example, for an obese patient with diabetes, 
hyperglycemia is common, and both of these diseases are a risk factor 
for cancer [13]. Physical activity is associated with a preventative effect 
on cancer, indicating that burning excess energy is here an important 
factor [14]. Similarly, research on calorie restriction provides evidence 
that it has a carcinogenesis suppressing activity [15].

Fuel energy overload of the cells has deleterious effects, especially 
on the mitochondria. Without the synthesis of ATP, the mitochondrial 
membrane potential becomes extremely negative and the only way to 
avoid that is the reduction of oxygen to produce oxygen superoxide 
anions [16,17]. The list below illustrates the events which could follow 
an initial rise in ROS production by the mitochondria:

1. Hyperglycemia
2. Increase in ROS synthesis (also by viruses and carcinogens, e.g. 

aromatic hydrocarbons, heavy metal cations, etc)
3. Inhibition of Krebs cycle by ROS induced inhibition of 

aconitase
4. Activation of NF-kappaB
5. Induction of the expression uncoupling protein-2
6. Decrease in mitochondrial membrane potential resulting in 

suppression of OXPHOS
7. Induction of glycolysis
8. Induction of tumor cell surface NADH oxidases

Hyperglycemia

The negative associations between hyperglycemia and survival in 
cancer patients are well documented [18]. Hyperglycemic conditions 
induce dynamic change in mitochondrial morphology initiating the 
process of fission. Fission is necessary to increase ROS overproduction 
[19]. Even a transient high glucose concentration causes persistent 
epigenetic changes and altered gene expression during subsequent 
normoglycemia [20]. Finally, a Swedish prospective study documented 
the association between hyperglycemia and cancer risk. The study 
included 33,230 women and 31,304 men and the association was 
independent of obesity [21]. Similarly, hyperinsulinaemia, the sign of 
hyperglycemia, was found to be a risk factor for lethal clinical prostate 
cancer [22]. A high glucose concentration also has a deleterious effect 
on DNA and increase mutagenesis, probably in most human cells [23].

Increase in ROS synthesis

Cancer tissues are well known to produce increased amounts of 
ROS [24,25]. Hydrogen peroxide and iron Fe+2 (substrate for the 
Fenton reaction) are required for the increased mutation of nuclear 
and mitochondrial DNA. Under such conditions (easy unlimited 
mutation), cancer cells are able to adopt changes in the gene expression 
required for survival especially from the energy sources point of view. 
If the patient already carries the mutation in oncogenes, the process 
of carcinogenesis is substantially accelerated. Szatrowski [26] has 
estimated that cancer cells produce hydrogen peroxide in amounts 

from 0.13 to 0.3 nmol/105 cells/h. Similarly, the level of H2O2 could be 
measured by estimation of the amount 8-hydroxy-2’deoxyguanosine 
[27]. Over a longer time interval, the level of hydrogen peroxide 
could reach a much higher value. The cancer tissue will be sunk in the 
oxidative environment full of the ROS that accelerated the mutation in 
the cell DNA. 

Inhibition of Krebs cycle by ROS induced inhibition of 
aconitase

Mitochondrial aconitase is one of the enzymes from Krebs cycle 
which contain a [4Fe-4S]2+ cluster in its active site that catalyse 
dehydratation-rehydratation of citrate to isocitrate. The enzyme is 
oxidased by superoxide with the rate constants k=107 M-1s-1 with the 
formation of hydrogen peroxide and iron II [28]. Both products in the 
Fenton reaction could form a hydroxyl radical (.OH) and accelerate 
the mutation of mitochondrial DNA (mDNA) [29,30]. It needs to be 
established if that really happens in vivo. However, any decrease in the 
antioxidative shield of mitochondrium makes that process more likely 
to occur. Inactivated aconitase could be regenerated by the intracellular 
reducing agent and thus the Krebs cycle could be only temporally 
inhibited. Inhibition of aconitase will lead to an accumulation of 
substrates of the Krebs cycle, such as fumarate, citrate, oxoacetate and 
succinate causing an inhibition of HIF-alpha (hypoxia inducible factor) 
prolyl hydroxylase leading to HIF-alpha stabilization under normoxia 
and which promotes glycolysis [31,32].

Activation of NF-kappaB

Nuclear factor NF-kappaB is redox sensitive, activated by the ROS 
transcription factor present in the active form in almost all cancer 
cells [33]. NF-kappaB plays a pivotal role in the control of a large 
number of processes, such as immune and inflammatory responses, 
developmental processes, cellular growth and apoptosis. In addition, 
it is also responsible for the activation of HIF-alpha genes under 
normoxia [34,35].

Induction of expression uncoupling protein-2

As part of the defense response against elevated ROS, the cells induce 
expression of uncoupling protein-2. There is a link between uncoupling 
and the carcinogenic process, as has recently been reviewed [36]. The 
first member of the uncoupling protein family (UCP1) was discovered 
in brown adipose tissue [37], where it is responsible for uncoupling 
respiration from ATP synthesis and inducing heat generation. Today, 
four more UCP homologs have been identified in humans. UCP2 is 
the most ubiquitous and is frequently cancer-associated [36]. The 
loss of UCP2 or UCP3 in knockouts yielded an increase in ROS 
production [38]. However, overexpression increases lifespan in mice 
mediated by the decreased ROS production and oxidative stress [39]. 
In general, the part of energy synthesized by the cancer cells came 
from oxidative phosphorylation OXPHOS. This could be inhibited by 
the UCP protein and, instead of ATP, heat will be generated. Tumor 
tissues are known to have higher temperatures than normal tissue [40] 
and very likely UCP-2 is responsible for this. This topic is still under 
intense investigation [41]. Any additional uncoupling of mitochondrial 
membrane potential should put cancer cells in serious energy crisis and 
induce apoptosis or authopagy [42]. The role of uncoupling proteins in 
cancer cell mitochondria is still under investigation. a recent paper has 
suggested that UCP2 expression is necessary for the efficient oxidation 
of glutamine and may promote the metabolic shift from glucose 
oxidation to fatty acid oxidation [43]. 
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Induction of glycolysis

In response to the hypoxia, cells express several proteins to survive 
and these include proteins responsible for angiogenesis, apoptosis, pH 
regulation, proteolysis, glucose metabolism, cell proliferation/survival 
and erythropoiesis. Expression of these proteins is under the control 
of Hypoxia Inducible Factor-alpha (HIF-alpha) and genes are called 
Hypoxia Response Elements (HRE targeted genes). However, under 
normoxia all these genes can also be activated, resulting in an induction 
of glycolysis by the activation of NF-kappaB [33-35] or a high glucose 
concentration (Carbtree Effect) [16,17].

Induction of tumor cell surface NADH oxidases (NOX)

All cancer cells express surface-bound NADH oxidase. The protein 
is present in patient sera due to shedding from cancer cell surfaces [44]. 
NADH oxidase associated with the neoplastic cells is immunologically 
and biologically different from NADH oxides associated with normal 
phagocytic cells; therefore, it has been patented as a general marker 
for cancer diseases [45]. The enzymes transferred electrons from 
NADH to oxygen to produce the superoxide anion. Superoxide anions 
enzymatically or spontaneously undergo transformation to hydrogen 
peroxide. It seems that the enzyme is a source of H2O2 in cancer tissue, 
as reported earlier [26,27]. This is caused by the extensive glycolysis 
that produces a large amount of NADH and that needs to be oxidized to 
keep glycolysis running (the Warburg effect). Traditionally, in normal 
cells, the oxidation of excess of NADH (usually, the NAD+/NADH 
ratio is around 700) is effected by the lactate dehydrogenase [46,47]. 
The additional part, of cytosolic NADH is oxidized inside mitochondria 
where it is transported by the use of redox shuttles including the alpha-
glycerol-3-phosphate shuttle and the maleate/aspartate NADH redox 
shuttle. When the mitochondria are dysfunctional or uncoupled [47], 
this part of the NADH is not oxidized and leads to a decrease in the 
NAD+/NADH ratio; therefore, the NOX protein is expressed and the 
remaining NADH is oxidized (the Warburg effect). It seems this last 
step is an irreversible step for the carcinogenesis. The NAD+/NADH 
ratio controls the activity of sirtuins, NAD+ dependent deacetylases 
that control the expression of many proteins (e.g. histones) [48]. NAD+ 
is a cofactor for these enzymes, but NADH inhibits the binding of 
NAD+ to the enzyme active site, and in such cases the sirtuins are under 
much stronger control of the NAD+/NADH ratio [49]. Sirtuins control 
several protein acetylation statuses, including the proteins involved in 
fatty acid metabolism, ketogenesis, antioxidant enzymes and the PGC-
alpha cofactor that regulates mitochondrial biogenesis and functions 
[46].

Usually not recognized, but the changes in the redox status of the 
cell are the main information network in the organism. Schafer and 
Buettner measured half-cell reduction potential, Ehc of the GSSG/2GSH 
(GSH reduced glutathione) couple, which appeared to correlate 
with the biological status of the cell [50]. The value of Ehc=-240 mV 
corresponds to proliferation, Ehc=-200 mV to differentiation and Ehc=-
170 mV to apoptosis. It needs to be established which value corresponds 
to autophagy. Recent papers [51-53] have indicated that regulation 
between autophagy and apoptosis is extremely complex. The process 
is considered a “doubled-edged sword” because autophagy could allow 
the tumor cells to survive bioenergetics stress. It seems that the choice 
between autophagy and apoptosis is under the control of redox status 
[51]. Several redox-sensitive proteins such as cysteine protease Atg4 
(oxidation of this block autophagy) [52] and high-mobility group box 1 
protein (HMGB1) [51] (reduced protein promote autophagy) are here 

some of the examples. Again, the level of ROS production at this point 
is a key factor [53], but the value of Ehc characteristic for autophagy 
needs to be measure. This value probably lies between the half redox 
potential of these two proteins.

To date, our effort in anticancer drug design has focused on an 
increase in oxidative stress to induce apoptosis or, in other words, 
brings the Ehc to -170 mV. Most anticancer drugs are strong inducers 
of ROS. However, an identical effect, at least theoretically, could be 
achieved by the limitations of reductive fuel in amounts to decrease the 
quantity of the antioxidant shield (e.g. reduced glutathione) to increase 
oxidative stress, for example, by limiting the supply of carbohydrates, 
which are the main sources of reductive power (coming from NADPH 
formed in the glucose phosphate pentose pathway).

The first experiments concerning caloric restriction or ketogenic 
diet seem to support such an alternative approach [9]. Simultaneously, 
cancer cells have a high energy requirement due their high proliferation 
rate and very high reductive shield. For example, human ovarian 
cells lines showed a 15-50 fold increased level of glutathione (GSH) 
compared with the drug-sensitive cells of origin [54]. The higher level 
of GSH in cancer cells seems to be a general feature of tumor tissue 
[54,55]. When glucose is the main supplier of the “reductive power” for 
the cells, its limited supply through the diet should have a deleterious 
effect on cancer cell energy metabolism and their redox status. In his 
excellent books, Seyfried [9] has summarized the data concerning the 
use of a calorie restricted diet, a ketogenic diet or a calorie restricted 
ketogenic diet (a diet without carbohydrate or very low carbohydrate 
contents) as anticancer treatment. However, we are still waiting for the 
conclusive data from clinical trials. A tumor bearing patient could just 
accidentally implement the calorie restricted or the ketogenic diet and 
observe a surprising effect - spontaneous regression of the tumor. This 
needs to be investigated. However, Nikan, who analyzes more than 
one thousand reports of spontaneous remission of cancer, concludes 
that the regression processes are accompanied by hypoglycemia and 
hypoxia [56]. It is obvious that hypoxia should be a consequence 
of hypoglycemia because the low glucose levels should impair the 
erythrocyte activity. 

However, the practical use of a ketogenic diet is problematic with 
respect to processes lowering the glucose level. In our experiments 
in mice with the use of such diet, we were never able to bring the 
glucose level below 70 mg/dl. This is due to the action of glucagons, 
the hormones which at low glucose concentrations start to induce liver 
gluconeogenesis just to prevent hypoglycemia (this is considered to 
occur when the glucose level is below 60 mg/dl, however it could be 
lower and it is individual for each person). Moreover, the ketogenic 
diet itself induces gluconeogenesis [57]. It seems impossible to induce 
deep hypoglycemia just by the use of a ketogenic diet or even a calorie 
restricted ketogenic diet. In fact, in addition to glucagons, many 
endogenous factors are able to induce gluconeogenesis and these 
include: fat, growth hormones, exogenous nucleotides, somatostatin, 
noradrenalin, fructose, and epidermal growth factors [58]. Currently, 
we do not have any idea as to how deep hypoglycemia needs to be 
to trigger spontaneous remission. This needs to be investigated if 
it is possible at all. It is worth mentioning that if gluconeogenesis 
could be incited by so many factors it is easy to imagine that, locally, 
hyperglycemia could occur quite frequently, leading to carcinogenesis.

For these reasons, we proposed a new cancer treatment involving 
the use of a ketogenic diet together with safe and the well-investigated 
anti-diabetic drug metformin [59]. Our first experiments with 
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Balb/c bearing 4T1 (mouse mammary gland tumor) indicated that 
simultaneous treatment using metformin (1 mg/mouse daily i.p.) and a 
calorically restricted ketogenic diet (administered at a dosage necessary 
to meet mice caloric expectations) decreases blood glucose levels to 
45 mg/dl (in contrast to 124 mg/dl and 75 mg/dl in a control group 
receiving standard fodder with no restrictions, and a group receiving 
calorically restricted diet, respectively) which was associated with a 
50% tumor growth inhibition (TGI) in comparison to the control (38% 
TGI) in the case of the group treated with the calorically restricted 
ketogenic diet. Preliminary data suggest that it could be an effective 
cancer treatment, but it appears that the treatment schedule needs 
to be improved and studies need to run on a larger scale facilitating 
different cancer models (including xenografts) [Psurski M., Wietrzyk 
J., Oleksyszyn J., unpublished results]. 

However, the recent investigation of the mechanism of action of 
metformin led to the discovery that a mild and transitory inhibition 
of mitochondrial respiratory-chain complex 1 did occur. This led 
indirectly to the activation of AMP-activated protein kinase (AMPK) 
and a shut-down of gluconeogenesis. However, the degradation of 
fatty acids in oxidative phosphorylation of mitochondria will also be 
suppressed, forming an additional element of the energy synthesis 
crisis in cancer cells [60]. That effect is probably responsible (together 
with hypoglycemia) for the anticancer effect of the drug. Therefore, 
metformin seems to be an ideal candidate to combine its activity with 
the calorie restricted diet, ketogenic diet or even better with the calorie 
restricted ketogenic diet. 

Spontaneous Remission of Cancer Initiated by 
Immunomodulation via Bacterial Product Vaccinations

Most cases of spontaneous remission concern the regression 
associated with immunostimulation by bacterial product vaccinations 
(Doley’s vaccines) [1-9]. Rapid tumor regression following infection 
sometimes occurs within hours, suggesting that innate immune 
response (but not adaptive immune response) is a primary mediator 
[61]. Provocation of the immune response to induce the spontaneous 
remission of tumor tissue is the object of intense investigation [1-
9,61,62].

The mechanism of the immune suppression by the tumor tissue 
is not clear; however, in 2007 Fisher et al. provided a convincing 
explanation [63]. The activated T-cells use glycolysis to produce energy 
after activation. To assure the continuation of glycolysis, the lactic 
acid molecules, the final product of anaerobic glycolysis, have to be 
exported by the proton-linked monocarboxylate transporters. Lactate 
anions are cotransported with the protons following a concentration 
gradient. Because tumor tissue has a substantially increased lactic acid 
concentration and lower pH, the transporter is inhibited, leading to 
suppression of the activation of T-cell and immunosuppression in 
general. For example, it has been found that human-derived dendritic 
cells, antigen presenting cells, are also inhibited [64]. In such a scenario, 
the T-cells approaching the tumor tissue reach low glucose and high 
lactic acid concentrations and a low pH environment promoting 
the stabilization of T-cells in a non-active state. Vaccinations with 
bacterial products lead to deep hypoglycemia [65-69]. The glucose 
will be depleted, after a while also causing a decrease in tumor tissue 
lactic acid concentration. The organism will take care of hypoglycemia 
and glucose concentrations slowly start to increase. Lactic acid 
concentrations will still be low (because of the recent hypoglycemia) 
and under such conditions of rising glucose concentrations the T-cell 

could be activated. Thus, the activation of the immune system could 
only happen at a certain ratio between the concentration of glucose and 
tumor driven-lactic acid, after event of hypoglycemia, when an organism 
is increasing the glucose level. It is possible that we will never be able 
to achieve such a “therapeutic window” in vivo, because the system is 
too dynamic. However, we could relatively easily induce the required 
changes in glucose concentrations approaching the “therapeutic 
window”. For example, the vaccination with Coley’s vaccine required 
vaccination at least once per week over at least six months to achieve 
a positive effect [3]. According to the above theoretical considerations, 
such treatment and experimental data should induce “spontaneous 
regressions”. However, we do not need to use bacterial vaccinations 
that are always considered to be at least controversial. We can reach 
“therapeutic windows” by manipulation of the glucose status in an 
organism. For example, six days on the calorie restricted Ketogenic 
diet with metformin, as suggested before [59], should help us to 
replenish glycogen and to lower glucose levels to the amount where the 
amount of lactic acid produced by the tumor tissue should be as low as 
possible. It is necessary, during bacterial product vaccination, that the 
fever replenishes glucose/ATP as heat. After one week, the normal diet 
(normoglycemia) should be introduced to rapidly increase the glucose 
levels needed for the activation of the T-cells. The procedure needs 
to be repeated several times until a positive effect is observed. Many 
reported cases of spontaneous remission, those without vaccination 
with the bacterial product, could happen accidentally according to this 
scenario. These hypotheses need to be verified in clinical trials. 

Conclusion
In conclusion, we propose a general method for cancer treatment, 

involving the use of cancer energy metabolism and the activation 
of the immune system by the simple modulation of blood glucose 
concentrations.
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