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Over the last fifteen years a quiet revolution in physics occurred. 
This was the result of an effort to build quantum computers; and while 
that effort itself was in no way “quiet” (even against the background of 
the LHC, Higgs boson and string theory), its most significant outcome 
to date is not something well publicized. All the same, the result is 
revolutionary indeed. As it turns out, one actually can create quite 
macroscopic systems which display essentially quantum behaviour-and 
there seems to be no fundamental barrier on our ability to make such 
systems bigger and bigger. The real impact of this revolution will be 
not so much on science (after all, we just keep obtaining results, which 
agree with normal quantum mechanics) or technology (we already have 
got more than enough Great Seals of England to crack nuts with), as on 
philosophy. Many questions about “reality”, “objectivity”, “existence”, 
etc., imposed on us by quantum mechanics, could remain until now 
the speculations of a small community, while the rest of physicists 
happily shut-up and calculated. Now, it seems, these questions must 
be confronted, and with the clear understanding that the common 
language of physicists may be inadequate to deal with them. 

This is not something new: it was the inadequacy of natural 
language that spurred the development and application of mathematics 
to exact sciences. The basic theories are conveniently formulated 
in this elaborate and formal way, in a language far removed from 
our intuition and experiences. Their confirmation or refutation, 
their interdependence and compatibility, in most cases can only be 
checked by investigating some observable predictions that are linked 
to theoretical foundations by long chains of mathematical reasoning. 
These chains-at least, in the case of physics – normally contain many 
explicit and implicit assumptions and approximations, which fall 
far short of mathematical rigour – to say nothing on the question 
of “what is mathematical rigour?” Even so, the verification and the 
usefulness of fundamental theories become critically dependent on our 
ability to follow these chains – to perform computations, thus giving 
computations an independent epistemological status. Here, we present 
a sketch of arising problems, as seen by a physicist and a mathematician 
from their different vantage points. We do not presume to propose any 
solutions-yet.

When Not Seeing is Believing
In Stanisław Lem’s novel “Solaris” [1]1, the protagonist, Dr Kelvin, 

finds himself on an almost abandoned space station, in the midst of 
bizarre and sinister events. The events are actually so bizarre, that 
he starts questioning his own sanity, and so sinister, that he would 
consider insanity a happy alternative. Dr. Kelvin is a scientist; therefore, 
after formulating an ad hoc hypothesis (his own insanity), which would 
explain his observations, he needs to conduct an experiment to test 
it. He knows that delusions, produced by our own brain, can seem 
extremely realistic and independent of our conscious self. He could 
take certain drugs and compare their effects with what he knows they 
should be–but how can he be sure the effect he anticipates is not also 

a delusion? Eventually, he takes a different course of action. Kelvin 
orders a satellite orbiting the planet to report its position in 22-second 
intervals. He then prints out the data without looking at them, locks the 
printout in a drawer, and calculates the same data from the scratch, 
using the space station’s main computer. “If even the figures, provided 
by the satellite, are not real but the product of my deluded mind, they 
still cannot agree with the other set of calculated data.” – reasons Kelvin. 
“My brain may be sick, but it could not – under any circumstances – 
perform the calculations done by the station’s big computer... Therefore 
– if the figures will agree – then the station’s big computer really exists, 
and I used it in reality, and not in delirium.” When the calculations
are finished, he sees that they agree with the data from the printout
to four significant figures. So, beyond reasonable doubt, the space
station Solaris is real, with everything bizarre and sinister that happens 
there. And right after absorbing this shock, Kelvin finds in a drawer
another set of calculations, similar to what he just did, obviously made
by one of his colleagues who thought of the same reality test.

Of course, this is a magnificent bit of suspense-building, but that 
is not our reason for discussing it here. Dr Kelvin’s test interests us 
as a good epistemological argument in favour of “realism”, i.e. of the 
existence of the outside world, independent of any human conscience 
and accessible to rational enquiry. It is not surprising that Stanisław 
Lem, a writer and thinker with a keen interest in the philosophy of 
knowledge, has used such an argument. However, it seems that the first 
to put forward this argument was not Lem, but another popular writer 
from the last century, Winston Churchill [2]. 

To refute his university–educated cousins’ assertions that “nothing 
has any existence except what we think of it”, he writes:”…happily 
there is a method, apart altogether of our physical senses, of testing the 
reality of the sun… astronomers predict by pure reason that a black spot 
will pass across the sun on a certain day. You… look, and your sense 
of sight immediately tells you that their calculations are vindicated… 
We have taken what is called in military map-making ‘a cross-bearing’. 
We have got independent testimony to the reality of the sun. When my 
metaphysical friends tell me that the data on which the astronomers 
made their calculations were necessarily obtained originally through 
the evidence of their senses, I say ‘No’. They might, in theory at any 
rate, be obtained by automatic calculating-machines set in motion by 
the light falling upon them without admixtures of human senses at any 
stage…”
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In all likelihood, Churchill’s contribution to epistemology 
would now be widely unknown if not for Karl Popper, who gave 
this argument a prominent place in his book “Objective Knowledge. 
An Evolutionary Approach” [3]. Let us recall why “realism” is so 
important to the philosophical foundations of science, and what 
the Gedankenexperiments of Churchill and Lem have to do with the 
scientific method.

The aim of science is to gain rational and objective knowledge 
about the outside world. It was the Ancient Greeks who realized that 
rationality and objectivity are closely interrelated. Suppose A makes to 
B a statement, which concerns something not immediately accessible 
to B’s inspection or test (for example, “The Thracian swords are better 
than the Egyptian ones” or “A solar eclipse is just the Moon blocking 
the Sun”). Since B does not have a direct access to A’s memories, 
impressions, and other internal workings of his mind, a rational 
argument is the only way A can prove to B the truth of his statement. It 
is thus the only general method by which the objectivity of a statement 
can be established. The central question is: what rational arguments 
can establish the truth of such a statement, and in what sense. Any 
such argument relies on an explicitly or implicitly agreed upon set of 
some basic assumptions (e.g., that a black spot seen crossing the solar 
disk is actually the image of the solar spot). Such assumptions can be 
quite deeply hidden and render scientific observations highly theory-
laden. But they can be taken care of systematically – e.g., Mr Churchill 
could make reasonably sure that the visible spot is not the shadow of 
a bug crawling across the lens. On the other hand, he would have an 
impossible task proving logically that what he sees is not a delusion 
– and a confirmation from other witnesses would not help, since they 
could be imaginary as well. The same argument, by the way, would 
invalidate Dr Kelvin’s reasoning, since he could well just imagine that 
the two rows of numbers actually agree. 

We shall not consider here this matter of mental delusions (or 
the logical invincibility of solipsism), which belongs to the fields of 
medicine and psychology. We will agree then that – in principle – any 
argument can be reduced to the point when one needs only to look at 
something – a solar spot, a set of numbers, a formula – to be convinced 
of its truth or falsity. This “Churchill-Lem thesis” is, of course, a 
rather trivial observation: human anatomy and physiology being what 
they are, vision is the sense, and this greatly influences our thinking, 
speech and behaviour (with the notable exception of St Thomas the 
Apostle, who put his faith in the sense of touch). Nevertheless, whether 
this is just a figure of speech or not, recent advances in experimental 
technology put us in a situation where the question of whether “seeing” 
can be “believing” (and if yes, believing in what) becomes one of more 
than speculative interest. 

We refer here to quantum metamaterials [4] – a recent offshoot 
of quantum computing research. The effort to produce a universal 
quantum computer over the last 15 years has not yet succeeded in 
creating one, due to serious technological obstacles. However, some 
kind of a quantum computing device, containing hundreds of quantum 
bits (qubits) was realized [5], even though the question of the degree of 
its “quantumness” remains open [6]. This is just one example of the 
field’s enormous progress, especially in the area of superconducting 
qubits. 

Let us make a necessary digression. The expected power of a quantum 
computer critically depends on its being comprised of qubits. A qubit 
is, in principle, any controllable system which can be simultaneously 
in two different states (a quantum superposition of states). Quantum 
particles, such as electrons, photons or atoms, can do this trick regularly, 

but are rather difficult to control. Photons, for example, can be relied 
upon to stay in such superpositions for long durations (on the relevant 
scale, of course) because they do not interact much with anything else 
and, besides, have zero mass. This is why a number of key experiments 
testing the limits of quantum mechanics have been carried out with 
photons [7-9] and why photon-based quantum communications – like 
safe key distribution – are already widely used [10]. On the other hand, 
quantum computing would require qubits interacting with each other, 
which for photons is inherently difficult. Therefore other kinds of qubits 
have been developed – including those based on superconductors (e.g., 
aluminium or niobium).

There are different varieties of superconducting qubits. The easiest 
to explain (and, incidentally, the one used both in currently realized 
quantum computing devices [5] and in quantum metamaterial 
prototypes [11] is a superconducting loop, approximately ten microns 
in diameter, interrupted by three or more very thin insulating layers, 
which form so called Josephson junctions. The loop is threaded by a 
finely calibrated magnetic field and cooled down to just 0.01-0.04 
degrees above the absolute zero. In this situation, the electric current 
will eternally flow around the loop (because it is a superconductor). 
Moreover, for a short, but quite significant time, now running into tens 
of microseconds, such a current can flow both clockwise and counter 
clockwise simultaneously. This latter property is what makes such a 
loop a qubit (a flux qubit, to be more specific).

Over the past decade, experiments involving flux qubits (and 
other types of qubits as well), where they are prepared in quantum 
superpositions of states, have become routine [4]. Nevertheless this is 
far from a trivial phenomenon. Indeed, in mid-80s the very possibility 
of observing such effects in superconducting devices was very much 
doubted [12]. The reason was simple: unlike a photon, an electron or an 
atom, a qubit is a macroscopic object. Nevertheless, not one experiment 
to-date involving superconducting qubits has cast any doubt on the 
validity of the laws of quantum mechanics – so for all we know, they 
may well apply in macroscopic situations no worse than they do in the 
microscopic world. And this is a scary thought indeed.

The scariness is due to a longstanding fundamental discord between 
the rules of classical and quantum physics, and particularly the fact that 
in classical physics, which we still take to apply in macroscopic settings, 
no object can ever be in a superposition of states. Since these things 
can only be observed indirectly (e.g., as they influence the needle of 
an ammeter, or when a mark is left by an electron in a photographic 
emulsion), all we know about the behaviour of microscopic objects so 
far has been extracted from measurements – i.e. from their interactions 
with measuring devices. A quantum object in a superposition of states, 
say A and B, is described by the wave function; and in the process 
of measurement (or rather, when it interacts with any appropriate 
macroscopic object) it turns out to be in either A or B – i.e. the needle 
will point at A or B; the dark spot on the emulsion will be at the position 
A or B. The long-prevalent Copenhagen interpretation of quantum 
mechanics could sweep this – possibly instantaneous – collapse of 
the wave function under the rug, exactly because the only objects 
capable of being in a quantum superposition of states were not directly 
observable. 

The famous Schrödinger’s cat paradox [13], a Gedankenexperiment 
in which a live cat could be – and, by laws of quantum mechanics, 
should be – in such a superposition, is a reductio ad absurdum argument 
against the applicability of quantum mechanics to macroscopic objects. 
While it could not be refuted (assuming the validity of both quantum 
mechanics and our everyday macroscopic experience) it was swept 
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under the same Copenhagen rug because of the practical impossibility 
at the time, of producing such a cat. It was possible to speculate, even, 
that for large enough objects there will be tiny corrections to quantum 
mechanics, which make it smoothly transform into classical mechanics 
as the size of an object grows, with no paradoxes attached. 

Now, we no longer have such luxury. The objects we’re able to 
prepare in quantum superpositions get larger and larger (and are not 
limited to qubits [14,15], as experimentalists improve their ability to 
control the processes which disrupt these superpositions. Still, there is 
no indication that the laws of quantum mechanics should be limited to 
any particular scale. Perhaps, then, soon enough one will be able to see 
such objects. The question is, if so, what shall we see?

This is where quantum metamaterials may have a central role. 
These objects, theoretically proposed several years ago [16], are periodic 
structures built of qubits much as crystals are built of atoms. The twist is 
that the quantum superposed states of these qubits (“artificial atoms”) 
should be controllable and, most importantly, maintain quantum 
coherence long enough for an electromagnetic signal to pass through. 
From the point of view of light (or microwave) propagation, such a 
system is a real Schrödinger’s cat, which can be directly seen because 
its optical properties – such as the refractive index, which characterizes 
the speed of light in the material – can be made directly dependent on 
the quantum state of its constituent qubits [4]. 

And here we come to the critical point. It is theoretically possible 
to put a piece of quantum metamaterial in a superposition of states 
with different refractive indices, nA and nB. We could then send a light 
pulse through it towards a detector. This light pulse can be macroscopic 
(containing many photons), but for simplicity we may consider only 
two identical photons. These could be produced simultaneously by the 
process of parametric down-conversion (a standard quantum optical 
technique), with one sent directly to the detector, and the other, after a 
known delay ∆t, sent there through the slab of quantum metamaterial. 

Let us then consider what happens. When the first photon is 
detected we will know already when the second one was emitted. We 
should therefore expect the arrival of the second photon at the moment 

,= ∆ + +A
A

Ln Dt t
c c

 if the slab is in state A, and at ,= ∆ + +B
B

Ln Dt t
c c

 

if it was in state B. Here, c is the speed of light in vacuum, L is the length 
of the quantum metamaterial slab, and D the distance from the slab to 
the detector. If nA < nb, then tA < tb. Therefore, if the photon is detected at 
the moment tA, this means that the metamaterial is certainly in state A: 
its superposition wave function collapsed. So far, nothing strange has 
happened: the collapse was caused by the interaction of our system (via 
the photon intermediary) with the detector, which measured its state. 
But what if the photon was not detected at tA? If – as we are entitled to 
do in a Gedankenexperiment – we exclude the possibility that it was 
lost along the way (absorbed or leaked out) or not detected because 
of the imperfection of our instruments, then we must conclude that 
at this moment the slab’s wave function collapsed into the state B. But 
what caused the collapse? There was no interaction with a detector – no 
measurement – until a later moment tB, which anyway just confirmed 
what we already knew about the state of the metamaterial at an earlier 
moment of time. This is indeed a strange case of zero-measurement, 
when not observing something seems to make a material difference. 

We could further investigate the situation and, e.g., take into 
account that our slab does not need to undergo a collapse all at once: 
if it is thick enough, then when the photon “A” should be detected, 
the photon “B” would be still inside. Therefore, non-detection at 

the moment tA would mean the collapse for only the part of the slab 
that the photon “B” had time to travel through, with the rest still in a 
superposition of states. Repeating this leads to a pretty intricate pattern 
of photon (non)detection, but for us the simplest case, described in the 
previous paragraph, would be enough.

In summary, if a quantum metamaterial is realised, it appears that 
it can be used to demonstrate that the collapse of the wave function 
of a macroscopic object can be achieved prior to its interaction with 
a detector. Such a demonstration, it seems, would undermine the 
currently dominant interpretation of collapse due to interactions which 
wipe out quantum correlations (i.e., serving as sources of decoherence). 
This would probably be the first instance in which an interpretation of 
quantum mechanical formalism could be dismissed (or confirmed) by 
an experiment.

Where does it leave us with respect to “reality”? Hopefully, we will 
be able to say something new about the nature of the objects we’ve long-
suffered to discern from the shadows in Plato’s cave. Not only might it 
turn out that a single object can cast several shadows, but perhaps we 
can learn to anticipate certain shadows by observing their neighbours 
before they show up on the wall. And maybe we’ll see that we should 
pay more attention to the structure of the wall itself. 

What is Computing (And Can It Get Us Out of Plato’s 
Cave)?

In a way, everyone would have an answer to the title of this 
section. Most people know that computation has something to do with 
sequences of zeros and ones which encode information, and which are 
moved around and transformed inside computers in order to obtain 
desired effects, such as an answer to a specific query. People also know 
that this kind of information processing relies on what is known as 
programs, which tell computers what to do with the data they hold in 
memory. 

And yet, computing as we know it today was not always there; 
it had to be invented. Perhaps the idea that much of computation 
is mechanical is the oldest part of the long legacy of thinkers 
who eventually gave us computers. A discussion of the pursuit of 
mechanization of calculation would take us on a long journey through 
post-Newtonian science and mathematics, perhaps culminating 
with a bold attempt by an Englishman, George Babbage, to build a 
programmable calculator using Victorian technology. But this is not 
what our present inquiry is about. Rather, we wish to highlight those 
thinkers who drove back the bounds of calculability and, eventually, 
computability, opening up new landscapes to enquiry that were not 
previously imagined. After all, computing as we know it today is not 
about number crunching only. Indeed, modern computing encroaches 
upon all human activities at all times. We use computers to seek, retain, 
process and interpret information; to sort and organize it; to search for 
patterns; and, in these ways, to generate new knowledge. Computers 
have long since surpassed the naiveté of simple calculating machines. 
At some point, people realized that more was going to be possible. It is 
our thesis that this may have been an even greater leap of knowledge 
and understanding than the basic concept of mechanizing calculations. 

In order to better understand the prospects, the significance and 
the potential consequences of the current revolution in computing, 
let us examine it against its proper historical backdrop. The story we 
wish to briefly retell, but also consider in new light and re-examine, 
has very long roots. However, we will jump right into its final phase 
and consider an intellectual firestorm that was kindled by Bertrand 
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Russell at the beginning of the 20th century. Russell may be considered 
the father of the mathematical philosophy of mathematics. While 
mathematicians have been philosophizing about mathematics from 
times immemorial, few of them took the problem of the foundations 
of mathematics as a seriously necessary pursuit. It was always tacitly 
assumed that mathematics is in a sense perfect, that its foundations 
are unshakable and its structure complete. All mathematical questions, 
people used to believe, can be answered. Yes, some problems are hard 
and will take a lot of time and effort to settle – but, no doubt, the 
solutions are essentially determinable. 

To be sure, before Russell mathematicians had worked to establish 
as firmly as possible the foundations of mathematics. Calculus 
used to be based on a rather hazy notion of infinitesimals until Karl 
Weierstrass showed in the 19th century how that could be remedied 
with an approach based on the rigorous concept of the limit. Infinite 
collections, or sets, also required a thorough discussion, and that was 
dished out by another 19th century mathematician, Georg Cantor. 
David Hilbert, who gave an in depth analysis of these two pursuits 
in his address to the Westphalian Mathematical Society in 1928 [17], 
made the distinction between the potential infinities encountered in 
calculus and the actual infinities investigated by Cantor – and, what is 
of some interest in the present context, argued that the actual infinities 
are non-physical. However, according to the modern understanding 
of the history of mathematics, Hilbert, the great mathematician that 
he was, may have been the last of the dinosaurs who believed in the 
completeness of mathematics. That view was to be challenged and 
defeated before long, and the seeds of doubt were perhaps first planted 
by Bertrand Russell when he turned his attention to the works of 
Gottlob Frege on the foundations of arithmetic. 

The history of computing involves a long procession of brilliant 
mathematicians and philosophers. That alliance between the two old 
academic professions has recently waned. When I am writing this, a 
clear memory still lingers in my mind of a clash at a certain university 
between mathematicians and scientists (camp one) on one side and a 
lonely and depleted group of philosophers (camp two) on the other, 
over the admissibility of courses on critical thinking and symbolic 
logic, traditionally taught by philosophers, towards a college general 
science requirement. The proponents in camp two had to withdraw 
defeated as it is now often strongly felt among the members of camp 
one that such a substitution would be a concession compromising the 
stringent rigors of science. Back then, in the first half of the twentieth 
century an alliance between philosophy and mathematics was still 
going strong. In fact, that alliance proved exceedingly fruitful and 
effective – it brought us computers as we know them today. Many of the 
names on the list of people who formed that alliance, both philosophers 
and mathematicians, will be familiar to most readers. However, the 
interconnections between them, both intellectual and personal, might 
be less known, and there were many, spanning quite a tangled web. 

Frege left open some questions that would soon inspire Russell, 
who would collaborate with his advisor, Alfred N. Whitehead, on 
a monumental quest to find answers. This effort led to significant 
mathematical results; but also, most importantly, it infused the theme 
of self-reference in 20th century culture. Central to their analysis was 
the question of whether we can have a set of all sets that do not contain 
themselves as an element. There is trouble with the set so defined: if it 
contains itself, then it does not contain itself; but if it does not contain 
itself, it does. And yet, Russell observed, such definitions are permitted 
in Frege’s theory, which makes it faulty. How do we ban self-reference 
from a theory, then? Simply by brute force, suggested Russell and 

Whitehead, who went on to construct what is known as a type theory. 
From the very beginning, its creators knew that the theory was only an 
ad hoc solution. It was not perfect, and it could not possibly be the last 
word on the subject.

Russell’s self-referential antinomies, as they were known, were 
almost immediately popularized and thus seeped into the broader 
streams of the 20th century culture. There is a barber in town who shaves 
all local men who do not shave themselves. Does he shave himself? This 
type of construction took root like an addictive weed and made circles 
through the arts: from Magritte’s famous “this is not a pipe”, through 
some of the best graphics of Escher, and now in modern movies like 
Robert Altman’s “The Player”, and TV shows, such as Tina Fey’s “30 
Rock”. Some forms of self-reference in theatre, such as the aside, 
have much longer roots – e.g. Shakespeare himself used this dramatic 
device, in which the main protagonist transcends the stage reality 
and addresses the audience directly, in a number of plays, including 
Richard III, Macbeth and Hamlet. The same trick has been used in both 
the original BBC version of “House of Cards” and in the more recent 
version produced by Netflix. In short, self-reference is so dazzling to 
the mind that everybody likes to play with it. It is not even that rare to 
find self-reference around us, nor too difficult to deliberately play on 
the theme. 

This discovery of the simple and yet poignant paradox of self-
reference captured the imaginations of some rigorous thinkers as well. 
Among them, Ludwig Wittgenstein and Kurt Gödel – the former, 
destined to change the landscape and style of philosophizing, and 
the latter, to make some exquisitely profound observations about 
the nature of mathematics. The influence of the new pursuit spread 
through the academe like wildfire. And that fire was responsible for 
the initiation of the Vienna Circle, the subsequent rise of analytic 
philosophy, and perhaps also its ultimate defeat beneath the vengeful 
plume of Karl Popper. Among the acolytes of the Vienna circle was 
John von Neumann, a top mathematical mind who would eventually 
provide the blueprint for a programmable computer which was long 
considered to be the first ever in the world. Von Neumann was among 
the first to understand the importance of Gödel’s ideas, and was 
responsible for bringing Gödel to Princeton and for bringing his ideas 
to the broader mathematical community. In turn, Gödel’s ideas were 
developed in the direction of computability by Alonzo Church. Alan 
Turing, who conceived similar ideas on computability independently, 
would soon thereafter write his PhD dissertation at Princeton, formally 
under Church’s supervision. 

Turing’s immensely important work found a field of application 
in cryptography, and fuelled the major war effort that was undertaken 
by men and women at Bletchley Park. In fact, there in Bletchley, the 
first semi-programmable computing device, COLOSSUS, was built 
under the supervision of Turing’s old benefactor, Newman [18]. 
COLOSSUS beat von Neumann’s ENNIAC to the claim of being the 
first computer by just a couple of years, yet it was kept in such secrecy 
that the world would only learn about it in very recent years. Turing, 
Newman and others found additional inspiration in the pre-existing 
practical results of Marian Rejewski and his colleagues Jerzy Różycki 
and Henryk Zygalski, a trio of Polish cryptographers who had been 
the first to break into the secrets of the German cypher machine, 
Enigma. The glory of this extraordinary feat by the Poles would have 
been greater still, if it were not for the fact that they themselves did not 
seem to fully acknowledge or even recognize the profoundness of their 
own work. According to popular lore, Rejewski, in a typically Polish 
self-deprecating manner, did not think much of the scientific value of 
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his dutiful contribution to the war effort. He is reputed to have kept 
longing to return to research in “true mathematics”. Turing, on the 
other hand, perhaps having the benefit of exposure to von Neumann, 
Gödel and Church in Princeton, knew he had something important 
going in connection with his mechanical calculations. Today, Church 
and Turing are lauded for laying the foundations of theoretical 
computer science – one of whose basic tenets, expressing the essence 
of commonly held beliefs about the nature of classical computation, is 
known as the Church-Turing thesis.

So far, we have left on the fringes the influence of the famed 
Vienna Circle – a philosophy club founded by Moritz Schlick in 1924, 
which came to an end with his assassination in 1932. Although it 
was a very elitist, by invitation only club, The Vienna Circle held in 
its folds a number of prominent thinkers; e.g. Hans Hahn (known to 
mathematicians for the co-authorship of the Hahn-Banach theorem), 
Otto Neurath (whose work in economics influenced a reactionary 
thought process in the great Friedrich Hayek). The Circle treated 
Russell, along with Ernst Mach and Albert Einstein, as patron saints, 
and worshipped Wittgenstein as a prophetic figure, taking his work 
as its main influence [19]. It admitted notable guests, such as Gödel 
and von Neumann, but also resisted extending an invitation to some 
bitterly disappointed aspirants, most famously Karl Popper. The 
Circle’s many close or remote acolytes would become a powerhouse 
in 20th century science and humanities, with visible presence in the 
faculties of prominent American universities. Among those anointed 
by the Circle were, e.g., Willard Quine, one of the superstars of 20th 
century American philosophy, the long list of whose doctoral students 
at Harvard includes such names as Hilary Putnam and David Lewis, 
and the Polish logician, mathematician and philosopher, Alfred Tarski, 
who taught at UC Berkeley.

The intellectual connections and influences between the multitude 
of the Circle’s thinkers were often complex and should not be 
oversimplified. Wittgenstein tolerated being worshipped by many 
in the circle, most prominently Schlick himself, but accused them of 
misunderstanding him. This was not unusual of him, however, as he is 
known to have made the same accusation of his long-time patron and 
former teacher, Russell. The Circle’s program was strictly positivist. 
In brief, they believed that what cannot be stated scientifically is just 
a mystical babble that is not worth your while. While Wittgenstein 
famously said “Whereof one cannot speak thereof one must be silent” 
which expressed limitations of the scientific method, he did not mean 
to condemn all that is outside the reach of science. For some of us, 
the poems of St John of the Cross are meaningful although no one is 
likely to search for their scientific foundations. That was all right with 
Wittgenstein: perhaps he even thought those particular poems were 
meaningful, although we are not in possession of any proof of that. 
In fact, it is believed he tended to think that precisely the things that 
transcend science are the most important ones. That went against the 
grain of the core beliefs cultivated at the Circle. 

he importance of Wittgenstein for the future development 
of computing is fleetingly intangible, but nevertheless potentially 
important. The emphasis on the limitations of science, the belief that 
there may be truths unreachable to rigorous axiomatic thinking, 
was the most important and most novel intuition of that era. The 
idea reverberates strongly in the profound results of Gödel showing 
incompleteness of any axiomatic theory rich enough to encompass 
arithmetic. We know that later on Turing was briefly interested in 
Wittgenstein’s views, although this interest faded after they met. 
Nevertheless, the intuition of transcendental truths takes on an 

independent life yet again in Turing’s results on incomputable 
numbers. 

Rebecca Goldstein, in her masterful biography of Gödel [20], 
identifies his lifelong philosophical views as essentially Platonic. That 
might mean that even before he found his famous proof of incompleteness 
he already believed that there may be mathematical statements that are 
true and yet impregnable to “classical” proof via an axiomatic method. 
Gödel’s later essays, e.g. the remarkably approachable while in-depth 
article on the Cantor’s continuum problem [21], confirm his essentially 
Platonic views of mathematics. Now, Gödel’s most famous result, the 
Incompleteness Theorem, is crucial to the history of computing. In its 
proof he encoded all statements of an axiomatic system in numbers. 
This blazed the trail to computer programming, by showing how all 
information may be quite naturally encoded and processed on a 
number crunching machine. This was as crucial a precondition for the 
later development of computers as the inventions of the vacuum tube 
and the semi-conductor based transistor. It is, however, much harder 
to grasp, and impossible to put on display in a museum – hence the fact 
will likely remain less widely known. 

A particularly painful downside of such a state-of-affairs is that 
we are not properly paying our debts to philosophy, and we routinely 
tend to forget about its once powerful hold on our culture. This may be 
detrimental to future revolutions in computer science and technology – 
e.g. the one we are hoping to witness soon with the advent of quantum 
calculating machines. 

The Vienna Circle had a clear presence in the history, though not 
in the immediate derivation, of Gödel’s theorem. In particular, together 
with the Berlin Circle (among whose ranks were Hans Reichenbach, 
C. G. Hempel and David Hilbert) it co-organized a conference on 
“Epistemology of the Exact Sciences” in Königsberg, in October, 1930. 
There gathered under one roof many intellectual celebrities who shared 
an interest in the foundations of mathematics. In rough terms, the 
participants’ views were coalescing around four main streams [20]: 

•	 Logicism, represented by Gödel’s senior colleague from 
Vienna, Rudolf Carnap. The main position of this stream was that all 
mathematics should be reducible to formal logic.

•	 Intuitionism represented by Arend Heyting, a Dutch 
colleague of the stream’s main figure Luitzen Brouwer who did not 
attend the conference. This stream is best known for its opposition to 
the validity of non-constructive proofs in mathematics.

•	 Formalism, proposed by Hilbert and in his absence 
represented at the conference by John von Neumann. Formalists 
believed that mathematics is a complete self-contained game and could 
in essence be mechanized. Hilbert famously stated “tercium non datur” 
to indicate that all in mathematics is either true or not, and had little 
doubt at the time that all mathematical truths were obtainable through 
a straightforward, if sometimes mundane, a process.

•	 Wittgenstein’s standpoint, represented by Friedrich 
Waismann. Wittgenstein, consistent with his belief that there are no 
real philosophical problems, only puzzles, interpreted mathematics 
in the spirit of language games. To him, mathematical statements 
acquired meaning from the way they were used by mathematicians 
engaging in the game. 

However, as brought to light by Goldstein, an odd and boyish 
bystander Gödel did not follow any of the above creeds. And that 
is indeed how it must have been, as he already had the proof of his 
Incompleteness Theorem in-hand. He announced it briefly at the 
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conference during the day reserved for informal discussions. His 
understated message hardly reverberated and was largely ignored. It 
seems that even his Vienna colleague Carnap and his thesis advisor 
Hahn remained mute on the subject. Von Neumann, however, 
grasped its significance immediately, probably obsessed about it, 
and eventually, a few years later, brought Gödel to Princeton. Gödel 
speculated about the reach of his discovery very broadly, as was his 
right. Already in Königsberg, he expressed a suspicion that some of 
the classical problems of mathematics might be unreachable to proof. 
In particular, he so implicated Fermat’s Last Theorem. Today, with 
Andrew Wiles’ 1993-95 proof of that famous conjecture already part 
of the mathematical canon, we know Gödel was actually wrong about 
that. 

Regardless of such speculations that were eventually falsified, it 
was really through the method Gödel employed that his proof turned 
out to be so significant to the future invention of universal computers. 
What Gödel proved was a statement about sufficiently rich axiomatic 
systems: If a theory is consistent, i.e. no statement could be both proved 
and disproved, then it is incomplete, i.e. there will be statements that 
cannot be deduced from the axioms. The core idea of the proof was to 
express as an arithmetical statement the sentence “This very sentence 
cannot be proved.” This is again a self-referential statement of the form 
that was brought to light by Russell. Now, if this statement could be 
proven in an axiomatic system, then it would be both true and false. 
Hence, the system would be inconsistent. In order to carry out the 
technical side of the proof, Gödel invented a method for encoding 
all of the statements of a given axiomatic system in numbers. That 
shows the necessity of the a priori assumption that the system must 
be rich enough to contain arithmetic. Arguably, this was the first fully 
successful translation of a nontrivial body of knowledge that is an 
axiomatic theory into a mechanizable number code. It was also perhaps 
the first inkling of the concept of universal computing, i.e. computing 
that goes beyond superficial calculation. 

A possible conclusion is that computing as we know it is not a 
mere ad hoc invention tied to an electronic technology. In that regard, 
it is completely different than, say, television – the latter being a very 
complex invention, which has nevertheless arisen from natural needs 
and curiosity on one hand, and an enabling technology on the other. 
In particular, we know exactly how to envision the next generation of 
televisions: the pictures will be three-dimensional – a technology that 
we have only just begun to develop, which may someday turn out as 
we’ve envisioned in Sci-Fi shows with holographic figures popping out 
of a box. Computing, on the other hand, is really very different in that 
we do not know what it is going to become – nor do we know whether it 
can be essentially different, rather than simply faster and more reliable, 
in the future. But computing is also conceptually tied to a culture; a way 
of viewing what is and what is possible. It is therefore perhaps most 
important to note that computing remains tied to familiar mathematical 
realities [22]. The current computing paradigm, encapsulated in 
the Church-Turing thesis, is classical in the sense that it is tied to an 
approach to mathematics that is based on a system of classical-logic 
based deductions. Does this mean that the next computing paradigm 
can only emerge after completely reinventing our view of mathematics, 
or even developing a completely new way of doing mathematics? In 
such a case, is quantum computing going to be essentially different? 
If so, then this time the paradigm shift would not have come from a 
conspiracy of mathematicians and philosophers, but rather would 
be an operation run entirely from physics departments with some 
admixture of hastily reformed computer science departments. 

However, it ought to be mentioned that the current pursuit of a 
novel computational paradigm is based on entirely different principles. 
It is assumed that we already know what computation can give us, 
and we have certain expectations. There are computational problems 
that we consider important, or at least extremely alluring, such as 
the Travelling Salesman Problem or integer factorization, which 
nevertheless appear to pose immense challenges to today’s methods – 
viz. they do not seem to be computable in real time. If anyone can find 
a physical process that will yield a real time solution to any one of those 
problems, it will indeed be a gigantic breakthrough. It is also quite likely 
that such a discovery would release an avalanche of new mathematical 
ideas. For, just as the old computational paradigm is closely connected 
with today’s style of doing mathematics, that new way of computing 
would give birth to post-classical mathematics. 

As mentioned above, from one point of view Gödel’s proof of 
incompleteness translates a classical mathematical theory into a 
classical computer program. In that framework, theorems are obtained 
from axioms via chains of deductions, and deductions follow certain 
rigid rules. In that sense, the proofs of theorems are matters of 
construction. Now, if a new computational paradigm broke out, we 
would gain a new notion of construction. A construction would be 
equivalent to having information encoded in a way that is specific to 
that new approach, and then having it processed in that specific new 
way. The new notion of construction would effectively be a new, post-
Church-Turingian, notion of computability. That in turn would yield a 
new notion of provability and a new understanding of completeness. A 
new Gödel’s theorem would have to be proven, but it would naturally 
spring right out of the new concept of computability. We would gain a 
new insight into what mathematical truth is, and a new understanding 
of what truth is in general. There would be a pressing need to build new 
philosophical foundations. In particular, as a first order of the day, we 
would have to reconstruct Platonism completely anew, as now Plato’s 
cave and what is outside of it would be seen in a completely new light. 
There is a chance, although it may be too much to hope for, that we 
would in fact find ourselves outside of Plato’s cave, for once endowed 
with full vision of things as they truly are. 

There is no a priori reason known to us why the scenario described 
above should be impossible. Perhaps the philosophical limitations on 
knowledge that are implicated in Gödel’s theorem are in reality just 
technical ones and as such can be transcended. At this stage, we can do 
two things: 1. Keep up the search for a physical process that will break 
through the complexity barrier of problems that cannot be classically 
computed in real time, and 2. Hold a philosophical discussion trying 
to understand where this might lead. If there is a moral to the story we 
have outlined here, it is that we should keep at both.
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