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Abstract 

Faults studies form an important part of power system analysis. The 

problem consists of determining bus voltages and line currents 

during various types of faults. If the fault location is known, the 

problem is easy to solve. But if the fault location is unknown, the 

problem will become more complex. The problem of fault location 

has been studied deeply for transmission lines due its importance in 

the power system. Different methods for sags prediction have been 

developed. The most used are “critical distance” and “fault 

positions”. The critical distance method is based on the concept of 

potential divider, which is correctly and easily applicable to a radial 

network. The extension of this method to large meshed networks has 

been discussed but yet non of the existing researches could provide 

proper solution for the problem. In this paper, an elegant, analytical 

method is developed to calculate the critical distance of a three-

phase fault on transmission line that will cause certain voltage dip at 

a bus in meshed power system. The method is based in Gauss-Seidel 

iteration. The proposed method is tested on 6-bus transmission 

network and the results showed significant advantages of the 

proposed method . 

 

Keywords: Fault analysis, meshed power system, three-phase 

balanced fault, voltage dip, Gauss-Seidel, load flow, 

critical distance. 

 

1. Introduction 

Faults studies form an important part of power system analysis. The 

problem consists of determining bus voltages and line currents 

during various types of faults. Faults on power system are divided 

into three phase balanced fault and unbalanced faults [1,2,3]. 

Different types of unbalanced faults are single line to ground fault, 

line-to-line fault, and double line to ground fault [1,2,3]. The 

information gained from fault studies are used for proper relay 

setting and coordination. The three-phase balanced fault information 

is used to select and set phase relays, while line to ground fault is 

used for ground relays. Fault studies are also used to obtain the 

rating of the protective switchgears.  

The  power system faults studies and analysis have been covered in 

many references. [1], [2] and [3] are good references in this area. All 

this analysis are based on known location of the fault, so the 

problem was easy to solve.  

Nowadays the problem of fault location on distribution systems is 

receiving special attention mainly because of the power quality 

regulations. Different methods for sags prediction have been 

developed. The most used are “critical distance” and “fault 

positions”. The critical distance method is based on the concept of 

potential divider, which is correctly and easily applicable to a radial 

network. The extension of this method to large meshed networks has 

been discussed in [4,5], but questionable assumptions are required. 

So, the applicability of the critical distance method to meshed  

networks is limited to very preliminary results only. 

For meshed networks, the method of fault positions is usually 

adopted [4,6]. It requires modelling the electrical net and simulating 

faults in different positions. However, there are no clear and general 

rules to determine the part of the network to be analyzed and the 

positions and number of the faults to be simulated. An elegant, 

analytical method to predict voltage sags caused by three-phase 

faults on transmission networks has been developed in [7]. Voltage 

sags at the given site are calculated through the bus impedance 

matrix of the net.  The voltage sags prediction is not made through 

the individuation of the exposed areas, but through the probability 

density functions of voltage sags. However, this method is far less 

“spontaneous” than the method of fault positions, and its application 

is more complex. [8] introduced a method for obtaining a first 

estimate of the expected number of spurious trips due to voltage 

sags. The method is based on an expression for the so-called critical 

distance in radial power systems. [9] derived analytical expressions 

for the calculation of voltage sag magnitude due to faults at every 

point of a meshed or radial power network considering balanced and 

unbalanced faults. The following methods for stochastic assessment 

of voltage sag magnitude are compared using these expressions: the 

method of critical distances, method of fault positions, and Monte 

Carlo method. [10] presented some of the most relevant methods for 

fault location in radial power systems.  

The objective of this paper is to propose an  efficient method to 

solve the critical distance problem when there is a three-phase fault 

on transmission line in meshed power system. The method is based 

on Gauss-Seidel iteration.  
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The paper starts by giving a brief description to the solution of the 

balanced three-phase to ground short circuit fault problem and the 

power flow solution using Gauss-Seidel. Then, the proposed 

approach for the calculation of critical distance in meshed power 

system is introduced. The proposed method is tested on 6-bus 

transmission network and the results showed significant advantages 

of the proposed method.   

 

2. Balanced three phases to ground short circuit fault analysis 

In this paper, the balanced three phases to ground short circuit fault 

on transmission system is studied.  The magnitude of fault current 

depends on the internal impedance of the generator plus the 

impedance of intervening circuit. The bus impedance matrix is 

formulated for the systematic computation of bus voltages and line 

currents during the fault. 

[1] and [3] introduced the application of   Thevenin‟s theorem in 

power system fault analysis. The fault is simulated by switching on 

fault impedance fZ  at the faulted bus. Thevenin‟s theorem states 

that the changes in the network voltage caused by added branch (the 

fault impedance) are equivalent to those caused by the added 

voltage at faulted bus )0(fV  with all other sources short circuited.  

So, the faulted network is reduced into Thevenin„s equivalent circuit 

as viewed from the faulted bus. Applying  Thevenin„s theorem, 

changes in the bus voltages are obtained. Bus voltages are obtained 

by superposition of the pre-fault bus voltage and the changes in the 

bus voltages computed. The currents during the fault in all branches 

of the network are then obtained.  

The network reduction is not efficient and not applicable to large 

system [1]. Consider a typical general n bus system in Fig. 1 [1]. 

The system is assumed to be operating under balanced condition and 

per phase circuit model is used. Each machine is represented by 

constant voltage source behind proper reactance which may be 
''

dX , 

'

dX  or dX , where dX  is the synchronous machine direct axis 

reactance, 
'

dX  is the synchronous machine  transient direct axis 

reactance and 
''

dX  is the synchronous machine subtransient direct 

axis reactance. The transmission lines are represented by equivalent 

  model and all impedances are expressed in per unit on a common 

Volt Ampere (VA)  base. A balanced three-phase fault is to be 

applied at the bus k through a fault impedance fZ .  

 
Fig. 1. A typical bus of power system 

 

The pre-fault bus voltages are obtained from the power flow 

solution and are represented by the column vector 
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The short circuit currents are so much larger than the steady state 

current values, so that  the latter can be neglected. However, a good 

approximation is to represent the bus load by constant voltage 

evaluated at the pre fault bus voltage 
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Where, LiS  and  )0(iV  are the apparent power and the pre-fault 

voltage at bus i  respectively.  The changes in the network voltage 

caused by the fault with impedance fZ  are equivalent to those 

caused by the added voltage )0(kV  with the other sources short 

circuited. Zeroing all voltage sources and representing all 

components by their impedances, the Thevenin„s circuit is obtained. 

The bus voltage changes caused by the fault in the circuit are 

represented by the column vector 
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From the Thevenin„s theorem, the bus voltages of system buses 

during the fault are obtained by superposition of the pre-fault bus 

voltages and the changes in the bus voltages given by 

busbusbus VVFV  )0()(                            (4) 

In the node-voltage equation for the n-bus network, the injected bus 

currents are expressed in term of bus voltages  

busbusbus VYI                                               (5) 

 

In the Thevenin„s circuit shown in Fig. 1, current entering every bus 

is zero except at the faulted bus. Since the current at faulted bus is 

leaving the bus, it is taken as a negative current entering bus k . 

Thus, the nodal equation applied to the Thevenin„s circuit 



















































n

kk

V

V

V

YbusFI

.

0

.

)(

0 1

                            (6) 

busbusbus VYFI )(                                     (7) 

 

Solving for busV , )()0()( FIZVFV busbusbusbus              (8) 
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Since there is one single nonzero element in the system, the kth 

equation becomes  

)()0()( FIZVFV kkkkk                           (9) 

 

Also from the Thevenin„s circuit shown in Fig. 1, 

)()( FIZFV kfk                                      (10) 

 

For bolted fault, 0fZ  and 0)( FVk . Substituting for 

)(FVk  from (10) into (9) and solving for the fault current

fkk

k

k
ZZ

V
FI


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)0(
)(                                    (11) 

 

Thus, for the fault at bus k, only the kkZ  element of the bus 

impedance matrix is needed. This element is indeed the Thevenin„s 

impedance as viewed from the faulted bus. Also, writing the ith 

equation in (8)  

)()0()( FIZVFV kikii                          (12) 

 

Substituting for )(FI k , bus voltage during fault at bus i becomes 

)0()0()( k
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With the knowledge of bus voltages during the fault, the fault 

current in all lines can be calculated. For the line connecting buses i 

and j with the impedance ijz , the short circuit current in this line is 

defined by (14) 

ij
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ij
z

FVFV
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This analysis assumed that the fault location is known, and so the 

problem was easy to solve. But if the fault location is unknown, the 

problem will become more complex. 

 

3. Gauss-Seidel power flow solution:   

The  power flow solution using Gauss-Seidel has been covered in 

many references. Detailed Gauss-Seidel power flow analysis can be 

found in [1], [2] and [3].  

The Gauss-Seidel method is known as the method of sucessive 

displacements. Consider the solution of nonlinear equation given by  

0)( xf .      

 

The above equation is rearranged and written as  

)(xgx                                                    (15) 

 

If 
)(kx  is an intial estimate for the variable x , the following 

iterative sequence is performed. 

 

)( )()1( kk xgx 
                                        (16) 

 

A solution is obtained when the difference between the absulate 

value of the successive iteration is less than a specified accuracy, 

i.e.,  

 )()1( kk xx                                       (17) 

 

In solving a power flow problem, the system is assumed to be 

operating under balanced conditions and a single-phase model is 

used. Four quantities are associated with each bus. These are voltage 

magnitude V , phase angle  , real power P  and reactive power 

Q . The system buses are generally classified into three types: slack 

bus, load bus or voltage controlled bus [1,2,3]. 

The slack bus is a bus where the magnitude and phase angle of the 

voltage is specified. The load bus (PQ bus) is a bus where the active 

and reactive powers are specified while the magnitude and the phase 

angle of the bus voltage are unknown. The voltage controlled bus 

(PV bus) is a bus where the real power and voltage magnitude are 

specified while the phase angle of voltage and reactive power to be 

determined. The limits on the value of the reactive power is also 

specified.  

 Consider a typical bus of a power system as  

shown in Fig. 2. Transmission lines are represented by their 

equivaent   models where impedances have been converted to per 

unit admittances on common Volt Ampere (VA) base.  

 
Fig. 2. A typical bus of the power system 

 

 Application of KCL to this bus results in   
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The real and reactive power in bus i is  
*

iiii IVjQP                                          (19) 

or  
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Substituting for iI in (18) yields 
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In the power flow study, it is necessary to solve the set of nonlinear 

equations represented by (21) for two unknown variables at each 
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node. In the Gauss-seidel method, (21) is solved for iV and the 

iterative sequence becomes 
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The power flow equation is usually expressed in terms of the 

elements of bus admittance, then (22) becomes 
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Since the voltage is known at any slack system in the system, the 

above equation (23) must be solved for all other unknown node 

voltages each iteration.  

An initial estimate of 01 for unknown voltages is satisfactory. For 

PQ buses, the real and reactive powers 
sch

iP  and 
sch

iQ are known. 

Starting with initial estimate, (23) is solved for the voltage. For the 

voltage controlled buses (PV buses), where 
sch

iP  and iV are 

specified, first (24) is solved for  
1k

iQ , and then is used in in (23) 

to solve for 
)1( k

iV . However, since iV  is specified, only the 

angle 
)1( k

iV  of is retained. 

The updated voltages immediately replace  the previous values in 

the solution of subsequent equations. The process is contined until 

the changes of bus voltages between sucessive iterations are within 

satesfactory accuracy, i.e.,  

 
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4. The proposed procedure for the solution of critical distance 

problem in meshed power system 

The proposed procedure for the solution of critical distance problem 

in meshed power system  can be explained through the following 

simple network shown in Fig. 3. 

The procedure can be summarized as followed: 

 

STEP 1. Add a node at the point in the line at which the fault will 

occur, in our example the fault is assumed to occur at node 3 in the 

line between node 2 and node 4. So, the problem is to find the fault 

location in the line by calculating the impedance 23z  that will cause 

certain voltage dip at a bus, i.e. bus 2, given total line 

impedance tzz 24 . 

 
Fig. 3. Simple network under study 

 

 

STEP 2. Assume initially that the fault is existing at middle of the 

line, so tzz
2

1
23  . 

STEP 3. Calculate the system busY  matrix, and the positive 

sequence impedance matrix of the system which can be found by 

zeroing all voltage sources and representing all components with 

their impedances.  

 

STEP 4.  Calculate the all bus voltages using the previously 

mentioned fault analysis procedure assuming a three-phase fault at 

node 3. 

 

STEP 5. Now, consider each generator bus  as slack bus, i.e. bus 4 

and bus 5, with its  voltage magnitude equal to the value obtained  

from the fault analysis solution. Consider bus 2 as a slack bus with 

its voltage magnitude equal to the desired voltage dip magnitude, ie. 

2.02 V pu, and the faulted bus 3 as a slack bus with its voltage 

magnitude specified by the value obtained from the fault analysis 

solution. Use the Gauss-Seidel iterative method [1] to obtain the  

solution for the unknown bus voltage 4V  and the line impedance 

23z  that will cause the given amount of voltage dip at bus 2, ie. 

2.02 V pu. The following equations should be used in the Gauss-

Seidel iteration. The node equation at node 2 
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Thus   
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The node equation at node 4 
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Rearranging, 
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STEP 6. Repeat steps 3 and 4 to solve the fault analysis problem and 

calculate the fault voltage at all system buses with the values of 23z  

and 2334 zzz t   obtained in the previous step. 

  

STEP 7. Repeat step 5 to obtain the Gauss-Seidel solution for 23z  

and 4V  with other buses are considered as slack buses with the 

voltage magnitudes specified as mentioned in step 5. 

 

STEP 8. Repeat steps 3, 4 and 5 with the updated variables replace 

the previous values in the solution of subsequent equations. The 

process is contined until the final solution converges between 

successive iterations when fault analysis gives the desired voltage 

dip, i.e.  2.02 V pu and therefore the value obtained for 23z  is 

considered be the critical impedance solution critz23  for the 

problem. 

 

STEP 9. The critical distance can be calculated by 

lcritcrit zzl /23                                          (30) 

 

Where lz  is the impedance in pu per meter of the faulted line 2-4. 

 

5. Evaluation of the critical impedance in real six bus network 

The simple six bus system which is used in the solution of many 

power system analysis problems [11] was used for evaluating the 

developed procedure in section 4 to calculate the critical distance in 

meshed faulted power system. The single line diagram of the 6-bus 

power system network is shown in Fig. 4 [11]. The base line-to-line 

voltage KVVl 230 , and the base apparent power 

MVAS 1003  . 

The transient impedances of the generators are given in PU in Table 

1. 

 

Table. 1. Generator transient impedance (PU) 

Gen. No. 
aR  

'

dX  

1 0 0.2 

2 0 0.15 

3 0 0.25 

 

A balanced three-phase fault is assumed at line 4-5, and so node 7 

will be added  at the fault location. The line data containing the 

series resistance and reactance in per unit, and the total capacitance 

in per unit susceptance are tabulated below in Table 2. 

 

 
Fig. 4. On-line diagram of the 6-bus system 

 

Table. 2. Line data (PU) 

Line 

No. 

Bus 

No. 

Bus. 

No. 

R, 

PU 

X, 

PU 

B, 

PU 

1 1 2 0.1 0.2 0.02 

2 1 4 0.05 0.2 0.02 

3 1 5 0.08 0.3 0.03 

4 2 3 0.05 0.25 0.03 

5 2 4 0.05 0.1 0.01 

6 2 5 0.1 0.3 0.02 

7 2 6 0.07 0.2 0.025 

8 3 5 0.12 0.26 0.025 

9 3 6 0.02 0.1 0.01 

10 4 7 0.1 0.2 0.02 

11 5 6 0.1 0.3 0.083 

12 7 5 0.1 0.2 0.02 

 

The prefault load, voltage magnitude and generation schedule for 

the regulated buses are tabulated in Table. 3. Bus 1 is a slack bus, 

whose voltage is specified as 005.11 V pu.  

The busY  matrix and positive sequence matrix were evaluated 

initially while considering the fault is middle of the line 4-5, so 
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2.01.07547 jzz   pu. The load flow solution was obtained 

at prefault condition and the results are tabulated in Table. 4. 

 

Table. 3. Pre-fault load and generation data at each bus. 

 

Table. 4. Pre-fault load flow solution 

when 2.01.07547 jzz  . 

Bus V 

PU 

P 

PU 

Q 

PU 

1 005.11 V  1.09 0.3024 

2 3.78-05.12 V  0.5 0.9933 

3 4.398 - 07.13 V  0.6 0.0799 

4 4.164 - 9835.04 V  -0.7 -0.70 

5 5.175- 974.05 V  -0.7 -0.7 

6 69985.06 V  -0.7 -0.7 

7 667.49787.07 V  0 0 

 

The fault analysis was performed when the three-phase fault at node 

7 is assumed initially in the middle of line 4-5, and the values for 

bus voltages during the three- phase fault are tabulated in Table. 5. 

The fault impedance is considered fZ =0. 

 

Table. 5. Bus voltages during the three-phase fault at node 7 when 

assumed initially in the middle of line 4-5. 

Bus Voltage (PU) 

1 6.752-0.7161 V  

2 7.826-7084.02 V  

3 7.487-0.7283 V  

4 8.557-0.5374 V  

5 9.35-0.5295 V  

6 8.064-0.6876 V  

7 007 V  

 

The proposed procedure in section 4 is applied to obtain the critical 

impedance along the faulted line  that will cause a voltage dip in bus 

4 equal to 0.4 pu, 4.04 V pu, and the following solution for the 

critical impedance is obtained  

0.1078i  0.013747 critz  pu., 0.2922i  0.1863   75 critz  

pu. 

The critical distance can be calculated by dividing the critical 

impedance by the impedance per meter of the line 4-5. The values 

for bus voltages during the three- phase fault after the calculation of 

the critical impedance are tabulated in Table. 6. 

 

Table. 6. Bus voltages during the three-phase fault at node 7 after 

calculation of the critical impedance that will cause a voltage dip at 

bus 4 equal to 0.4 pu, 4.04 V pu. 

Bus Voltage (PU) 

1  5.0323-0.6681 V  

2    6.4314-0.6582 V  

3 6.67-0.7163 V  

4 00.44 V  

5  8.6230-0.5595 V  

6 7.160-0.6736 V  

7 007 V  

 

If the problem was solved to find the  critical impedance along the 

faulted line that will cause a voltage dip equal to 0.5 pu at the other 

end of the line, 5.05 V  pu, the following solution was obtained 

0.2214i + 0.1954 47 critz pu. 

0.1786i + 0.0046 75 critz  pu. 

 

The values for bus voltages during the three- phase fault after the 

calculation of the critical impedance in this case are tabulated in 

Table. 7. 

 

Table. 7. Bus voltages during the three-phase fault at node 7 after 

calculation of the critical impedance that will cause a voltage dip at 

bus 5 equal to 0.5 pu, 5.05 V pu 

Bus Voltage (PU) 

1    5.4296-  0.72251 V  

2      6.2964-7155.02 V  

3    4.8035 0.71633 V  

4 5  9.7983- 0.58144 V  

5  0 0.50005 V  

6 4.807- 0.67706 V  

7 9007 V  

 

6. Calculation of critical distance by neglecting the transmission 

lines resistances 
The critical impedance obtained in the example in section 5 is a 

complex quantity, and so the critical distance calculated by dividing 

the critical impedance by the impedance per meter of the line 4-5 

will be also complex quantity, which is not acceptable. The best way 

to overcome the problem is to ignore the resistances of transmission 

lines.  

If the transmission lines resistances in the 6-bus system are ignored, 

and the proposed procedure in section 4 is applied to calculate the 

Bus 

No. 

Voltage Mag. 

PU 

Type of 

Bus 
LP  

PU 
LQ

 PU 
GP  

PU 

GQ

PU 

1 1.05 Slack 0 0 0 0 

2 1.5 PV 0 0 0.5 0 

3 1.07 PV 0 0 0.6 0 

4 1 PQ 0.7 0.7 0 0 

5 1 PQ 0.7 0.7 0 0 

6 1 PQ 0.7 0.7 0 0 

7 1 PQ 0 0 0 0 
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critical impedance along the faulted line 4-5 that will cause a 

voltage dip equal to 0.4 in bus 4, 4.04 V  pu, the solution for 

critical impedance will be 

0.1107i + 0   47 critz pu. 

0.2893i 0   75 critz pu. 

 The values for bus voltages during the three-phase fault after the 

calculation of the critical impedance are tabulated in Table. 8. 

 

Table. 8. Bus voltages during the three-phase fault at node 7 after 

calculation of the critical impedance that will cause a voltage dip at 

bus 4 equal to 0.4 pu. 

Bus Voltage (PU) 

1 0 0.65071 V  

2 0    0.6362.2 V  

3 0    0.6863 3 V  

4 00.44 V  

5  0 0.52445 V  

6 7.160- 0.64326 V  

7 007 V  

 

The critical distance can be calculated by dividing the critical 

impedance by the impedance per meter of the line 4-5. If  the 

impedance per Km of the line is j1 pu/Km, the critcal distance will 

be 

Km 0.1107   47 critl  

0.2893Km    75 critl  

 

If the desired voltage dip at bus 4 is varied to be from 0 pu to 1 pu, 

Fig. 5 shows the critical distance solution critl75  and ritl47  for the 

various desired voltage dip magnitudes at bus 4. 
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Fig. 5. The critical distance ritl47  and critl75  for various desired 

voltage dip magnitudes at bus 4 (0 PU – 1 PU). 

If the problem solved to calculate the critical impedance that causes 

a voltage dip  equal to 0.5 pu at bus 5, 5.05 V pu, the solution for  

critical impedance will be 

0.1934i + 047 critz pu. 

0.2066i + 0  75 critz  pu. 

The values for bus voltages during the three-phase fault after the 

calculation of the critical distance in this case are tabulated in Table. 

9. 

 

Table. 9. Bus voltages during the three-phase fault at node 7 after 

calculation of the critical impedance that will cause a voltage dip at 

bus 5 equal to 0.5 pu  

Bus Voltage (PU) 

1    0   0.6833 1 V  

2      0  0.67032 V  

3    0 0.69193 V  

4 0 0.50174 V  

5  0 0.50005 V  

6 0 0.65116 V  

7 007 V  

 

If  the impedance per Km of the line is j1 pu/Km, the critcal distance 

will be 

0.1934 47 critl Km 

0.2066   75 critl Km 

 

If the desired fault voltage at bus 5 is varied to be from 0 pu to 1 pu, 

Fig. 6 shows the critical distance critl75  and ritl47  for the various 

desired voltage dip magnitudes at bus 5. 
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Fig. 6. The critical distances ritl47  and critl75  for various desired 

voltage dip magnitudes at bus 5 (0 PU – 1 PU). 
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7. Discussion 

The critical distance method which is  based on the concept of 

potential divider, was correctly and easily applicable to a radial 

network, however non of the recent resecrches could solve the 

problem for meshed power system and the problem was highlighted 

to have a lot of complications. 

The paper developed an analytical method to calculate the critical 

distance of a three-phase fault on transmission line that will cause 

certain voltage dip at a bus in meshed power system. The method is 

based in Gauss-Seidel iteration. 

The solution started first by solving the  fault analysis problem  

assuming the fault in the middle of the line. Then all generator buses 

and the faulted bus are considered as slack buses with the their 

voltage magnitudes specified to the values obtained from the fault 

analysis solution. The bus that must have the desired voltage dip 

magnitude is considered also as a slack bus. Then, the Gauss-Seidel 

iterative method was used to find the solution for the unknown bus 

voltages and the falulted line impedance that causes the desired  

voltage dip. The previous process is repeated many times until the 

fault analysis solution gives the desired voltage dip at the selected 

bus and so the critical impedance solution is obtained.  

The proposed method is tested on 6-bus transmission network in 

Fig. 4 when the three-phase fault is assumed at node 7 in line 4-5.  

The critical impedance obtained is a complex quantity, so the 

critical distance  calculated by dividing the critical impedance by the 

impedance per meter of the line will be also complex quantity which 

is not acceptable. It was necessary to ignore the resistances of 

transmission lines in order to obtain a real solution for critical 

distance. The developed procedure is applied to obtain the critical 

impedance along the faulted line between bus 4 and 5 that will cause 

a voltage dip in bus 4 equal to 0.4 pu, 4.04 V pu, the solution for 

critical impedance is 0.1107i + 0   47 critz pu, and so the critical 

distance when the impedance per Km of the line is j1 pu will be 

Km 0.1107   47 critl . Then the  problem   solved to find the  

critical impedance along the faulted line 4-5 that will cause a 

voltage dip equal to 0.5 pu at the other end of the line, 5.05 V  

pu, the solution for critical impedance is 0.1934i + 047 critz pu, 

and so the critical distance when the impedance per Km of the line 

is j1 pu will be 0.1934 47 critl  Km. Plots of the critical distance 

for various desired voltage dip magnitudes at bus 4 and bus 5 have 

been developed as shown in Fig. 5 and Fig. 6, and the results 

showed significant advantages of the proposed method. However, it 

is noted that, it is possible to obtain the critical impedance solution 

assuming the desired  voltage dip should be at any of the nodes that 

the faulted line was connected to, i.e. nodes 4 and 5 in the example, 

while the solution will not converge if the desired voltage dip 

assumed on any other bus in the system.  

 

8. Conclusion 

Faults studies form an important part of power system analysis. The 

problem of fault location has been studied deeply for transmission 

lines due its importance in the power system. Different methods for 

sags prediction have been developed. The most used are “critical 

distance” and “fault positions”. The critical distance method is 

based on the concept of potential divider, which is correctly and 

easily applicable to a radial network. The extension of this method 

to large meshed networks has been discussed but yet non of the 

existing researches could provide proper solution for thr problem. In 

this paper, an elegant,    analytical method is developed to calculate  

the critical distance of a three-phase fault on   transmission line that 

will cause certain voltage dip at a bus in meshed power system. 

The paper started by giving a brief description to the solution of the 

balanced three-phase to ground short circuit fault problem. The 

problem consists of determining bus voltages and line currents 

during the three-phase fault when the fault location is known. The 

power flow solution using Gauss-Seidel is explained also.  Then the 

proposed approach for the calculation of critical distance in meshed 

power system is introduced. The main objective was to calculate the 

critical distance of a three-phase fault along a transmission line that 

will cause certain voltage dip at selected bus in meshed power 

system.  

The proposed method is tested on 6-bus transmission network. The 

critical impedance obtained is a complex quantity, so the critical 

distance calculated by dividing the critical impedance by the 

impedance per meter of the line will be also complex quantity which 

is not acceptable. It was necessary to ignore the resistances of 

transmission lines in order to obtain a real solution for critical 

distance. Plots of the critical distance for various desired voltage dip 

magnitudes at certain buses are obtained, and the results showed 

significant advantages of the proposed method. But it is noted that it 

is possible to obtain the critical impedance solution assuming the 

desired  voltage dip should be at any of the nodes that the faulted 

line was connected to. 
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APPENDIX 

 

Definition of symbols 

Symbol Definition (All measured in Per Unit) 

VA Notation for apparent power (Volt Ampere). 

iP  Active power in bus i . 

iQ  Reactive power in bus i . 

S Apparent power. 

iI  Inject current at bus i . 

ijI  Current in the line connecting buses i  and j .   

iV  Voltage at bus i . 

)0(iV  Pre-fault voltage at bus i . 

busV  Bus voltages column vector. 

busI  Injected bus currents column vector. 

dX  Synchronous machine direct axis reactance. 

'

dX  Synchronous machine direct axis transient reactance. 

''

dX  Synchronous machine direct axis subtrasient reactance. 

ijr  Resistance of the line connecting buses i  and j .  

ijx  Reactance of the line connecting buses i  and j . 

ijz  Impedance of the line connecting buses i  and j . 

ijy  Admittance of the line connecting buses i  and j . 

B Susceptance. 

ijZ  The element in the impedance matrix corresponding to 

row i  and column j . 

ijY  The element in the admittance matrix corresponding to 

row i  and column j . 

busY  Bus admittance matrix of the net. 

busZ  Bus impedance matrix of the net. 

FZ  Fault impedance. 

LP  Active power on a load bus. 

LQ  Reactive power on a load bus. 

LS  Apparent power on a load bus.  

GP  Active power on a generator bus. 

GQ  Reactive power on a generator bus. 

 

 

 

 

 


