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Abstract
Dental caries, also known as tooth decay or a cavity, remains a major public health problem in the most 

communities even though the prevalence of disease has decreased since the introduction of fluorides for dental 
care. In addition, there is dental erosion, which is a chemical wear of the dental hard tissues without the involvement 
of bacteria. Besides, there are other dental losses, which may be of a medical (decay or periodontal disease), age 
(population aging), traumatic (accident) or genetic (disorders) nature. All these cases clearly indicate that biomaterials 
to fill dental defects appear to be necessary to fulfill customers’ needs regarding the properties and the processing of 
the products. Bioceramics and glass-ceramics are widely used for these purposes, as dental inlays, onlays, veneers, 
crowns or bridges. Calcium orthophosphates (CaPO ) belong to bioceramics but they have some specific advantage 
over other types of bioceramics due to a chemical similarity to the inorganic part of both human and mammalian 
bones and teeth. Therefore, CaPO  (both alone and as constituents of various formulations) are used in dentistry as 
both dental fillers and implantable scaffolds. This review provides brief knowledge on CaPO  and describes in details 
current state-of-the-art on their applications in dentistry and dentistry-related fields. Among the recognized dental 
specialties, CaPO  are most frequently used in periodontics; however, the majority of the publications on CaPO  in 
dentistry are devoted to unspecified “dental” fields.

Keywords: Biooceramics; Hydroxyapatite; Calcium 
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Introduction
Dental caries, also known as tooth decay or a cavity, is an infectious 

disease (usually bacterial in origin), which causes demineralization 
and destruction of teeth. If left untreated, the disease can lead to pain, 
tooth loss and infection. Historically, this disease is very old and it 
is not exclusive of the human species. Namely, evidences of dental 
lesions compatible with caries have been observed in creatures as old 
as Paleozoic fishes (570 – 250 million years), Mesozoic herbivores 
dinosaurs (245 – 65 million years), prehominines of the Eocene (60 
– 25 million years), as well as in Miocenic (25 – 5 million years), 
Pliocenic (5 – 1.6 million years) and Pleistocenic animals (1.6 million 
– 10000 years). Nowadays caries is also detected in bears and other 
wild animals, as well as it is common in domestic animals [1]. Back to 
humans, dental caries has been detected in various epochs and societies 
throughout the world [2-9]. Even though in most developed countries 
the prevalence of the disease has decreased since the introduction of 
fluorides for dental care, dental caries remains a major public health 
problem.

Very briefly, dental caries occurs as this. As the most highly 
mineralized structure in vertebrate bodies, dental enamel is composed 
of numerous nanodimensional needle-like crystals of ion-substituted 
calcium orthophosphates (CaPO4) with the apatitic structure (so 
called “biological apatite”), which are bundled in parallel ordered 
prisms or rods to ensure unique mechanical strength, remarkable 
hardness and biological protection. Nevertheless, teeth possess some 
porosity allowing fluids beneath their surface. Organic (mainly, lactic 
and acetic) acids, produced by dental plaque cariogenic bacteria 
(such as Streptococcus mutans and Lactobacillus) from fermentable 
carbohydrates of sugar or from the remaining food debris, initiate 
the disease. When the sufficient quantity of acids is produced, so that 
the solution pH drops below ~ 5.5, the acids begin to demineralize 
(dissolve) dental enamel and the pores become larger (Figure 1a). The 
dissolution increases the concentration of calcium, orthophosphate/
acid orthophosphate, magnesium, carbonate/bicarbonate ions in the 
microenvironment of the caries lesion, leading to the formation and 

transformation of different types of acidic CaPO4 [10-12]. Several 
models have been developed to simulate dental caries [13-15].

Luckily, saliva has some restorative functions, acting not only as a 
buffer, to reduce the acidity caused by plaque bacteria, but also as the 
constant source of soluble ions of calcium and orthophosphate [11-16]. 
Therefore, upon neutralization of the plaque acids, CaPO4 complexes 
from saliva diffuse back into the channels between the depleted 
enamel rods, replenishing the supply of the dissolved ions (Figure 1b). 
Consequently, the surface of dental tissues is remineralized. Additional 
application of toothpastes, mouthwashes, mouth rinses, tooth mousses, 
etc., assists the remineralization. Thus, under normal circumstances, 
enamel demineralization is compensated by its remineralization. This 
dynamic process takes place more or less continually and equally in 
a favorable oral environment. However, when the demineralization 
exceeds the combined abilities of saliva, toothpastes, mouthwashes, 
mouth rinses, tooth mousses, etc. to remineralize, the dental tissues are 
progressively dissolved and finally break down, producing dental caries, 
which look like cavities and/or holes in the teeth [17]. An example 
of a cariogenic tooth is shown in Figure 2 [11]. Filling with artificial 
materials is a conventional treatment to repair damaged enamel. 
However, secondary caries frequently arise at the interfaces between 
the tooth and foreign materials, which always require restoration 
replacement [18]. 

In addition to dental caries, there is dental erosion, which is a 
chemical wear of the dental hard tissues without the involvement of 
bacteria. Clinical features are loss of surface structures with shallow 
lesions on smooth surfaces and cupping and flattening of cusps; already 
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in early stages, coronal dentine often is exposed. Frequently, acid-
containing drinks and/or food cause it. The acids that cause erosion are 
rather strong with an average pH of ~ 2 for the colas, ~2-2.5 for citrus 
fruits and ~1 for gastric contents. A repeated exposure leads to surface 
demineralization and, therefore, softening, while the softened surface 
is susceptible to loss by abrasion from food or a toothbrush. Repeated 
cycles of acid exposure lead to smooth, cupped out cavities. Surfaces 
most susceptible to erosion are the palatal surfaces of maxillary anterior 
teeth, although, other teeth are also affected. Currently, dental erosion 
is considered as one of the main tooth pathologies able to cause patient 
discomfort after periodontal diseases and caries [12,19,20].

Besides, there are other reasons why people need restorative 
dental biomaterials, such as inlays, onlays, crowns, veneers or bridges. 
The causes may be of a medical (decay or periodontal disease), age 
(population aging), traumatic (accident) or genetic (disorders) nature. 
All these causes adversely affect masticator efficiency, language function, 
facial aesthetics and even the psychological health. Still other patients 
simply wish to change their smile to improve their appearance. Since 

no one wants to cover up their mouth when they smile, the demand for 
esthetic, tooth-colored (“invisible”) restorations permanently increase 
[21]. Finally, there are dental abrasion and dental attrition processes. 
The former is defined as the mechanical removal of hard tissues by the 
repeated introduction of foreign bodies into the oral cavity that are in 
contact with the teeth, while the latter is the physiological wearing a 
way of dental hard tissues though tooth to tooth contact, without the 
intervention of foreign substances [12].

Therefore, due to their visibility, the restorative dental biomaterials 
are fundamentally different from those required to make artificial 
implants for bone replacements (reviewed in Refs. [22,23]). The 
greatest driving force to develop biomaterials for dental restoration 
is to fulfill the customers’ (patients, dentists and dental technicians) 
needs. In addition to the esthetic requirements, pressures from the 
environmental regulations and public apprehension are on the verge of 
eliminating dental amalgam as a practical and inexpensive restorative 
filling material [24]. Thus, by the late of 1990’s, amalgam use in several 
European countries was phased out. Consequently, a great challenge 
was and is the development of metal-free restorations with properties 
close to natural teeth (with respect to translucency, color and abrasive 
behavior) or even better mechanical properties and better durability 
than natural teeth [21].

Briefly, all restorative dental biomaterials must meet the following 
basic requirements [21]:

• They must be durable and biocompatible;

• Their optical characteristics (gloss, translucency and color, in 
particular) must be comparable to those of natural teeth;

• Their mechanical properties (strength and toughness) must meet 
the requirements of the indication range (namely, the required 
strength of an inlay is lower than that of a dental bridge);

• Their wear behavior must be similar to that of natural teeth.

In addition, they should be easily implantable or injectable, which 
is a critical requirement for any medical application.

Hence, a selecting problem of the appropriate biomaterials arises. 
When all material characteristics and clinical factors are considered, 

 
A B

Figure 1: Schematic drawings of: (A) – demineralization and (B) – remineralization processes of dental enamel.

Figure 2: A small cavitated caries lesion in the occlusal surface of a 
mandibular molar. (Reprinted with permission from Ref. [11]).
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dentistry, periodontics, prosthodontics, and general dentistry. There 
are other dental niches such as oral medicine, dental aesthetics, dental 
implantation, and orofacial pain and temporo-mandibular disorders, 
some of them are recognized as dental specialties in other countries. In 
the European Union, all member states must recognize the specialties 
of orthodontics and oral and maxillofacial surgery” [34].

Now it is necessary to describe briefly all dental specialties and 
determine in which of them CaPO4 are used. According to Wikipedia: 
“Dental public health is involved in the assessment of dental health needs 
and improving the dental health of populations rather than individuals. 
One of the controversial subjects relating to dental public health is 
fluoridation of drinking water” [35]. A search in Scopus database has 
been performed for papers containing in the title a combination of terms 
(keywords) “public health dentistry” + “apatite” and “public health 
dentistry” + “calcium phosphate”. Zero publications have been found in 
both cases (Table 2). Thus, this direction has nothing in common with 
CaPO4. Endodontics (from the Greek ένδο (endo) “inside” and όδούς 
(odous) “tooth”) deals with the tooth pulp and tissues surrounding roots 
of teeth. If the pulp (containing nerves, arterioles, venules, lymphatic 
tissue, and fibrous tissue) becomes diseased or injured, endodontic 
treatment is required to save the tooth [36]. The results of a similar 
search (Table  2) revealed that CaPO4 are used rarely in endodontics. 
Oral and maxillofacial pathology, radiology and surgery represent “the 
study, diagnosis, and sometimes the treatment of oral and maxillofacial 
related diseases”, “the study and radiologic interpretation of oral and 
maxillofacial diseases” and “extractions, implants, and facial surgery”,  
respectively [37]. Only surgery appears to deal with CaPO4 occasionally 
(Table 2). Furthermore, within these three dental specialties, one needs 
to differentiate between “oral” and “maxillofacial” terms. The former 
term is relevant to the subject of this review, while the latter one is 
undoubtedly irrelevant, since it deals with treatment of the surrounding 
bones. Various CaPO4-based formulations have been proposed for 
reconstruction of the contour and discontinuity defects in maxillofacial 
surgery [38-51]; however, this subject belongs to bone grafts [22,23]. 
Orthodontics, formerly orthodontia (from Greek όρθός (orthos) 
“straight, or proper, or perfect” and όδούς (odous) “tooth”) is the first 
specialty of dentistry that is concerned with the study and treatment 
of malocclusions (improper bites), which may be a result of tooth 
irregularity, disproportionate jaw relationships, or both [52]. CaPO4 
are used rarely in orthodontics (Table 2). Pediatric dentistry (formerly 
pedodontics (American English) or paedodontics (Commonwealth 
English)) is the branch of dentistry dealing with children from birth 
through adolescence. It places special importance in preventing tooth 
decay. Additionally, pediatric dentists work toward the maintenance of 
primary teeth (baby teeth) until they are naturally lost. It is irrelevant 

bioceramics offer, perhaps, the best choice for a metal-free dentistry. 
Namely, bioceramics possess the excellent chemical durability, wear 
resistance, biocompatibility, environmental friendliness and esthetics. 
The bioceramic restorations can be used in situations such as treatments 
of primary caries where inlays can be applied without a more excessive 
removal of tooth structure that is associated with amalgam. Besides, 
bioceramic onlays or crowns can also be used in place of large amalgam 
restorations. However, the widespread use of all-ceramic restorations 
has been hindered by concerns related to marginal fracture resistance 
and clinical longevity. Therefore, the goal of dental bioceramics 
research is to produce all-ceramic dental restorative systems that utilize 
the known advantages of ceramic materials and minimize the existing 
disadvantages [25].

CaPO4 belong to bioceramics but they have some specific 
advantages over other types of bioceramics due to a chemical similarity 
to the inorganic part of both human and mammalian bones and teeth. 
Due to these known similarities, dentists have been using CaPO4 in 
clinical practice for over a century. Namely, Dr. Junius E. Cravens 
(1844 – 1920) from USA proffered creative concepts in pulp capping 
in the 1870’s. He had the opinion that dentin-like material would 
be the best to keep the pulp vital. Therefore, Cravens used a CaPO4 
powder, which was mixed with lactic acid to low viscosity. The result 
was a soluble calcium lactic orthophosphate, which was applied onto 
the exposed pulp tissue [26]. This pulp-capping agent was brought to 
the market by the S.S. White company with the trade name “Lacto-
Phosphate of Lime” (Figure 3) [27]. Besides, CaPO4 appear to be the 
only bioceramics potentially applicable for remineralization of dental 
surface [28].

The available CaPO4, their standard abbreviations and solubility 
values are listed in Table 1 [29,30]. Additional details on CaPO4, their 
properties and applications are available in the special monographs on 
the subject [31-33]. The objective of this overview is to provide current 
state-of-the-art on CaPO4 applications in dentistry and dentistry-
relevant fields.

General definitions and knowledge

According to Wikipedia, the free encyclopedia: “Dentistry is 
the branch of medicine that is involved in the study, diagnosis, 
prevention, and treatment of diseases, disorders and conditions of 
the oral cavity, maxillofacial area and the adjacent and associated 
structures and their impact on the human body. The American Dental 
Association recognizes nine dental specialties: public health dentistry, 
endodontics, oral and maxillofacial pathology, oral and maxillofacial 
radiology, oral and maxillofacial surgery, orthodontics, pediatric 

Figure 3: An advertisement of the S.S. White Company for “Lacto-phosphate of lime” 1873. (Reprinted from Dent. Cosmos 1873, 15, 683).
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to the CaPO4 subject (Table 2). Periodontics (also periodontology, 
from Greek περί (peri) “around” and όδούς (odous) “tooth”) is the 
specialty of dentistry that studies supporting structures of teeth, as 
well as diseases of periodontium (these are specialized tissues investing 
and supporting teeth, including cementum, periodontal ligament, 
alveolar bone and gingiva, characterized by the loss of support around 
teeth) and conditions that affect them. Although CaPO4 are used in 
periodontics (Table 2); in fact, they are applied to treat alveolar bones, 
which, again, is another story [22,23]. Prosthodontics (from Greek 
πρόσθεση (prosthesis) “addition” and όδούς (odous) “tooth”), also 
known as dental prosthetics or prosthetic dentistry, is a dental specialty 
pertaining to the diagnosis, treatment planning, rehabilitation and 
maintenance of the oral function, comfort, appearance and health of 
patients with clinical conditions associated with missing or deficient 
teeth and/or oral and maxillofacial tissues using biocompatible 
substitutes [53]. CaPO4 are used rarely in prosthodontics (Table 2). In 
addition, similar searches in Scopus database using key words “dental”, 
“dentistry”, “oral”, “stomatology” and “caries” combined with “apatite” 
or “calcium phosphate” have been performed (Table 2, the bottom 
lines).

Brief information on current biomedical applications of 
CaPO4 

Due to a chemical similarity to the inorganic part of normal 
calcified tissues (bones, teeth and deer antlers) of mammals, artificially 
prepared CaPO4 possess good biocompatibility, bioactivity and 
osteoconductivity [29-33]. These properties of CaPO4 are extensively 
used in medicine for repairing or replacement of injured or damaged 
bones and teeth. Since the diverse biomedical applications require 
different formulations, configurations and/or shapes, the biomedically 
relevant CaPO4 are produced in various physical forms, such as: 
powders, particles, granules, dense blocks, porous scaffolds, self-setting 
formulations, suspensions, non-hardening pastes, implant coatings, as 
well as composite components of different origin (natural, biological or 
synthetic) often with the specific shapes, such as implants, prostheses 
or prosthetic devices [22,23,29-33,54]. In view of the fact that several 
dental specialties deal with an invasion into (such as, bone drilling 
to insert an implant) and/or treatment of the surrounding bones, in 
principle, all the aforementioned forms, formulations, configurations 
and shapes of CaPO4 might be applicable to the dentistry field.

CaPO4 for dental caries prevention and in dentifrices

Traditionally, caries prevention strategies are focused on reducing 
bacterial growth, neutralizing of oral acids and teeth remineralization. 
Among them, only the third strategy appears to deal with the CaPO4 
subject. Briefly, the teeth remineralization is a process in which 
dissolved CaPO4 minerals are returned to the molecular structure 
of the teeth themselves. To reduce dental caries by performing 
remineralization, systemic and/or topical fluoridation of water is 
commonly used [55]. In addition, various ions-delivering agents are 
used in the form of dentifrices, toothpastes, mouthwashes, mouth 
rinses, chewing gums, etc. Many of these remineralizing agents contain 
CaPO4 [56]. This is because the focus in caries research has shifted to 
development of methodologies for detection of the early stages of caries 
lesions and non-invasive treatment of these lesions. For example, in 
the presence of calcium and orthophosphate ions, topical fluoride ions 
promote formation of FA (which is the least soluble compound among 
all known types of CaPO4, Table 1) in dental enamel. This property of 
fluorides has been known since, at least, 1956 [57]. However, to form 
one unit cell of FA, 10 calcium and 6 orthophosphate ions are required 

for every 2 fluoride ions. Hence, on topical application of fluoride ions, 
the availability of calcium and orthophosphate ions can be the limiting 
factor for net enamel remineralization to occur and this is highly 
exacerbated under the xerostomic (i.e. a dry mouth) conditions [28].

Now, let me describe the applications of CaPO4 in dentifrices. 
According to Wikipedia: “Dentifrice are agents used along with 
toothbrush to clean and polish natural teeth. They are supplied as 
paste, powder, gel or liquid form.” [58]. To the best of my findings, 
the first publication dealing with an application of CaPO4 in dentistry 
was related to dentifrices. It was a presentation made at the 23rd general 
meeting of the International Association for Dental Research (held 
in Chicago, IL, May 27, 1945) and the abstract of that presentation 
was published shortly afterwards [59]. Since then, numerous studies 
devoted to various applications of CaPO4 in dentifrices have been 
published [60-96]. A number of such formulations also contains 
fluorides [60,61,67,68,71-74,76,81,85,94-96].

Toothpastes: CaPO4-containing toothpastes were found to 
promote a partial remineralization of the demineralized enamel 
[78,79,81-83,85-88,92-95], as well as depending on the addition of other 
constituents they also could possess some whitening effect [75,77,96] 
and reduce tooth sensitivity [82,89]. For example, the polishing and 
whitening properties of HA-containing toothpastes were investigated 
in a combined study [75]. The polishing properties were evaluated by 
means of artificial teeth by polishing with different toothpastes, while 
the brightening and whitening properties were examined in volunteers 
using two colorimeters with two specially made fiberscope. The results 
revealed that addition of HA to the toothpaste did not alter its polishing 
properties, while it did result in a marked increase in tooth whitening. 
It was also found that the brightening and whitening properties 
increased as the amount of HA in the toothpaste increased. Thus, HA-
containing toothpaste appeared to be effective at whitening teeth and 
whitening was not due to their polishing effect on tooth surface [75]. 
The whitening properties of HA-containing toothpastes were also 
found by other researchers [77,96]. 

In addition, it is worth mentioning on a randomized study with 
181 children (92 boys, 89 girls) from different Japanese schools over 
a period of 3 years [65]. After lunch, the children brushed their teeth 
under supervision with a toothpaste containing 5% HA and a control 
group with a paste without HA. Yearly controls of the DMFT (number 
of decayed, missing and filled teeth due to caries) index were diagnosed 
as well as the caries incidence on newly erupted teeth. The DMFT index 
appeared to be significantly deeper in the HA-containing toothpaste 
group, while the incidence for caries in newly erupted teeth was 
significantly lower if compared to the control [65].

Besides, dentifrices containing a combination of 
monofluorophosphate (MFP) with a DCPD abrasive were evaluated in 
a variety of in vivo tests [67]. MFP with silicon dioxide abrasive at an 
equivalent fluoride concentration was used for comparison. The data 
indicated that DCPD was more effective than silica in preventing plaque 
pH drop. A toothpaste containing MFP + DCPD was significantly more 
effective than an MFP + silica toothpaste. In addition, a toothpaste 
containing 45Ca radiolabeled DCPD was applied topically in rats’ teeth. 
The results showed that 45Ca was incorporated into the enamel with a 
concomitant reduction in enamel solubility. In a rat caries study using 
MFP + DCPD, matching placebo and MFP + silica, the MFP + DCPD 
dentifrice showed a significantly greater reduction in smooth surface 
caries. These dentifrices were also tested in an in situ human model 
for fluoride uptake in artificial root caries lesions where MFP + DCPD 
provided a significantly higher fluoride uptake than MFP + silica. A 
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Ca/P molar ratio Compounds and their typical 
abbreviations Chemical formula Solubility at

25ºC, -log(Ks)
Solubility at

25ºC, g/L
pH stability range in aqueous 

solutions at 25°C

0.5 Monocalcium phosphate monohydrate 
(MCPM) Ca(H

2PO4)2·H2O 1.14 ~ 18 0.0 – 2.0

0.5 Monocalcium phosphate anhydrous 
(MCPA or MCP) Ca(H2PO4)2 1.14 ~ 17 [c]

1 Dicalcium phosphate dihydrate (DCPD), 
mineral brushite CaHPO4·2H2O 6.59 ~ 0.088 2.0 – 6.0

1 Dicalcium phosphate anhydrous (DCPA 
or DCP), mineral monetite CaHPO4 6.9 ~ 0.048 [c]

1.33 Octacalcium phosphate (OCP) Ca8(HPO4)2(PO4)4·5H2O 96.6 ~ 0.0081 5.5 – 7.0
1.5 α-Tricalcium phosphate (α-TCP) α-Ca3(PO4)2 25.5 ~ 0.0025 [a]

1.5 β-Tricalcium phosphate (β-TCP) β-Ca3(PO4)2 28.9 ~ 0.0005 [a]

1.2 – 2.2 Amorphous calcium phosphates (ACP) CaxHy(PO4)z·nH2O, n = 3 – 
4.5; 15 – 20% H2O

[b] [b] ~ 5 – 12 [d]

1.5 – 1.67 Calcium-deficient hydroxyapatite (CDHA 
or Ca-def HA)[e]

Ca10-x(HPO4)x(PO4)6-x(OH)2-x 
(0<x<1) ~ 85 ~ 0.0094 6.5 – 9.5

1.67 Hydroxyapatite (HA, HAp or OHAp) Ca10(PO4)6(OH)2 116.8 ~ 0.0003 9.5 – 12
1.67 Fluorapatite (FA or FAp) Ca10(PO4)6F2 120 ~ 0.0002 7 – 12

1.67 Oxyapatite (OA, OAp or OXA)[f], mineral 
voelckerite Ca10(PO4)6O ~ 69 ~ 0.087 [a]

2 Tetracalcium phosphate (TTCP or 
TetCP), mineral hilgenstockite Ca4(PO4)2O 38 – 44 ~ 0.0007 [a]

[a] These compounds cannot be precipitated from aqueous solutions. 
[b] Cannot be measured precisely. However, the following values were found: 25.7 ± 0.1 (pH = 7.40), 29.9 ± 0.1 (pH = 6.00), 32.7 ± 0.1 (pH = 5.28). The comparative 
extent of dissolution in acidic buffer is: ACP >> α-TCP >> β-TCP > CDHA >> HA > FA. 
[c] Stable at temperatures above 100°C. 
[d] Always metastable.     
[e] Occasionally, it is called “precipitated HA (PHA)”. 
[f] Existence of OA remains questionable. 

Table 1: Existing calcium orthophosphates (CaPO4) and their major properties [29,30].

 Number of Publications

Dental specialty Apatite Calcium 
phosphate Cumulative

Public Health Dentistry 0 0 0
Endodontics 18 12 30
Oral and Maxillofacial Pathology 1 0 1
Oral and Maxillofacial Radiology 0 0 0
Oral and Maxillofacial Surgery 20 11 31
Orthodontics 9 26 35
Pediatric Dentistry 0 0 0
Periodontics 195 113 308
Prosthodontics 9 0 9
Additional keywords 
Dental 370 208 578
Dentistry 22 17 39
Oral 73 90 163
Stomatology 4 2 6
Caries 29 75 104
Total* 750 554 1304

*duplications are possible.

Table 2: The amount of publications containing the selected keywords in their 
titles, found in Scopus database.

second in situ study in humans evaluated the same dentifrices MFP 
+ DCPD increased salivary plaque calcium and fluoride. These results 
of laboratory, animal and in situ studies taken together indicated that 
the MFP + DCPD combination was the unique one in providing extra 
supersaturation in saliva and plaque with concomitant enhanced 
anticaries efficacy [67].

Thus, due to the aforementioned successful cases of CaPO4 addition 
to toothpastes, such toothpastes are commercially produced worldwide 
(Table 3). As seen from the Table 3, toothpastes for both human and 

animals are available. One should note that HA and ACP are added 
to toothpastes to provide remineralization properties, while DCPD 
and DCPA are added to toothpastes as abrasives to provide a gentle 
polishing action.

To finalize this section, one should mention on the studies, in 
which addition of CaPO4 to toothpastes did not show any positive 
influence on enamel and/or dentin demineralization/remineralization 
properties [97].

Chewing gums: Except of toothpastes, CaPO4 are added to 
chewing gums to reduce dental caries [98-116]. In the vast majority 
of cases, a positive effect was noticed. Namely, to evaluate chewing 
gums as a vehicle to increase salivary mineral saturation levels and 
enhance salivation, both MCPM and the equimolar mixture of TTCP 
with DCPA were chosen as experimental chewing gum additives 
[103]. Each subject chewed a commercial sugar-free bubble gum 
(control) for 16 min or the same gum to which 5 wt. % of MCPM or 
TTCP + DCPA mixture had been added. Both experimental gums 
were found to increase significantly the concentrations of calcium 
and orthophosphate ions in saliva during the 16-minute period even 
more than with a previously evaluated gum that contained DCPD. The 
degree of saturation of tooth mineral was significantly increased by 
both experimental gums, with a greater increase being produced by the 
TTCP + DCPA gum. The MCPM gum produced a significantly greater 
saliva flow and a lower salivary pH than did the control and TTCP + 
DCPA gums. The results suggested that the experimental gums could 
be useful for promoting remineralization in general and for inducing 
salivation in xerostomic patients [103].

In other studies, both sugar-free gums (control) and casein 
phosphopeptide-ACP (CPP-ACP) containing gums were chewed for 
either 20 min periods, four times a day or 5 min periods, seven times 
a day. Microradiography and computer assisted densitometric image 
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Type of CaPO4
Human or 
Animals Trade name and producer (when available)

HA Human

Active Remineralization Toothpaste (A.R.T.) (Pearlie White, Corlison, Singapore)
ApaCare (Cumdente, Germany)
Apadent (Sangi Co., Japan)
Apagard Premio (Sangi Co., Japan)
Arcticum (SPLAT-COSMETICA, Russia)
Biorepair (Coswell, Italy)
Coolin Bubble (Canavena Co., Korea)
DIO (DIO Co., Korea)
Desensibilize Nano P (FGM Produtos Odontológicos, Brasil)
Desensin repair (Dentaid)
Hakusanshiko (Japan)
Janina (Janina Ultra White, UK)
Kalident - calcuim hydroxyapatite (Kalichem, Italia)
MAXDENT (STS Cosmetics, Bulgaria)
Megasonex (Goldspire Group, Hong Kong)
nanoXIM•CarePaste (FLUIDINOVA, Portugal)
Parodontol Active (Svoboda Ltd., Russia)
PrevDent (PrevDent International, Netherlands)
Renamel AfterBleach (Sangi Co., Japan)
Remin (X-PUR, Oral Science, QC, Canada)
R.O.C.S. SENSITIVE (DRC Group, Russia)
Sensitive Reminx (Pharma Jenistec Co., Korea)
Triple Denta (TripleLife Co., Ltd., Korea)
Ultracomplex (SPLAT-COSMETICA, Russia)
UltraDEX Recalcifying and Whitening (Periproducts Ltd., UK)
VITIS anticaries toothpaste (Dentaid)
YP Dental (You Co., Ltd. Japan)

ACP Human

Age Defying (Arm & Hammer, Church & Dwight Co. NJ, USA)
Complete Care (Arm & Hammer, Church & Dwight Co. NJ, USA)
Enamel Care (Arm & Hammer, Church & Dwight Co. NJ, USA)
Enamel Pro (Premier Dental Products Company, USA)
Enamelon (Premier Dental Products Company, USA)
INNOVA (SPLAT-COSMETICA, Russia)
MI paste (GC America, IL, USA)
MI paste plus (GC America, IL, USA)

DCPD or DCPA

Human

All White (Dr. Collins, USA)
Dentu-Creme Denture (Polident, GlaxoSmithKline, UK)
Plus White (CCA Industries Inc., NJ, USA)
Pureen (Singapore)
Snappy Jaws (Australia)
Supersmile (USA)
Triple Action Whitening (Pearl Drops, Church & Dwight, NJ, USA)
Triple Power Whitening (Pearl Drops, Church & Dwight, NJ, USA)
VITA-MYR (NV, USA)

Animals

Advanced Oral Care (Nylabone, NJ, USA)
C.E.T. Enzymatic (Virbac, TX, USA)
Colgate Cavity Protection (Colgate-Palmolive, NY, USA)
Dental Care Kit (Sentry Petrodex, Sergeant’s Pet Care Products, NE, USA)
Dentifresh (Hatchwell, UK)
Enzymatic toothpaste (Sentry Petrodex, Sergeant’s Pet Care Products, NE, USA)
Four Paws Pet Dental (Four Paws Products, NY, USA)
Original (Oxyfresh, ID, USA)
R.O.C.S. PRO Baby (DRC Group, Russia)
VetOne (VetOne, ID, USA)

Undisclosed CaPO4 Human TriMedica Pure MSM

Table 3:  Trademarks of CaPO4-containing commercial toothpastes.
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analysis demonstrated that, regardless the gum type and chewing 
duration (e.g., 20 min or 5 min), the CPP-ACP nanocomplexes 
produced a dose-related remineralization of enamel subsurface lesions 
in situ. The gums containing 18.8 mg and 56.4 mg of the nanocomplexes, 
chewed for 20 min, four times per day for 14 days, increased enamel 
subsurface remineralization by 101% and 151%, respectively, relative 
to the control sugar-free gums. Microradiographs of the enamel 
lesions before and after remineralization showed that the CPP-ACP 
nanocomplexes promoted remineralization throughout the body of 
the lesion. Electron microprobe wavelength dispersive spectrometric 
analyses of sections of the remineralized enamel indicated that the 
mineral deposited was apatite with a higher Ca/P ratio than that in the 
stoichiometric HA. Acid challenge of the enamel remineralized by the 
CPP-ACP nanocomplexes in situ showed that the remineralized apatite 
was more resistant to acid challenge than the normal calcium-deficient 
carbonated tooth enamel. Thus, the clinical trials of CPP-ACP-
containing sugar-free chewing gums demonstrated that these gums 
significantly slowed progression of caries and enhanced regression of 
caries compared with the control sugar-free gums [106-110].

Teeth remineralization: In general, remineralization of teeth can 
be defined as the process in which calcium and orthophosphate ions 
are supplied from a source external to teeth to promote their deposition 
into crystal voids in demineralized enamel, to produce net mineral gain 
[117]. The earliest found paper on a possibility of a remineralization 
phenomenon occurring in caries was published in 1912 [118], while 
that using CaPO4 for rehardening was performed in 1961 with 
solutions, contained dissolved ions of calcium and orthophosphate 
[119], followed by the set of the studies by Silverstone [120,121] and 
ten Cate and Arends [122-125].

The early attempts to use CaPO4 for remineralization of dental 
surface were unsuccessful due to their low solubility, particularly in 
the presence of fluoride ions. Namely, the insoluble CaPO4 cannot be 
applied easily; they do not localize effectively at the tooth surface and 
require an acidic environment for solubility levels sufficient to produce 
ions capable to diffuse into enamel subsurface lesions. Furthermore, 
due to the intrinsic insolubility of CaPO4 at the physiological pH 
values, soluble calcium and orthophosphate ions can only be used 
at very low concentrations. Besides, the soluble ions of calcium and 
orthophosphate are neither substantially incorporated into the 
dental plaque, nor localized at the tooth surface to produce the effective 
concentration gradients to drive diffusion into the subsurface enamel [28].

Nevertheless, such studies keep going. For example, a 
remineralization potential of HA itself for caries lesion treatment 
was investigated [66]. Previously demineralized enamel blocks were 
immersed into an aqueous solution of sludgy HA at 37°C for 55 
hours, followed by 24 hours washing with synthetic saliva and another 
group was washed only with synthetic saliva. Artificial caries lesions 
were remineralized slightly by immersion into artificial saliva but 
significant acceleration of remineralization was observed in the sludgy 
HA group [66]. Positive results were also obtained in other studies 
[64,126-137]. Besides, remineralization of caries lesions could be 
performed by supersaturated solutions [138,139] and/or gels [140-147] 
containing dissolved ions of calcium and orthophosphate. In addition, 
supersaturated by CaPO4 mouth rinses were found to experience a 
significant increase in reversals of caries in high-risk for caries patients 
due to xerostomia (salivary hypofunction) [148]. A remineralization 
potential of sport drinks, containing nano-sized HA, was also studied 
[149,150].

More complicated formulations, such as CaPO4-loaded 

liposomes combined with amelogenin-inspired oligopeptides, have 
been also developed to promote remineralization of dental enamel 
[151]. Thus, CaPO4 appear to be the chemicals able to reduce dental 
caries at the early stages. However, studies performed by using 
atomic force microscopy nano-indentation technique revealed that 
previously demineralized samples of dental enamel further exposed to 
remineralizing solutions did show a crystalline layer of CaPO4 formed 
on their surface. Unfortunately, the re-precipitated deposits of CaPO4 
always consisted of loosely packed crystals and did not protect the 
underlying enamel from a subsequent acid attack. Furthermore, these 
surface deposits were completely removed by either a toothbrush or a 
short exposure to an erosive acidic solution [152-155]. In this context, 
it should be emphasized that the term “remineralization”, which is 
often misused in the literature, should imply the process of mineral 
growth that goes hand in hand with a strengthening effect of the 
weakened enamel surface. Since no strengthening of an exposure to 
remineralizing solutions was observed, it might be considered that no 
“passive mineralization” was found (in spite of the real evidence of the 
re-precipitated surface deposits of CaPO4) [152,154,155].

Further details on the remineralization attempts of teeth are 
available in the topical reviews [156-158].

Dentin hypersensitivity treatments: As written in Wikipedia, 
the free encyclopedia: dentin hypersensitivity (abbreviated to DH 
or DHS and also termed sensitive dentin, dentin sensitivity, cervical 
sensitivity and/or cervical hypersensitivity) is dental pain which is 
sharp in character and of short duration, arising from exposed dentin 
surfaces in response to stimuli, typically thermal, evaporative, tactile, 
osmotic, chemical or electrical and which cannot be ascribed to any 
other dental disease [159]. Dentin hypersensitivity is a frequently 
reported oral pain condition, which is mostly diagnosed at the buccal 
surfaces of teeth, where enamel is missing due to erosion, abrasion and/
or attrition. Contrary to enamel, which is dense and contains a small 
amount of pores, dentine has a great number of tiny tubes (“tubules”) 
that lead to the nerve and are filled with fluids. However, until about 
the third or fourth decade of life in healthy individuals, the surface of 
dentin is not exposed and the tubules are sealed. When a tooth loses 
its protection from gum recession and/or tooth enamel wear, these 
tubules are exposed to the outside, allowing external stimuli to reach 
the nerve endings. Therefore, even mild external stimuli such as hot or 
cold foods and beverages can cause a change in fluid movement, which 
causes the nerve endings to react in response, triggering a short but 
sharp pain (Figure 4).

Due to the aforementioned abilities of CaPO4-containing 
formulations (section 4.3. Remineralization studies), some types of 
CaPO4 were found to be able to treat this disease as well [82,89,114,160-
167]. For example, in sensitivity studies, a HA-containing toothpaste was 
compared with positive control toothpastes. That study demonstrated 
that the HA-containing toothpaste was similarly effective in reducing 
dentine hypersensitivity with pre-existing benchmark toothpastes 
[82]. Positive results were also obtained with both HA-containing 
Renamel After Bleach toothpaste [89] and an undisclosed nano-HA, 
potassium nitrate, sodium monoflurophosphate and antioxidants-
containing toothpaste [166]. In another study, HA-treated teeth 
showed statistically significant reduction in hypersensitive symptoms 
compared to the control groups and the authors concluded that HA 
showed “definite potential as an effective and permanent desensitizer 
when used as an in-office procedure” [164]. Furthermore, a CaPO4 
precipitation method was once tried as a treatment for dentin 
hypersensitivity using vital teeth of beagle dogs. The results revealed 
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that dentin tubules were occluded homogeneously and completely with 
an apatitic mineral after application of the CaPO4 precipitation in vital 
teeth [162]. A commercial self-setting formulation TEETHMATE™ 
DESENSITIZER (Kuraray Noritake Dental Inc., Japan), consisting of 
a mixture of DCPA + TTCP + some additives, which formed CDHA 
precipitates upon exposure to saliva, appeared to able to occlude open 
dentinal tubules and, by this way, acted as an effective desensitizer 
compound [167].

Very schematically, the mechanism of dentin hypersensitivity and 
the major principles of its treatment by CaPO4 are shown in Figure 4.

Clinical applications of CaPO4 in dentistry

As written in introduction, dentists have been using CaPO4 for 
over a century. However, to the best of my findings, the first available 
publication on decalcification of teeth as the reason of various dental 
pathologies was published in 1925 [168]. Furthermore, the clinical 
applications of CaPO4 in dentistry started only in 1970-s [169]. Namely, 
the first application of a CaPO4 (erroneously described as “TCP of HA 
structure”) bioceramics in surgically created periodontal defects was 
reported in 1975 [170], followed by a publication on alveolar ridge 
augmentation in 1978 [171], while the use of dense HA cylinders 
for immediate tooth root replacement was reported in 1979 [172]. A 
summary on early (before 1987) studies might be found in Table 3 of 
Ref. [173], while Table 4 of this publication represents the various types 
of dental applications of CaPO4 in the middle of 1980-s [31,173]. 

Overall, the reasons for the clinical application of CaPO4 in 

dentistry are similar to those for their applications in bone grafting. A 
chemical similarity to the inorganic phases of teeth and bones appears 
to be the major reason. Consequently, CaPO4 possess an excellent 
biocompatibility, biotolerance, an ability to be resorbed by both tooth- 
and bone-related cells, osteoconductivity, etc. In addition, CaPO4 are 
less expensive than most of the inorganic fillers used today. Below, 
the clinical applications of CaPO4 in dentistry have been classified 
using two ways: according to the existing CaPO4, listed in Table 1, and 
according to the modern dental specialties, listed in Table 2. 

Classification according to the existing CaPO4 (Table 1)

MCPM and MCPA: Just a few studies on dental applications of 
MCPM and MCPA were found in databases. According to the available 
publications, both compounds are used in dentistry as components 
of self-setting formulations [174,175], including sealers [176]. For 
example, a commercial product EndoSequence® BC Sealer (Brasseler 
USA, Savannah, Georgia) is a premixed ready-to-use injectable 
cement paste developed for permanent root canal filling and sealing 
applications. It contains zirconium oxide, calcium silicates, MCPA, 
calcium hydroxide, filler and thickening agents. When this sealer is 
placed in the root canal, it absorbs water from the dentin tubules causing 
hydration reactions of calcium silicates. Simultaneously, MCPA reacts 
with calcium hydroxide to precipitate CDHA. This leads to formation 
of a composite network of gel-like calcium silicate hydrates, which 
intimately mixes with CDHA crystals and forms a hermetic seal inside 
the root canal [176]. In addition, MCPM and/or MCPA were tried as 
components of caries-inhibiting dental biocomposites, releasing ions 

Figure 4: (A) Exposure of dentin tubules to hot and cold temperatures stimulates nerves and causes pain; (B) nano-dimentional CaPO4 particles fill dentin tubules 
binding chemically to dental structure reducing hypersensitivity; (C) CaPO4 remineralizes the tooth enamel protecting it against acid attacks from food and beverages; 
(D) improved smoothness and whitening due to the enamel repair.
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of calcium and orthophosphate [175,177]. Once a MCPM-containing 
chewing gum was tested; it produced a significantly greater saliva flow 
and a lower salivary pH than the control gum did [103].

DCPD and DCPA: As seen in Table 3, DCPD and/or DCPA are 
often added to toothpastes as gentle polishing agents. In addition, 
DCPD and/or DCPA (unfortunately, the authors of the publications on 
the subject rarely specify which of them was used) are added to chewing 
gums [98-101,103,111] and other types of dentifrices [61-63,67-74,76]. 
Furthermore, they are used as either components or end products of 
various CaPO4-based self-setting formulations [42,43,160,167,178-187] 
and root canal sealers [188]. In addition, both compounds are added to 
biocomposites [189-192]. For example, decreasing of DCPA particle 
dimensions were found to increase the Ca- and PO4-ions releases from 
DCPA-based biocomposites. Therefore, such biocomposites possess 
both a high strength and good release of Ca- and PO4-ions, which 
may provide the needed and unique combination of stress-bearing 
and caries-inhibiting capabilities suitable for dental applications [191]. 
Besides, DCPD was tried in pulpectomy [193].

OCP: Just a few publications were found on applications of OCP 
in dentistry and dentistry-related fields. Namely, OCP might be used 
as a coating [194,195], a component of biocomposites [195,196] and 
self-setting formulations [197,198]. In addition, OCP was tried in 
pulpectomy [193], as a direct pulp capping material [197] and for 
alveolar ridge augmentation [196,199]. Furthermore, investigations 
with rats revealed that implanted OCP could serve as a core for initiating 
bone formation and cause osteoinduction and osteoconduction in 
experimentally created cranial defects [200] and enhanced reparative 
dentine formation via induction of odontoblast differentiation [201].

ACP: Unlike OCP, ACPs appear to be very popular compounds for 
dental applications [28,113,115,116,161,163,202-252]. For example, 
two ACP-based remineralization systems have been developed and are 
now commercially available: a casein phosphopeptide (CPP) stabilized 
ACP with a trade name Recaldent™ (Cadbury Enterprises Pte Ltd., 
Singapore) and an unstabilized ACP with a trade name Enamelon™ 
(Enamelon Inc., Cranbury, NJ, USA). CPP is produced from milk 
protein casein and has a remarkable ability to stabilize CaPO4 in 
solutions and substantially increase the level of CaPO4 in dental plaque. 
Therefore, in Recaldent™ technology, it is claimed that CPP stabilizes 
high concentrations of calcium and orthophosphate ions, together with 
fluoride ions, at the tooth surface by binding to pellicle and plaque. 
Through the cluster sequence, CPP binds to forming nanodimensional 
clusters of ACP preventing their growth to the critical size required 
for nucleation and phase transformation. CPP-ACP nanodimensional 
complexes are formed as a result [253]. It is believed that these CPP-ACP 
nanocomplexes enter the porosities of an enamel subsurface lesion and 
diffuse down concentration gradients into the body of the subsurface 
lesion. Once present there, the nanocomplexes release the weakly 
bound calcium and orthophosphate ions, which would then deposit 
into crystal voids [117]. Due to ACPs’ bioactivity, local Ca- and PO4-

enriched environments are created with supersaturation conditions 
favorable for the regeneration of tooth mineral lost to decay or wear. 
Although all the available ions are stabilized by CPP from promoting 
dental calculus, they are freely available to diffuse down concentration 
gradients into enamel subsurface lesions thereby effectively promoting 
remineralization in vivo. The Enamelon™ technology applies calcium 
ions (e.g., calcium sulfate) and orthophosphate ions (e.g., ammonium 
orthophosphate, sometimes in the presence of fluoride ions) separately 
(e.g., from a dual chamber device). Therefore, as the salts mix with saliva 
they dissolve releasing calcium and orthophosphate ions and ACP (or 
F-containing ACP) forms intra-orally. In the intra-oral environment, 
both ACP and F-containing ACP are very unstable and rapidly 
transform to a more thermodynamically stable, insoluble crystalline 
phases, such as CDHA and a blend of CDHA + FA, respectively. It is 
believed that this helps rebuild tooth enamel through remineralization 
[71,254,255]; however, this approach may also promote dental calculus 
[28]. Thus, both previously prepared ACP (Recaldent™) and in situ 
precipitated ACP (Enamelon™) are used in dentistry to remineralize 
tooth surface. This property of ACPs is used in toothpastes (Table 3).

As seen from the available references, in dentistry ACPs are 
usually used as components of various biocomposites. In an acidic 
oral environment, such biocomposites take advantages of the ability 
of ACPs to release calcium and orthophosphate ions, which potentially 
can take part in enamel remineralization [94,106,107,109,110, 
113,115,116,202-212,216,217,231,232,247,248,252,256-281]. The ACP-
containing biocomposites and hybrid biomaterials can be prepared 
in various forms, such as crèmes [232] or nanodimensional fibers 
[234]. Such formulations are used mainly as anti-cariogenic and/or 
remineralizing  agents  [106,107,109,110,231,232,247,248,252,256-
281], e.g., in chewing gums [106,107,109,110,113,115,116], sugar 
confections [213], various tooth mousses [259-261], bleaching gels 
[264,265], mouth rinses [266], various drinks [267,268] or even in milk 
[272,273]. To improve cell adhesion, coatings composed of ACP and 
hyaluronic acid were used [222]. Finally, ultrathin freestanding ACP 
sheets were manufactured and tested [251].

α-TCP and β-TCP: According to the available literature, α-TCP 
and/or β-TCP (unfortunately, the authors of the publications on the 
subject not always specify which of them was used) are widely used in 
dentistry and dentistry-related fields. For example, they are used for 
augmentation of the surrounding bones [171,282-289], in maxillofacial 
surgery [290-293], as a component of root canal sealers [294], as 
implant coatings [295], as remineralization [296-299] and pulpotomy 
[300] agents, for dental pulp capping [301-306], to treat perforations 
[307,308], as endodontic plugs [309] and to fill various types of bone 
defects and lesions [310-318].

In addition, β-TCP could be functionalized by various organic 
compounds, such as sodium lauryl sulfate [297], fumaric acid [298] 
and some other compounds [299,319,320]. Functionalization of 
β-TCP served two major roles: first, it provided a barrier that prevented 
premature β-TCP-fluoride interactions, and second, it provided 

1 Restore (augment) alveolar ridge for better denture fit
2 Immediate tooth root replacement to prevent resorption of alveolar ridge
3 Fillers for periodontal defects or bone loss
4 Coatings for metal implants to improve bone-implant adhesion and prevent loosening of the metal implants
5 Repair of cleft palate
6 Repair of maxillofacial defects
7 Pulp capping materials

Table 4: Dental applications of CaPO4 in the middle of 1980s  [31,173].
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a targeted delivery of β-TCP when applied to the teeth. Placebo-
controlled clinical studies demonstrated that if compared to fluoride 
alone, the combination of fluoride plus functionalized β-TCP improved 
remineralization by building stronger, more acid-resistant mineral in 
both white-spot lesions as well as eroded enamel [297-299]. Once a 
therapy of 36 teeth with deep caries by both HA and undisclosed TCP 
was carried out. Repeated examinations of patients 1 and 6 months 
after treatment showed that both HA and TCP normalized the function 
of the pulp and caused remineralization of dentin in the bottom of 
carious cavity [321]. Furthermore, α-TCP-containing chewing gums 
were prepared and tested [104,105].

Apatites (HA, CDHA and FA): As seen in Table 2, apatites (HA, 
CDHA and FA) appear to be the most popular type of CaPO4 used 
for dental applications. Since nanodimensional and nanocrystalline 
apatites are often considered as the model compounds of dental enamel 
due to both the chemical and phase similarities [31,32], their use in 
restorative dentistry offers several promising advantages, including 
intrinsic radio-opaque response, enhanced polishability and improved 
wear performance. In addition, they have hardness similar to that of 
natural teeth [322]. For example, nanodimensional HA particles were 
found to have an ability to infiltrate a demineralized collagen matrix 
of dentin. Afterwards, the infiltrated collagen matrix of dentin might 
provide a suitable scaffold for dentin remineralization, whereby the 
infiltrated HA particles could act as seeds within the collage matrix 
and, given the appropriate remineralizing environment, dentin 
remineralization might occur [323]. In addition, it was demonstrated 
that nano-sized HA particles could be self-assembled to form enamel-
like structures [324]. Therefore, a localized biomimetic repair of the 
enamel surface could be achieved by nano-sized (~ 20 nm) HA, which 
were analogues to the basic building blocks of the enamel rods. This 
similarity resulted in a good fixation of artificial biomaterials to natural 
tissues. Moreover, the enamel structure became reinforced by nano-
sized HA since a secondary caries was suppressed and the hardness was 
retained [325-327]. Furthermore, nano-sized HA could be adsorbed 
onto the enamel surface strongly and even be integrated into the 
natural enamel structure [328]. Generally, these studies also suggest 
that analogues of nanodimensional building blocks of biominerals 
should be highlighted in the entire subject of biomineralization. This 
strategy may have prospective applications in dentistry as it offers an 
easy but effective method to reconstruct tooth enamel that is suffering 
from mineral losses.

Normally, apatites for dental applications are prepared from the 
pure chemicals; however, they could also be prepared from the biological 
sources, such as teeth [329]. Due to the versatile applications in 
dentistry, apatites could be used in various formulations, configurations 
and/or shapes. First, apatites are added to toothpastes (Table 3). 
Second, apatites are used as coatings to enhance osteoinductivity of 
various dental implants [330-342]. For example, degradation rates of 
dental implants covered by 50- and 100-micron thick coatings of HA, 
FA and fluorhydroxylapatite (FHA) were studied [333]. The implants 
were inserted in dog jaws and retrieved for histological analysis after 
3, 6, and 12 months. The HA and FA coatings (even of 100-micron 
thick) were almost totally degraded within the implantation period. In 
contrast, the FHA coatings did not show significant degradation during 
the same period [333]. The apatite coatings on titanium implants 
followed by bisphosphonate-immobilization appeared to be effective 
in the promotion of osteogenesis on surfaces of dental implants [337]. 
Regarding their durability, the HA-coated dental implants were found 
to work well in the short to medium terms (during 4 – 6 years [343], 
8 – 10 years [344] and 14 years [345]); nevertheless, even longer-term 
clinical results are awaited with a great interest.

Third, apatites are added as components to intermediate 
restorative materials [346,347], glass ionomer cements (which are 
dental restorative materials used for filling teeth) [348-355], as well as 
to various dental biocomposites [356-362], dentifrices and toothpastes 
[64,65,70,80,84,90-96]. HA-containing glass ionomer cements are 
commercially produced. For example, Cavalite (Kerr Italia S.r.l.) is 
a light-cured cavity liner containing HA and glass ionomer powder. 
Furthermore, application of HA powder was found to be effective in 
apexogenesis of young permanent teeth of dogs [363]. In addition, an 
interesting approach to control dental caries by CDHA-osteopontin 
biocomposites was introduced [362]. Since caries is caused by acid 
production by bacteria in biofilms located on dental surfaces, its 
preventing involves a control of microorganisms producing the 
acids. Therefore, CDHA-osteopontin biocomposite particles were 
prepared to bind to bacteria in the biofilms, impede biofilms building-
up without killing the microflora and release orthophosphate ions to 
buffer bacterial acid production if pH decreased below 6. Analysis of 
the results revealed that the treatment by either CDHA-osteopontin or 
pure osteopontin led to less biofilm formation compared to untreated 
controls. Thus, the anti-biofilm effect of the CDHA-osteopontin 
particles was ascribed to osteopontin, while CDHA was responsible for 
buffering effect, which kept pH always above 5.5 [362].

Forth, there are various types of self-setting apatite-forming and/or 
apatite-containing formulations [38-40,45-49,364-382]. For example, 
a cement was injected as a bone filler for gaps around oral implants 
placed on the medial femoral condyles of six goats and excellent 
bone formation around the graft material was found. Unfortunately, 
the degradation rate of the cement appeared to be very slow and no 
resorption was observed [373]. In another study, a cement was placed 
on artificially created periodontal defects but no significant difference 
was found between the cement and control. Nevertheless, the cement 
acted as a scaffold for bone formation and provided histocompatible 
healing of periodontal tissues [374]. Other investigators used 
cements for direct pulp capping [368,369] and compared them to 
calcium hydroxide. Both materials were found to be equally capable 
of producing a secondary dentin at ~ 24 weeks [368]. Still other 
investigators extracted all mandibular premolar teeth from beagles 
[371]. After one month of healing, alveolar bones were reduced to 
make space for previously fabricated CaPO4 cement blocks. One more 
month later, 8-mm HA implants were placed in such a manner that the 
apical half was embedded into alveolar bones and the coronal half in the 
cement blocks. The investigators observed that the cement blocks were 
gradually replaced by bone and histopathologic features of the cement 
area were similar to that of natural bone. Moreover, the coronal half of 
the implants, previously surrounded by the cement, was firmly attached 
by natural bone [371]. In another study, the same researchers used 
fluorescent labeling analysis and electron microanalysis to measure the 
extent of new bone formation and elemental (Ca, P, Mg) distribution 
[372]. Besides, several apatite-forming and/or apatite-containing self-
setting formulations were tested as root canal fillers [182,367,376] and 
sealers [364-366,370,375,377]. Since HA alone does not possess the 
self-setting abilities, to create a self-setting formulation it could be 
mixed with an epoxy resin [377]. To impart an antibacterial effect, an 
apatite-forming MCPM + CaO self-setting formulation with an excess 
of CaO (which after contact with water was transformed to Ca(OH)2) 
was elaborated [176]. Finally, injectable forms of such cements can be 
used as adjunctive supportive agents for dental implants [380].

An interesting approach was performed in an attempt to regenerate 
the tooth enamel in vitro using thin and flexible HA sheets [383]. First, 
a thin HA film was deposited onto a soluble substrate by pulsed laser 

4



Citation: Dorozhkin SV (2016) Calcium Orthophosphates (CaPo  ) and Dentistry. Bioceram Dev Appl 6: 096. doi: 10.4172/2090-5025.1000096

Page 11 of 28

Volume 6 • Issue 2 • 1000096Bioceram Dev Appl, an open access journal
ISSN: 2090-5025

deposition technique. Next, the HA film was collected as a freestanding 
sheet by dissolving the substrate using a solvent. HA sheets of 1 to 
several microns thick and up to 50 mm in diameter could be produced 
by this technique. Then, the HA sheet was adhered to the extracted 
human teeth using a CaPO4-containing solution with pH of 5.5. The 
authors found that the HA sheet was fused with tooth enamel within 
approximately one week and that the HA sheet was effective for the 
restoration and conservation of the tooth in dental applications [383]. 
This approach was further developed in later studies by introducing 
a bit thicker (8 μm thick) HA sheets with additionally deposited a 
thin layer of undisclosed TCP of 500 nm thick [384,385]. One should 
mention that, due to a small thickness, the HA sheets are transparent 
(therefore, invisible) and their coloration is possible. Therefore, they 
could be applied in cosmetic dentistry. In addition, the HA sheets have 
a number of minute holes that allow liquid and air to escape from 
underneath to prevent their forming bubbles when it is applied onto 
a tooth. One problem is that it takes almost one day for an HA sheet 
to adhere firmly to the tooth’s surface. Similar sheets from ACP were 
developed and tested as well [251].

More to the point, dental applications of apatites include direct 
pulp capping [306,386-390], dentin hypersensitivity treatments [164-
166], using in endodontics [391-408], orthodontics [409-417], oral and 
maxillofacial surgery [290,336,418-444], orthognathic surgery [445-
449], prosthodontics [450-460] and periodontics [461-478].

To conclude this section, one should mention that due to a close 
chemical and phase similarities between apatites and dental enamel, 
dissolution of apatites in acids is considered as a good model of dental 
caries [479].

TTCP: According to the available literature, TTCP alone is rarely 
used in dentistry [480,481]. In the vast majority of the cases, TTCP 
is combined with either other types of CaPO4 (mainly DCPD or 
DCPA) or other chemicals to form various self-setting formulations 
[160,167,178,179,181,183-187], biocomposites [178,179,181,482] and 
root canal sealers [188] and fillings [483]. For example, a FA forming 
self-setting formulation consisting of solid TTCP, solid NaF and liquid 
H3PO4 was prepared and used for in vitro filling of big enamel carious 
cavities. The results revealed that the hardened formulation was tightly 
combined with the enamel surface due to the chemical interaction 
between the formulation and enamel apatite [186]. Once a TTCP-
containing chewing gum was prepared and tested [103].

Biphasic and multiphasic CaPO4 formulations: According to the 
definition, biphasic and multiphasic CaPO4 formulations represent 
various blends of two or more individual types of CaPO4, respectively, 
and, among them, a biphasic calcium phosphate (abbreviated as BCP) 
formulation, consisting of HA and β-TCP, appears to be the most 
popular one [23]. An injectable bone and dental substitute constituted 
of BCP and a hydrosoluble cellulose polymer as a carrier was developed 
[484]. This formulation was used for filling bone defects after tooth 
extractions in 11 patients. 3 years after surgery, small biopsies of the 
implanted areas were harvested and analyzed by using micro-computed 
tomography, non-decalcified histology and histomorphometry. The 
BCP granules appeared in direct contact with mineralized bone tissue, 
thereby supporting bone growth. A gradual substitution of the filler 
by bone tissue was observed thus preserving the height of the alveolar 
bone crest [485]. Similar results were obtained in another study [486]. 
In addition, BCP was found to be effective for healing of dental bones, 
osseous and/or intrabony defects [50,487-500]. For example, micro- 
and macroporous BCP combined with a fibrin sealant was found to be 
safe and effective in sinus floor elevation for dental implant placement, 

supporting bone regeneration [497]. Furthermore, BCP was used to 
fill dental root canals [501], while multiphasic CaPO4 (α-TCP + HA + 
TTCP) were applied as direct pulp capping materials [502].

Classification according to the dental specialties 

Endodontics: Generally, root canal filling materials are divided into 
core materials and root canal sealers. Root canal obturation consists 
of placing an inert filling material in the space previously occupied by 
pulp tissue. To achieve successful endodontic therapy, it is important 
to obturate the root canal system completely. Thus, the effective 
endodontic obturation must provide a dimensionally stable, inert 
fluid tight apical seal that will eliminate any portal of communication 
between the canal space and the surrounding periapical tissues through 
the apical foramen. According to the databases, the earliest publication 
on use of CaPO4 in endodontics was published in Japanese in 1983 
[391], followed by a publication in English in 1984 [392]. Several 
examples of endodontic applications of CaPO4 are given below (Table 2).

A case of combined endodontic-periodontic lesions on a 
mandibular first molar was treated by intentional replantation and 
application of HA. Four months after the surgery, a porcelain-mental 
full crown restoration was completed. The 15-month follow-up 
examination showed that the tooth was clinically and radiographically 
healthy and functioned well [400]. Several types of CaPO4 (DCPD, 
OCP, β-TCP, BCP (HA + β-TCP) and HA) in particle sizes of < 5 μm 
or < 150 μm were used for pulp capping teeth of pigs, rats, and dogs. All 
types of CaPO4 showed biocompatibility. Based on these results, it was 
suggested that these types of CaPO4 might be useful for specific clinical 
applications in endodontics, such as, pulp capping (microparticles 
of HA, β-TCP, BCP) and pulpectomy (HA, OCP, DCPD) [193]. 
Applicability of CaPO4 in pulpotomy and pulpectomy was confirmed 
in other studies [300,503,504].

Bone regeneration in endodontically induced periapical lesions 
using HA, platelet-rich plasma and a combination of HA with platelet-
rich plasma was evaluated for a period of one year with 20 systemically 
healthy patients [405]. To qualify, the patient had to have a tooth where 
non-surgical root canal therapy had failed, periapical radiolucency 
was present and periapical root end surgery was required. The bony 
defect had to be confined to the apical area, with the bone covering 
the entire root surface coronally, with an intact lingual cortical plate. 
The patients were randomly divided into 4 groups, with 5 patients 
each, as follows: replacement with HA, replacement with platelet-rich 
plasma, replacement with HA with platelet-rich plasma and a control 
group with no substitutes. The radiographic evaluation revealed that 
the HA patients showed complete bone regeneration with evidence 
of a trabecular pattern at the end of one year, the platelet-rich plasma 
patients showed complete bone regeneration at the end of 9 months, 
the HA with platelet-rich plasma patients showed complete bone 
regeneration at the end of 6 months, while the control patients showed 
unsatisfactory bone regeneration even after one year. Thus, HA addition 
to platelet-rich plasma was proven to facilitate bone regeneration [405].

An injectable bone substitute made of a suspension of BCP (HA + 
β-TCP) bioceramics was used to fill dental root canals after removing 
of canal pulp [501]. The aim of that study was to verify the ability of a 
CaPO4 ceramic suspension to fill the apical zone of teeth both ex vivo 
and in vivo in a sheep model. The results showed that injection was 
possible with a good level of BCP granules at the end of the root dental 
canal with extracted tooth. The scanning electron microscopy revealed 
mineral formation at the apex level with mineral tissue conduction 
between the BCP granules; however, only one tooth showed a good 
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apical filling with a good sealing. The authors concluded that the sealing 
of the apex seemed to depend of the amount of BCP granules [501].

Furthermore, there are CaPO4-containing endodontic and/or root 
canal sealers [188,294,364-366,370,375, 377,396,397,401,402,404,406-
408,505-515]. The composition of 2 examples of such sealers (Sankin 
apatite root canal sealer and Capseal) are presented in Table 5 [510]. 
Of them, Capseal was found to result in both a higher alkalinity and a 
higher calcium ion releases than Sankin apatite root canal sealers [509]. 
The results of their application revealed that the sealers mentioned in 
Table 5 facilitated the periapical dentoalveolar and alveolar healing 
by controlling cellular mediators from periodontal ligament cells and 
osteoblast differentiation of precursor cells [510].

Furthermore, endodontic perforations were treated by CaPO4 
[307,308,393,511-516], but once a lack of complete healing was noticed 
[308]. Additional examples of the endodontic applications of CaPO4 
comprise the following cases. They can be used as components of 
endodontic cements [394,517] or coatings for endodontic dental 
implants [403], as well as serve as a root end filling material [397,399] 
and as endodontic endosseous implants [395]. Since CaPO4 do not 
cause inflammation [307], they could be used as a hard plug deep inside 
teeth [309]. Finally yet importantly, CaPO4 crowns were manufactured [518].

Oral and maxillofacial surgery: An insufficient bone volume and 
a poor bone density are common problems in edentulous patients with 
resorbed maxilla. One method that makes implant placement possible 
in such difficult situations is augmentation of maxillary sinus using 
various bone grafts [511]. Besides, there are other cases, in which bone 
grafts appear to be necessary for dentistry-related fields.

Due to these cases, CaPO4 have been used in oral and maxillofacial 
surgery since 1980-s [290,418-427] and up to now many scientific 
articles have been published on the subject [38-51,291,428]. However, as 
written in section 2, the vast majority of the publications on this subject 
deals with a treatment of the surrounding bones and, thus, they fall into 
a category of bone substitutes, which is another story. Nevertheless, 
the following directions of CaPO4 application in oral and maxillofacial 
surgery can be outlined: coatings on various types of dental implants 
[330-345,403,519-524], augmentation of the surrounding bones 

[44,196,199,283-289,336,371,287,411-437,525] and using as fillers of 
osseous mandible and/or jaw defects [292,369,378,438-444].

Orthodontics: According to the databases, the earliest publications 
on use of CaPO4 in orthodontics appeared in 1989 [409-411]. Coatings 
of CaPO4 (both HA [413] and α-TCP [295]) were successfully applied 
to titanium implants and the coated implants were found to be 
applicable as anchorage for short-term orthodontic treatment [413] 
and both types of coatings appeared to be effective stimulators of new 
bone formation [295]. In another study, HA addition to an orthodontic 
cement was found to have a protective action on the dental enamel near 
the orthodontic bands or brackets [412]. Furthermore, there are CaPO4 
bioceramic brackets Hyaline® (Tomy International Inc., Tokyo, Japan) 
(Figure 5). In addition to excellent biocompatibility, these brackets 
have a hardness equivalent to that of tooth enamel, which eliminates 
fears of dental abrasion due to the occluding tooth even when the 
patient has a deep-bite [526-528].

However, among all available types of CaPO4 (Table 1), ACP-
containing formulations are most often used in orthodontics [215,218-
221,223-227,229,235,236,239-244]. For example, an efficacy of an 
ACP-containing orthodontic biocomposite and a resin-modified glass 
ionomer cement on enamel demineralization adjacent to orthodontic 
brackets was evaluated by a new laser fluorescence device. The authors 
concluded that both formulations should be recommended for any at-
risk orthodontic patient to provide preventive actions and potentially 
remineralize subclinical enamel demineralization [215]. Similarly, 
ACP-containing orthodontic biocomposites were found to reduce 
both enamel decalcification around orthodontic brackets [225,226,239] 
and bacterial adherence [239]. Furthermore, ACP-containing 
orthodontic biocomposites were found to possess a lower but still 
satisfactory bond strength needed to function as orthodontic adhesives 
[218,219,221,222,223]. Therefore, CPP-ACP biocomposite, either 
alone or combined with fluoride, may safely be used as a prophylactic 
agent before bracket bonding [236,242]. Besides, a pretreatment by 
CPP-ACP, enamel microabrasion and the combination of these two 
methods were found to improve bonding of orthodontic brackets to 
demineralized enamel [242].

Figure 5: Appearances of CaPO4 ceramic brackets hyaline and hyaline ii. (Reprinted with permission from Ref. [527]).

Brand name Manufacturer Components

Sankin apatite root canal 
sealer (I, II and III)

Sankin Kogyo, Tokyo, 
Japan

Powder: α-TCP and Sankin HA in type I, iodoform is added to powder in type II (30%) and type III (5%). Liquid: 
polyacrylic acid and water

CAPSEAL (I and II) experimental Powder: TTCP and DCPA, Portland cement (gray cement in type I and white cement in type II), zirconium oxide, 
and others. Liquid: hydroxypropyl methyl cellulose in sodium phosphate solution

Table 5:  Composition of the available CaPO4-containing sealer materials [510].
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Adiaphorous results were obtained either. For example, a topical 
treatment of white spot lesions after debonding of orthodontic 
appliances with a CPP-stabilized ACP agent resulted in significantly 
reduced fluorescence and reduced areas of the lesions after 4 weeks; 
however, the improvement was not superior to the natural regression 
following daily use of fluoride toothpaste [227]. In addition, no clinical 
advantages for use of a CPP-fluoridated ACP paste supplementary 
to normal oral hygiene over the time span of 12 weeks were found in 
another study [229].

Prosthodontics: Humans have long used both natural and synthetic 
materials as replacements for lost teeth. For example, the earliest 
known dental implant was made of iron and found in a Roman male, 
who lived around the first or second century AD [529]. The first known 
tooth made from a natural material was found in a Mayan woman, 
estimated around 600 CE, and was made of nacre from seashells 
[530]. Nevertheless, despite a long history of the tooth grafts, just a 
few publications on prosthodontic applications of CaPO4 are available 
(Table 2). According to the databases, the earliest publication on the 
subject was published in 1983 [450], followed by another publication 
by the same authors [451]. A 4-year study and evaluation of non-
resorbable HA to augment different alveolar ridges was performed. 
The technique used resulted in improved contour, height, and width 
of the alveolar ridge. The state and health of the tissues were found to 
be improved with the use of HA or HA combined with bone marrow 
[450]. However, the study dealt with a treatment of bones but not teeth, 
which is another story. Similar can be said about other publications 
on the subject [452-459]. Furthermore, as seen from the publication 
dates, all these papers were published in the previous century and only 
one recent paper [460] has been found. Nevertheless, even this recent 
paper is devoted to the preparation subject with just a possibility to use 
the material as dental prosthesis. Thus, one can mention on the past 
attempts to use CaPO4 in prosthetic dentistry and, since no promising 
results were obtained, currently CaPO4 are not used in prosthodontics.

To finalize this topic, it is important to mention that one of the 
challenges in dental implantology is to achieve and maintain a good 
osseointegration, as well as an epithelial junction of gingival tissues 
with the implants. An intimate junction among them may prevent 
bacteria colonization leading to peri-implantitis, while the direct 
bonding may ensure a biomechanical anchoring of the artificial dental 
roots (Figure 6) [531]. To achieve this, the presence of sufficient bone 
volume is an important prerequisite for dental implant placement. 
However, this is not always the case. Namely, atrophic maxilla and 
mandible bones are less tolerant to the placement of dental implants 
due to their reduced height and width; hence, supplementary bone 
augmentation by CaPO4 might be necessary [532,533]. In addition, I 
would like to point the readers’ attention to a review on dental implants 
for patients with osteoporosis. According to the authors, osteoporosis 
is not a contraindication for the implant surgery if the accurate analysis 
of bone quality has been performed [534].

Periodontics (periodontology): In general, the regeneration 
of tissues affected by periodontal disease is a complex process; 
it encompasses formation of bones, cementum and periodontal 
ligaments [535]. According to the databases, the earliest publication 
on use of CaPO4 in periodontics was published in 1974 [536], followed 
by research papers of 1975 [170] and 1977 [310] and a review of 
1978 [311]. A schematic diagram of the management of periodontal 
defects by a bone graft technique is shown in Figure 7 [537]. However, 
as written in section 2, the vast majority of the publications on 
periodontics deals with a treatment of the surrounding bones and, thus, 

they fall into a category of bone substitutes [183,282,312-320,382,461-
478,490,492,495,498-500,538-546]. Nevertheless, a few examples are 
given below.

The post-extraction bone resorption is an increasing problem in 
modem dentistry. Namely, after extraction of a tooth, the bony socket 
heals naturally. First, it is immediately filled with coagulated blood. In 
a few days afterwards, the granular and fibrous tissues are organized to 
form a new bone tissue gradually. However, due to the tooth absence, 
maxilla and/or mandibular alveolar atrophies occur simultaneously. 
These resorptive and remodeling phenomena of the surrounding bone 
negatively affect the support for the adjacent teeth; the shallow ridge 
makes it difficult for future prosthesis retention and less bony support 
remains for any dental implant placement in the future. To promote 
healing, the socket of an extracted tooth might be filled by CaPO4 
bioceramics. For example, an efficacy of commercial HA granules 
APAFILL-G™ as a filler to prevent the resorption of alveolar bone 
after tooth extraction was studied [547]. After seven days, the result 
revealed that only one of all treated patients experienced an adverse 
response observed at the clinical evaluation that promptly disappeared 
after analgesic treatment. The rest 32 dint had adverse clinical response. 
Radiographically, a continuous radio-opacity between bone and 
the implant resorption was detected after one year the surrounding 
alveolar bone maintained its contour without symptoms of resorption 

Figure 6:  Tissue integration of a dental implant. Note the intimate contact 
with gingival tissue in the upper part and the desired contact osteogenesis 
in the tapered lower part rather than distance osteogenesis. (Reprinted with 
permission from Ref. [531]).

Figure 7: A schematic diagram of the management of periodontal defects by 
a bone graft technique. The CaPO4 grafts stimulate bone growth and a new 
bone fills the defect, which provides a better support for a tooth. (Reprinted with 
permission from Ref. [537]).
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for the 100% of the patients [547]. In another study, two different types 
of HA grafting materials, biomimetic and nanocrystalline, were placed 
into fresh extraction sockets aiming to limit bone resorption. The surgical 
sites were histologically, clinically and radiographically evaluated 6 months 
after tooth extraction. The percentages of bone, osteoid areas  [548].

Furthermore, repositioning maxillaty and mandibular bone 
segments in orthognathic surgery frequently creates bone gaps or 
continuity defects. These often require grafting to provide positional 
stability and bony continuity and CaPO4 are used for this purpose. 
For example, as early as 1987, a study to evaluate the use of coralline 
porous HA as a bone graft substitute in orthognathic surgery [445], 
followed by another study in 1989 [446]. 92 consecutive patients 
received totally of 355 block implants to the maxilla (294), mandible 
(41) and midface (20). There were 202 implants positioned directly 
adjacent to the maxillary sinus. Complications were minimal, the most 
common being exposure of the implant to the oral or nasal cavity. 
Histological evaluation of implants that were biopsied in nine patients, 
four to 16 months postsurgery, revealed connective tissue ingrowth 
throughout the implants with approximately one-third being bone of 
variable maturity and two-thirds being soft tissue [445]. Similar results 
were obtained in another study [446]. Periodontal ligaments around 
extracted sockets were found to have an ability to regenerate bone on 
HA-coated tooth-shaped implants [341]. Positive results were also 
observed in another study, in which bone formation around BCP (HA 
+ β-TCP) particles in periodontal defects of dogs were found to be more 
discernible if compared to healing in control [486]. In addition, the 
porosity of the implanted CaPO4 was found to influence periodontal 
healing of furcation defects in dogs [293]. 

To increase a treatment efficiency of the periodontal defects, 
CaPO4 might be combined with the biologically active molecules, such 
as hormones, growth factors, morphogenetic proteins, etc. [491,549-
555]. For example, an application of recombinant human growth and 
differentiation factor-5 (rhGDF-5) lyophilized onto β-TCP granules 
demonstrated an effective regeneration of the artificially created 
periodontal defects [549,550]. Positive results were also obtained for 
a combination of a recombinant human platelet-derived growth factor 
BB (rhPDGF-BB) with β-TCP for the treatment of human intra-osseous 
periodontal defects [551,552]. However, a combination of an enamel 
matrix derivative with BCP (HA + β-TCP) resulted in no to minimal 
new bone formation [491]. Furthermore, a combination of human 
bone morphogenetic protein-2 (rhBMP-2) with a bioresorbable CaPO4 
cement Ceredex™ was not suggested for periodontal indications [553]. 
Besides, there are results indicating that the use of CaPO4 after open 
flap procedure does not improve the clinical and radiological treatment 
outcomes of periodontal intrabony defects [554]. Thus, applications of 
CaPO4 in periodontology were not always positive.

Other types of oral applications: Of patients undergoing 
allogeneic hematopoietic stem cell transplantation, ~ 75% or even 
more experience oral mucositis, which is a painful acute complication 
that can delay discharge, interrupt treatment and threaten life. To help 
the patients, rinses, supersaturated by undisclosed types of CaPO4, 
were prepared and evaluated. Compared to the control groups, the 
supersaturated CaPO4 rinse groups were found to have significantly 
lower mean measures of oral toxicity, peak mouth pain and disease 
course duration [556-559]. 

Tissue Engineering Approaches
As seen from the aforementioned, CaPO4 are widely used in dentistry 

to restore and/or repair various types of oral defects. However, all the 
previously mentioned approaches have encountered shortcomings 
if compare to the normal and healthy teeth and surrounding bones. 
Therefore, various tissue-engineering approaches to develop new 
strategies for tooth regeneration are attempted. The history of tissue 
engineering in dentistry started in 1982, when the first regeneration 
technology of periodontium was introduced [560]. The modern tissue 
engineering approaches in dentistry include combinations of cells, 
engineering materials and suitable biochemical and physicochemical 
factors to improve or replace biological functions. Finally, it will cause 
in vivo formation and growing of new functional tissues instead of 
reparation and/or replacement of damaged and/or missing ones by 
artificial materials and/or implants [561-565]. From the material point 
of view, there are two main approaches towards making a bioengineered 
tooth: scaffold-free and scaffold-based regenerations. The scaffold-free 
approaches, such as tissue recombination, cell pellet engineering and 
chimerical tooth engineering, are being developed and the correct 
tooth-like structures could be generated after transplantation in the 
sub-renal capsule [566-568]. However, with an exception of using 
soluble calcium- and orthophosphate-containing solutions to promote 
proliferation, osteogenic differentiation and mineralization of various 
types of dental cells [569], the scaffold-free approaches do not utilize 
CaPO4. Therefore, in this review, scaffold-based tooth regeneration 
approaches are considered only. A schematic drawing of this process 
is shown in Figure 8 [570].

For example, it was hypothesized that dental follicle cells 
combined with β-TCP might become a novel therapeutic strategy to 
restore periodontal defects. The authors suggested isolation of dental 
follicle cells from a beagle dog. The isolated cells should be induced 
by bone morphogenetic protein-2, basic-fibroblast growth factors and 
dexamethasone and, then, seeded onto β-TCP bioceramics. Afterwards, 
the complex should be auto-implanted into the periodontal defects 
in the same dog to observe regeneration of periodontal tissue in vivo 
[571]. However, this was just a hypothesis. Let me describe the real 
investigations.

A biocompatibility of four different types of 3D scaffolds for 
regeneration of tooth tissues was tested [572]. The scaffolds consisted of 
pure poly(lactic-co-glycolic) acid (PLGA) or 50/50 w/w biocomposites 
of PLGA with HA, β-TCP or carbonate-containing HA. Afterwards, 
human dental pulp stem cells were seeded onto the scaffolds, followed 
by implantation into the mesentery or subrenal capsule of mice or rats 
for 4 to 5 weeks. The results showed that, while all CaPO4-containing 
formulations were able to support effectively regeneration of the tooth 
tissues, the PLGA/β-TCP scaffolds appeared to be superior to the other 
three scaffolds for tooth tissues regeneration, especially for dentin 
formation [572]. Very promising results were also obtained by other 
researchers for β-TCP/chitosan biocomposites [573], recombinant 

Figure 8: A schematic diagram of entire tooth regeneration from the proper 
combination of growth factors and cells (stem cells or progenitor cells) seeded 
on a CaPO4 scaffold. (Adapted with permission from Ref. [570]).
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human transforming growth factor-beta 1 (rhTGF-β1) combined 
with two different bone grafts: calcified freeze-dried bone allograft 
and porous BCP [574] and a complex of recombinant human bone 
morphogenetic protein 2 (rhBMP-2)-mediated dental pulp stem cells 
and nano-HA/collagen/poly(L-lactide) for clinical reconstruction of 
periodontal bone defects [575].

In still other studies, polyglycolic acid (PGA) scaffolds were 
compared with β-TCP, fibrin and collagen scaffolds for their capacity 
to grow dental structures when seeded with tooth germs from 
6-month-old minipigs. On fibrin and collagen gels, the porcine third 
molar tooth bud maintained its epithelial structure, resembling tooth 
buds, whereas on PGA and β-TCP the implanted tooth buds produced 
more dentin-like material [576]. Porous BCP (HA + β-TCP), powdered 
BCP and PGA fiber mesh were used as scaffolds and transplanted with 
cultured porcine dental pulp-derived cells into the backs of nude mice 
for 6 weeks. Although newly formed hard tissues were observed in all 
implants, a dentin-like hard tissue was observed when porous BCP was 
used [577]. Besides, incorporation of nano-sized HA into electrospun 
poly(ε-caprolactone)/gelatin scaffolds was found to enhance dental 
pulp stem cells differentiation towards an odontoblast-like phenotype 
both in vitro and in vivo [578]. The osteoblast marker bone sialoprotein 
was highly expressed on β-TCP scaffolds seeded by dental follicle cells 
but almost absent in differentiated dental follicle cells without β-TCP. 
The latter means that dental progenitor cells have to be combined with 
CaPO4 bioceramics.

To conclude this topic, the tissue engineering approaches of dental 
regenerations, obviously, appear to be the most promising healing 
technologies and many interesting studies on a combination of CaPO4 
scaffolds with cells and/or growth factors are expected to appear in the 
near future.

Conclusion
Biologically relevant types of CaPO4 are the emerging bioceramics, 

which are widely used in various biomedical applications, including 
dentistry. They have excellent biomedical properties and biological 
behavior because their composition and structure are similar to those 
of human bones and teeth. Therefore, CaPO4 possess exceptional 
biocompatibility and unique bioactivity, which are widely used in 
dentistry and dentistry-related fields. For example, incorporation of 
CaPO4 into various restorative biomaterials was found to improve 
mechanical properties of the biomaterials without impeding their 
inherent biological properties. Other examples have been described 
above. Nevertheless, the versatile employing strategies of CaPO4 in 
dentistry aim to ultimately reach the same goal, namely to enhance 
osseointegration process of dental implants in the context of immediate 
loading and to augment formation of surrounding bones to guarantee 
a long-term success. However, still the complete understanding related 
to use of CaPO4 in clinical dentistry is lacking and further research is 
needed to improve their efficacy in clinical dentistry.
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