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Caenorhabditis elegans as a Model System 

An ideal model organism should generally have three essential 
characteristics: successful sexual crosses should be easy to perform; 
a fully sequenced genome should be available; and it should be 
easy to induce reliable and reproducible DNA mutations [1]. The 
nematode Caenorhabditis elegans (C. elegans), introduced to the 
broad scientific community by Brenner in 1974, fulfills each of these 
three essential guidelines [2]. Although initially used extensively by 
the developmental biology community, its recent adoption by the 
biomedical and environmental toxicology scientists has strengthened 
experimental design power in these fields [3]. Relative to traditional 
model organisms, e.g. rat, mouse, dog (mammals) and Arabidopsis 
(plants), the invertebrate species C. elegans has begun to be recognized 
as invaluable. For example, it requires a relatively small budget project 
compared to other possible organisms, is quite small and transparent, 
has a short lifespan and has relatively simple anatomy and physiology 
[4]. 

These characteristics provide for straightforward genetic 
manipulation, growth and observation within a laboratory environment 
for a wide array of experiments [5]. In particular, the small size of C. 
elegans allows for easy storage in small, dedicated laboratory areas, 
its transparency facilitates visualization under a microscope and the 
short life span enables assessment of multiple generations within days, 
making genetic studies related to inheritable disorders possible in a 
relatively short time frame. Furthermore, studies involving multiple 
generations are aided by the fact that C. elegans also exist as a self-
fertilizing hermaphrodite, preventing inbreeding [5]. C. elegans have 
also become more widely-used in toxicology due to their autonomic 
and somatic neural and molecular network similarities to humans 
[6,7], allowing for valuable insight related to multiple vertebrate 
systems. Furthermore, as a fully intact in vivo model organism, 
scientists can study multiple complex behaviors, such as searching for 
food and/or mates [8-11]. Interestingly, C. elegans is rarely found in the 
wild, although does lives in tropical and subtropical areas and is more 
typically found cultured in laboratories [12]. Some major areas where 
C. elegans is becoming increasing used include mechanistic toxicology,
environmental toxicology and high-throughput screening [3]. A major
methodological breakthrough came when it was recognized that C.
elegans could easily be manipulated through RNA interference, or RNAi
[13-15]. This technique involves the introduction of exogenous RNA
to complement endogenous RNA, which then “interferes” with the
translation of the target gene. The silencing of this expression potentially
helps the scientific community better understand the function of the
gene’s product [16-18]. Extensive experimentation with C. elegans has
produced complete neuronal and developmental wiring diagrams that
have been confirmed by numerous labs [3,19]. Furthermore, these
networks are known to be similar in humans, providing additional
justification for comparing two widely diverse organisms [5]. On the
other hand, the developmental pattern of C. elegans is vastly different
from most animals in that they display a “mosaic structure” in which
the entire developmental process will not proceed correctly if any cell
is removed. This is in contrast to other model organisms, such as the

fruit fly, where the removal of a single cell, or even multiple cells, may 
have no effect on the developmental fate of the organism [5]. C. elegans 
has been used to further the study of neurodegenerative and transgenic 
diseases in humans [4], including Huntington’s, Alzheimer’s and 
Parkinson’s diseases [20-25]. In fact, C. elegans genes related to these 
three diseases are substantially comparable with human genes [1]. For 
example, about 40-75% of human genes identified as disease-related 
are analogous to those found in C. elegans [1,26]. Other similarities 
exist between C. elegans stem cells and those of “higher” organisms, 
including humans [27,28]. Thus, comparisons between worms and 
humans have already provided important insights into possible causes 
and potential treatments for many diseases. Furthermore, since C. 
elegans are easy to genetically manipulate, this facilitates research 
involving the interplay of the genetic and environmental aspects of 
many neurodegenerative diseases [3]. As such, C. elegans can be easily 
treated with or introduced to specific chemicals thought to contribute 
to neurodegeneration through interactions with various genetic 
mutations [4]. More recently, C. elegans has proven to be a beneficial 
model organism for studies of major pesticides classes, including 
organophosphates (OPs) and dithiocarbamates (DTCs). Using C. 
elegans, scientists can study the various effects these agrochemicals may 
exert on humans [3,29-31]. For example, in a study involving OPs and 
C. elegans, alterations in gene and protein expression were examined
[32], particularly nervous system-specific endpoints.

The Nervous System of C. elegans 
Overview 

Starting in the mid 1990s C. elegans became a more widely-used 
model in the neurotoxicology community [3,29,31,33]. This was partly 
due to the simplicity of their nervous system, which is a relatively 
small neuronal network that is highly stereotypical from animal to 
animal [6]. A total of 302 neurons and 56 glial cells (e.g., CEP sheath 
glia) make up the hermaphrodite’s nervous system, whereas the males 
have 381 neurons and 92 glial cells [34,35]. As in more complex model 
organisms, their neurons are involved in multiple synaptic contacts, 
including chemical synapses, gap junctions [36] and neuromuscular 
junctions [6]. About half of the neuronal cell bodies are found in the 
head, surrounding the dorsal nerve ring, while the remaining soma 
are found along the ventral cord and in tail ganglia [34]. Furthermore, 
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the nervous system of C. elegans is divided into a pharyngeal nervous 
system, containing 20 neurons and the somatic nervous system, 
which contains 282 neurons (Figure 1). All together, an extensive 
neuronal network wiring diagram has been constructed consisting of 
6393 chemical synapses, 890 gap junctions and 1410 neuromuscular 
junctions [6,37]. Interestingly, a single neuron can make synaptic 
contact with anywhere from one to thirty other neurons; on average, 
however, they synapse with around fifteen of the neurons with which 
they make physical contact [6,34,37,38]. Based on structural and 
functional properties, the neurons are divided into three categories: 
sensory neurons, interneurons and motor neurons. Motor neurons 
are easily defined by the presence of a neuromuscular junction and 
interneurons constitute about half of all the neurons present [6]. 

Sensory neurons

As in higher organisms, sensory neurons are classified by their 
ability to respond to specific environmental stimuli and these neurons 
account for about one-third of those in the nematode [39-41]. Most 
sensory neurons are found in the head [42] and the majority are 
dedicated to thermosensation [42,43]. Temperature detection and 
regulation is quite important for many aspects of these worms [41,44-
47]. For example, C. elegans can only grow and reproduce between 12°- 
27°C [34,44]. Within this temperature range, well-fed nematodes track 
isotherms, a major component of food-searching strategy that requires 
constant reorientation of the head [34,46]. The main thermosensors are 
a pair of neurons, called amphid finger neurons (AFD), that are located 
in the head and help mediate behavior [48].

C. elegans also respond to many types of mechanical stimuli,
including nose touch, mating cues and the viscosity of the bacterial 
food lawn [48]. These mechanical neurons function through the 
use of two neurotransmitters: γ-aminobutyric acid (GABA) and 
acetylcholine [42,49]. When the nose is touched, the sensation detected 
by ciliated neurons cause the worm to reverse direction [48,50,51]. 
This response is mediated by three sets of ciliated head neurons: two 
amphid sensilla (ASH) neurons, four outer labial sensilla (OLQ) 
neurons and two inner labial sensilla (FLP) neurons [49,52,53]. Each 
type mediates only a fraction of the behavior, for example: ASH 45%, 
FLP 29% and OLQ 5% [48]. As with many other organisms, the mating 
behavior of C. elegans is the one most complex, but it is largely one-

sided: males can be described as “obsessed” with pursuing the self-
fertile hermaphrodites [54,55]. The male mating ritual is typically 
divided into six steps: 1) attraction to hermaphrodite chemical cues; 
2) response to contact with the hermaphrodite; 3) backing and turning
along the mates body; 4) vulva location; 5) copulatory spicule insertion
into the vulva; 6) and sperm transfer to the uterus [48,55]. Cilia are also
required in this process to detect chemical and mechanical signals from
the hermaphrodite [56].

Neurotransmitters: Octopamine 

As mentioned previously, each C. elegans has 6393 chemical 
synapses that rely on numerous neurotransmitters [57-60]. Four 
biogenic amines, octopamine, tyramine, dopamine and serotonin 
(Table 1), are present in C. elegans [61]. In general, they are responsible 
for modulating behavioral responses to environmental changes 
[62]. For example, biogenic amines modulate egg laying, pharyngeal 
pumping, locomotion and learning [63-67]. Octopamine, which is 
not found in mammalian systems, is synthesized from tyramine by 
the enzyme tyramine β-hydroxylase, TBH-1 [61]. When C. elegans are 
exposed to exogenous octopamine, several behavioral effects, including 
inhibition of egg laying and pharyngeal pumping, are observed [65,68]. 

Neurotransmitters: Tyramine 

Tyramine is only synthesized in a few cells in C. elegans and 
is therefore found in small quantities [69,70]. It is required for the 
following functions: inhibition of head oscillations in response to being 
touched on the anterior portion of the body; inhibition of egg laying; 
and modulation of spontaneous reversals [61]. When a nematode is in 
starvation circumstances, tyramine is released to inhibit unnecessary 
functions so the worm can better focus on searching for food [71]. A 
newly identified tyramine receptor, SER-2, binds the neurotransmitter 
with high affinity and when mutations are present, behavioral defects 
are seen [66]. For example, SER-2 mutants fail to inhibit oscillations 
in response to touch [61]. Exogenous tyramine also blocks pharyngeal 
pumping, which is stimulated by serotonin, further supporting the idea 
that tyramine is released in response to food deprivation [72]. Tyramine 
also inhibits egg laying, but this most likely does not act through SER-
2. Rather, it is more likely that tyramine serves as an intermediate for
octopaime which inhibits egg laying [61].

Figure 1: Nervous System of C. elegans. Summary of functional classification of neurons in C. elegans hermaphrodite. Based on [151].
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Neurotransmitters: Dopamine 

The neurotransmitter dopamine is found in eight neurons in the 
C. elegans hermaphrodite and in fourteen additional neurons located
in the tail of the male [61,73]. The role of dopaminergic neurons in
C. elegans is thought to be predominantly mechanosensory in nature
[42]. Supporting evidence indicates a lack in the animal’s ability
to respond to environmental changes when dopamine is inhibited
[74,75]. Dopamine signaling in C. elegans also has established roles
in regulating locomotion and learning [61]. For example, dopamine
signaling facilitates the response of C. elegans to environmental changes
by modulating locomotion. Well-fed wild-type nematodes slow their
movements when they encounter a food source, a process requiring
dopamine release [76,77]. Nematodes that have their dopaminergic
neurons ablated fail to exhibit this “slowing” process, further
supporting the supposition that these neurons are mechanosensory
and that slowing is likely caused by physical stimuli [78]. Dopamine
signaling also leads to more efficient searches for new food sources.
After wild-type nematodes exhaust an immediate food supply, they
continue to search the nearby area before expanding their exploration
[79]. This localized search is referred to as “restricted searching”
and is characterized by high-angled turns [61]. In C. elegans whose
dopaminergic neurons have been ablated or inhibited, there is marked
failure to exhibit these high-angled turns when searching for food
sources [61]. On the other hand, nematodes exposed to exogenous
dopamine exhibit increases in high-angled turns, further supporting
a role for dopamine in modulating food-related locomotion [80].
Dopamine also further contributes to C. elegans survival by causing a
decrease in forward movement, in the presence of food, increasing the
likelihood that the animals will stay near the newly discovered food
source [78,80]. Learning in C. elegans is also modulated by dopamine
[81]. The first time wild-type nematodes are exposed to “plate-tapping”
they react by backing up; repeated plate-tapping results in decreased
movement [82]. Olfactory adaptation, another type of learning, is
responsive to dopamine [83]. Over prolonged exposure to an odorant,
nematodes show decreases in their responses [84].

Neurotransmitters: Serotonin

Another biogenic amine neurotransmitter in C. elegans is serotonin. 
It is used by the following eight classes of neurons: 20 male-specific 
neurons (CP 0-9, R1, R3, R9); two pharyngeal neurosecretory motor 
neurons (NSM), four hermaphrodite specific motor neurons (HSN 
and VC4-5), two amphid neurons (ADF) and three ring interneurons 
(RIH and AIM) [61]. Exposure to exogenous serotonin inhibits motor 
neurons related to locomotion and defecation, while also stimulating 
egg laying and pharyngeal pumping [85,86]. When food-deprived 
C. elegans move near a food source, their locomotion slows down.
This response is dependent on serotonin release [61]. Bas-1 and cat-
4 (serotonin biosynthetic enzymes) mutants exhibit defects in this

slowing process and, when treated with exogenous serotonin, these 
defects are reversed. For example, a food-deprived nematode will come 
to a complete stop upon entering a bacterial lawn versus a well-feed 
nematode that will just slow [61]. Serotonin signaling helps ensure that 
food-deprived nematodes do not leave a food source, while dopamine 
signaling encourages nematodes to stay within that source [61,76,80]. 
Synthesis of serotonin occurs in neurosecretory motor neurons (NSMs) 
that have sensory endings located in the lumen of the pharynx. It is 
hypothesized that these might play a role in sensing food. NSMs also 
have access to neurons outside the pharynx and pseudocoelom, which 
facilitates communication with the rest of the animal [87-89]. Thus, 
serotonergic neurons are located in areas that allow for very efficient 
signaling that encourages nematodes to remain in food-rich areas [61]. 

Neurotransmitters: Γ-aminobutyric acid and glutamate 

Γ-aminobutyric acid (GABA) is also an important neurotransmitter 
in C. elegans that functions primarily at neuromuscular junctions [90]. 
Its main functions are to relax muscles during foraging and locomotion 
and modulate defecation. Out of the 302 neurons in hermaphrodite C. 
elegans, 26 of them are GABAergic [91]. Interestingly, GABA is both 
inhibitory and excitatory in these worms [92]. The 19 ventral cord 
neurons comprise the inhibitory GABA neurons and their job is to 
inhibit muscle contractions during locomotion [91,93]. The excitatory 
GABAergic neurons are responsible for modulation defecation [91]. 
Glutamate is also responsible for both excitatory and inhibitory 
responses in C. elegans [94-96]. The majority of excitatory responses 
are mediated by ionotropic glutamate receptors (iGluRs) [96,97], 
which play a role in reversal following nose touch [98,99]. 

Neurotransmitters: Acetylcholine 

The neurotransmitter acetylcholine (ACh) is excitatory in these 
worms [100,101]. It is found at neuromuscular junctions and causes 
contractions in the muscle wall [101]. ACh is also a modulatory 
neurotransmitter that plays a role in locomotion, egg laying, pharyngeal 
pumping, defecation cycling and male mating [90]. Locomotion is by 
far the most important behavior controlled by ACh, involving both 
crawling (surfaces) and swimming (liquid) [102,103]. 

Summary 

Due to the relative simplicity of their nervous system, C. elegans 
provide an in vivo model for studying neuronal injury with respect 
to single neurons [3]. They have been used for studies examining 
mechanisms associated with metal and pesticide toxicity, as well as 
general neurodegeneration [1,25,29,104,105]. Since the C. elegans 
nervous system has characteristics similar vertebrates, results from 
these worms allow for reasonable translation to humans [96], 
particularly relating to pesticide neurotoxicity. 

Major Functions of C. elegans Neurotransmitters
Inhibition Promotion

Octopamine Egg laying Pharyngeal 
pumping 

Tyramine Egg laying Pharyngeal 
pumping 

Spontaneous 
reversal 

Dopamine Food-dependent forward 
movement 

Slows movements in the presence 
of food 

High-angle 
turning 

Learning 
behaviors 

Serotonin Locomotion Defecation Pharyngeal pumping Egg laying 
GABA Muscle contraction Muscle relaxation Defecation 
Acetylcholine Muscle contractions 

Table 1: Summary of major functions associated with neurotransmitters in C. elegans.
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General Pesticide Neurotoxicity 
Organophosphates

Agricultural pesticide poisoning is a major public health problem 
in the developing world, resulting in the deaths of at least 250,000–
370,000 people annually [106]. Although numerous pesticide classes 
are used throughout the world, some of the more common are 
organophosphates (OPs) and dithiocarbamates (DTCs). Taken 
together, OPs and DTCs are the most used pesticides for pest control 
[107]. OPs, which contain phosphorous derived from phosphoric acid, 
are generally the most toxic of all pesticides to vertebrates [108] and 
exposure is a serious global health problem. It is estimated that there 
are, on average, more than 3 million poisonings reported per year [109]. 
OPs are absorbed rapidly via all routes (respiratory, gastrointestinal, 
ocular and dermal) and exposure effects can be immediate and/or 
long term [109,110]. The most prominent effect of OP exposure is 
excessive accumulation of ACh in the synaptic cleft resulting from 
the irreversible inhibition of acetylcholinesterase (AChE), the enzyme 
responsible for ACh catabolism [107]. The standard treatment for 
OP poisoning is the administration of atropine, a competitive ACh 
antagonist that reverses the effects of excess ACh at the synapses, or 
the use of nucleophilic oxime, pralidoxime or obidoxime, to regenerate 
AChE [111,112]. Other proposed mechanisms of OP toxicity include 
production of or increasing oxidative stress [113]. Either increasing 
reactive oxygen species (ROS) or decreasing antioxidants result in 
oxidative stress [109,114]. ROS have been implicated in inflammation, 
aging, mutations, carcinogenesis, degenerative and many other 
diseases. OPs induce oxidative stress and deplete ATP in vivo, as well as 
alter antioxidants enzymes such as superoxide dismutase (SOD) [115]. 
In vitro, markers such an increased ROS (hydroxyl, superoxide, or lipid 
peroxyl) and reduced glutathione levels have been observed in cultured 
lymphocyte cells exposed to OPs, further supporting the hypothesis 
that oxidative stress plays a prominent role in OP mechanisms of 
action [108]. 

Carbamate pesticides 

DTCs are widely-used pesticides with typically low acute and 
chronic toxicity in humans [116-119]. Similar to OPs, carbamates 
are esters of phosphoric acid, phosphothioic acid, or carbamic acid. 
There is considerable structural diversity, however, in the side chains 
and it is typically these moieties that determine the toxicokinetics and 
toxicodynamics of pesticide poisoning [109]. Carbamate poisoning is 
less severe than that of OP exposure [120-122] even though carbamates 
may also inhibit AChE [115,123]. The latter, however, cause reversible 
inhibition [114]. Thus, AChE inhibition by carbamates lasts only 
minutes or hours, whereas the effects of OPs may last for 3 to 4 months. 
Thus, acute intoxication by carbamates generally resolves within a few 
hours, unless their exposure is combined with that of OPs [123]. It is 
likely that carbamates may also be involved in oxidative stress [124]. 
For example, the carbamate carbofuran increases oxidative stress in 
rat brains by inducing lipid peroxidation and diminishing antioxidant 
defenses [125]. Because AChE inhibition is reversible in carbamate 
poisoning, therapeutic treatment is less effective than treatment for 
OP poisoning [123]. Oxime antidote therapy is usually not needed for 
these patients and atropine treatment is usually adequate [122]. 

Organophosphate Pesticides in C. elegans
Movement, behavior and LC50s

Although early research with C. elegans and pesticides focused on 

the actual toxicity of agrochemicals in the soil nematode, more recent 
work has shifted to include C. elegans as the model organism in toxicity 
testing. Since then, C. elegans has been valuable in generating data in 
neurotoxicity studies involving OPs [126,127]. Importantly, studies 
have shown that the toxicity rank and mechanism of action in C. elegans 
are comparable to those observed in more traditional mammalian 
models [128]. For example, Cole et al. [105] found that 15 OPs elicited 
behavioral EC50 rankings in C. elegans consistent with LD50 rankings 
observed in rats and mice. In addition, five of six OPs known to exhibit 
AChE activity in mammals (dichlorvos, fensulfothion, methidathion, 
methyl parathion, parathion) similarly reduced cholinesterase activity 
in C.elegans. Interestingly, glyphosate and ethephon did not exhibit 
significant AChE activity and these two compounds are not strong 
cholinesterase inhibitors in mammals. Lethality, movement and AChE 
activity have all been used as endpoints to examine OP neurotoxicity 
[128]. Exposure to each of ten specific OPs resulted in significant 
movement reduction, supplying additional evidence that the 
mechanism of toxicity (AChE inhibition) in C. elegans is comparable 
to that in mammals. Furthermore, the LC50s for the ten OPs showed a 
significant degree of correlation with the previous LD50s for rats [128]. 
This study also demonstrated that utilizing LC50s and movement as 
toxic endpoints do not present some of the challenges involved in using 
AChE activity as an endpoint Additionally, the former were more 
consistent than solely relying on measurements of AChE activity [128]. 

Feeding, growth and Reproduction 

While numerous studies have focused on the effects of OPs on C. 
elegans movement, effects on feeding have also been examined [129,130]. 
In a study using the OP chlorpyrifos, feeding decreased steadily as the 
worms were exposed to successively higher concentrations. EC50 values, 
concentrations necessary to decrease C. elegans feeding by 50%, ranged 
from 1.0-2.2 μM [129]. Worms exposed to comparable concentrations 
of chlorpyrifos also showed greater sensitivity to the pesticide when 
feeding and/or reproduction were used as endpoints [130,131]. 
Exposure also results in adverse effects on growth in a concentration 
dependent manner. Even though nematodes exposed to concentrations 
below 30 μM developed to the adult stage, they exhibited a decrease in 
body size [132]. Nematodes exposed to concentrations greater than 30 
μM did not develop into adults and, at the highest concentration of 
chlorpyrifos tested (75 μM), growth was arrested at the L2 larval stage 
[132]. A link may also exist regarding reductions in nematode growth 
via the disruption of neural development, although exposure levels 
were not established [104,132]. Another OP, parathion, is capable 
of significantly reducing reproductive output in C. elegans [131]. In 
reproduction assays using numerous agrochemicals, including diquat 
and paraquat, parathion more potently inhibited reproduction [129-
131]. Here, the EC50s related to the reproductive output of C. elegans, 
determined by counting the number of offspring produced by worms 
exposed to the compounds from the L4 larval stage to adulthood. With 
EC50s ranging from 1.14 - 2.17 μM, parathion was more toxic than any 
other compound tested by at least two orders of magnitude [129,131]. 

Changes in gene and protein expression

C. elegans has been used to examine changes in gene and protein
expression induced by these OPs [32,104]. These agrochemicals are 
known to target genes and their protein products, specifically associated 
with neuronal and muscle tissue, as well as genes involved in apoptosis. 
Exposure of worms to fenamiphos and dichlorvos caused detectable 
changes in expression of 87 of genes. Decreased expression levels 
were observed for hsp-6 (heat shock 70 protein), map-2 (methionine 
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aminopeptidase) and dhp-2 (dihydropyrimidinase), while expression 
of trx-1 (thioredoxin), gst-15 (glutathione s-transferase) and tmd-2 
(tropomodulin) increased [32]. Along with fluctuating levels of gene 
expression, 34 proteins also exhibited changes in expression [32]. 
For example, increases in the expression of annexin and ubiquitin 
c-terminal hydrolase were observed.

OPs are also known to alter the expression of certain genes
regulated by the mediator subunit MDT-1 and the GATA transcription 
factor ELT-2, as well as genes located downstream of daf-16 [104]. 
Determination of this dysregulation has been facilitated by the fact that 
the C.elegans genome has been sequenced. Loss of function of these 
transcription factors can lead to abnormal induction of genes related 
to generalized toxic stress responses, innate immunity, detoxication 
and response to ingested material [104]. OP exposure can also lead 
to apoptotic events in both mammals and C. elegans [133-135] and 
numerous genes and proteins involved in apoptosis have been shown 
to have altered expression levels. For instance, an anti-apoptotic gene 
found in humans (map-2) was down-regulated and the abundance 
of a protein involved in the engulfment stage of apoptosis (NEX-1) 
increased [32]. Mutation in deg-3, which codes for a nicotinic AChR, 
leads to neurodegeneration similar to that observed in C. elegans after 
OP exposure. In human astrocytes, expression levels of numerous genes 
are dysregulated [136,137] and these results have been duplicated in 
C. elegans [32,104]. Finally, medium and high-throughput screenings
utilizing the complex object parametric analyzer and sorter (COPAS)
flow sorting system have been used to assess the toxicity of OPs on
C. elegans feeding, growth, reproduction and locomotion [130,131].
While this high-throughput technique is not unique to work with OPs, 
it further demonstrates the ability of using in vitro sorting techniques 
with a whole model organism to obtain vast quantities of data in 
relatively short periods of time. 

Carbamate Pesticides in C. elegans
Movement and reproduction 

C. elegans has also been used to examine the order and mechanism
of toxicity of carbamates. In a study by Melstrom and Williams [138], 
toxicity rankings determined from movement-concentration curves 
displayed a high degree of correlation to oral acute LD50 rankings in rats 
and mice. Similar to observations in mammalian models, carbamate 
exposure also resulted in AChE inhibition, as indicated by a reduction 
in movement. For example, studies involving the carbamate insecticide 
aldicarb produced results consistent with compounds exhibiting AChE 
inhibition [139]. Aldicarb, an AChE inhibitor, considerably reduced 
tail thrashing and overall movement in the nematode. Additionally, 
reproduction was negatively affected, as worms treated with aldicarb 
displayed a decrease in brood size compared to control [139]. 

Oxidative stress and reactive oxygen species 

The herbicide paraquat and the pesticide rotenone have been 
studied in C. elegans [3]. Paraquat, which is known to cause oxidative 
stress [140] in vertebrates through the production of ROS, also does so 
in C. elegans. Furthermore, mutant C. elegans strains lacking superoxide 
dismutase (SOD) enzymes SOD-1 and SOD-2 showed increased 
vulnerability to paraquat toxicity. In contrast, those containing greater 
levels of SOD, as well as increased expression of the ω-class glutathione 
transferase (gst-1) showed decreased susceptibility to the toxic effects 
of paraquat [3], implying a role of ROS or oxidative stress. The role 
of rotenone as a contributing factor to the etiology of Parkinson’s 
disease has also been studied in C. elegans. Rotenone disrupts NADH-

dehydrogenase in mitochondrial complex I. The role of complex I in 
preventing rotenone toxicity has been demonstrated in C. elegans, as 
strains with mutations in mitochondrial complex I showed increased 
vulnerability to the toxicity of rotenone [3]. Worms containing 
modified genes associated with Parkinson’s disease were also more 
susceptible to oxidative damage due to rotenone exposure [141,142]. 
This illustrates the importance of these genes in the prevention of 
rotenone toxicity and oxidative stress in dopaminergic neurons. 

Manganese-containing dithiocarbamate fungicides

Manganese-containing dithiocarbamate fungicides, such as maneb 
and mancozeb, have been researched heavily due to their neurotoxicity 
[143-145]. Manganese exposure by itself has been shown to result 
in a variety of detrimental effects in C. elegans [146-148]. One study 
demonstrates that even short exposures (30 min) to manganese result 
in production of ROS, as evidenced by a drastic increase in glutathione 
levels [143]. In this study, worms exposed to 50 mM of MnCl2 
experienced a two-fold increase in the amount of ROS production. 
Additionally, acute Mn exposure can lead to mitochondrial inhibition 
by disrupting mitochondrial membrane potential (Δψ) and oxygen 
consumption. Oxidative stress also resulted in the neurodegeneration 
of dopaminergic (DAergic) neurons, indicated by the fact that treated 
worms showed a significant decrease in DA concentration compared 
to untreated worms [143]. Similar neurodegeneration has been shown 
following exposure to mancozeb [144,145]. 

C. elegans studies have also confirmed that manganese exposure
may have an additive effect on DAergic neurodegeneration in neurons 
containing α-synuclein protein aggregates. Various labs have concluded 
that the C. elegans SMF-1 transporter, an analogue of the divalent 
metal transporter (DMT-1) found in humans, is important in the 
degeneration of these neurons [146,147,149,150]. Results in C. elegans 
indicate that this transporter plays a significant role in neurotoxicity 
by transporting manganese into the cell where it can induce numerous 
intracellular changes. 

Discussion and Conclusions 
C. elegans has continued to gain in popularity in toxicological

research as a model organism over the last three decades. This is 
partially because these worms are only a millimeter in length and 
are relatively inexpensive to maintain. Furthermore, data generated 
in C. elegans has successfully complemented and supplemented 
data obtained from traditional mammalian model organisms. The 
ability to easily manipulate its genome via interfering RNA (iRNA), 
allows for exploration of both gene and protein function without the 
difficulties associated with more traditional knock-out and knock-
down techniques. Other techniques previously available for in vitro 
models, i.e. flow sorting, green-fluorescent tags, histochemical analysis, 
can now be used with ease in the transparent C. elegans. In this review, 
we examined how this nematode has been used to examine the toxic 
effects of organophosphate and dithiocarbamate pesticides. End points 
include gene expression, LC50s, various EC50s, movement, feeding and/
or brood size have been studied, emphasizing the variety of rich data 
that can be obtained using this simple organism. While more labs are 
beginning to incorporate C. elegans into their research, it is likely that 
the toxicology community is only just beginning to utilize the power of 
this important organism.
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