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Introduction
Astrocytomas are the most common primary brain tumors in 

humans. They are classified according to malignancy (astrocytoma, 
anaplastic astrocytoma, and glioblastoma multiforme [GBM]). The 
most recent statistics suggest that more than 18,000 new cases of 
brain cancer were reported in 2004 in the United States. Despite 
advances in neuroimaging, microsurgical techniques, radiotherapy, 
and chemotherapy, the prognosis for these patients remains poor. 
With aggressive treatment, including surgical resection, focused 
radiotherapy, and systemic and/or local chemotherapy, the mean 
survival for these patients is still measured in months. Consequently, 
identifying areas of study to improve outcomes is an important focus 
of research.

Ceramide is a sphingosine, which is a lipid messenger in nerve 
cells. Sphingomyelin is present in cell membranes and is the source 
of free ceramide and sphingosine. Sphingomyelin is preferentially 
concentrated in the outer leaflet of the plasma membrane of most 
mammalian cells; it comprises sphingosine (a long chain sphingoid 
base backbone), a fatty acid, and a phosphocholine head group. 
Ceramide is composed of a sphingoid base with a fatty acid in amide 
linkage. Sphingomyelin was initially considered only a structural 
component of plasma membrane; however, several investigations 
established the involvement of sphingolipids and its metabolites in 
key events of signal transduction associated with cell regulation, cell 
differentiation, and apoptosis [1-3]. The sphingomyelin pathway-
associated signal transduction pathway mediates the action of several 
extracellular stimuli that lead to important biochemical and cellular 
effects [4-8]. This pathway is initiated by the activation of two distinct 
forms of sphingomyelinase (SMase), a membrane-associated neutral 
sphingomyelinase [9] and an acidic sphingomyelinase [10], which 
reside in the caveola and the endosomal-lysosomal compartment. Each 
type of SMase hydrolyzes the phosphodiester bond of sphingomyelin 
to yield ceramide and phosphocholine. Proinflammatory cytokines 
(tumor necrosis factor-α TNF-α; interleukin-1β, IL-1β; interferon-γ, 
IFN-γ) and bacterial lipopolysaccharides have been shown as potent 
inducers of SMases. One of the products, ceramide, has emerged as 

a second messenger molecule that is considered to mimic most of 
the cellular effects of cytokines and lipopolysaccharide in terminal 
differentiation, apoptosis, and cell cycle arrest.

C6-Ceramide is a second messenger in neurons. It is a lipid 
mediator of cell growth and apoptosis in cells. Ceramide is able to cross 
the Blood Brain Barrier (BBB), which makes it important in fighting 
against brain cancer [11]. C6-ceramide is believed to induce apoptosis 
in cells [7,8,12]. There are other types of ceramide and they can be found 
in all cells at some point in their life cycle. However, C6 Ceramide is 
supposed to be able to cross the BBB, which makes it important in the 
fight against brain cancer.

A naturally occurring protein known as p53 (also known as TP53) 
often found in normal cells, functions as a transcription factor that 
regulates cell cycles and confers stability of the cells by preventing 
genome mutation [13] and is considered to be a tumor suppressor. 
Apoptosis or programmed cell death can proceed via p53 dependent 
or independent pathway. In this study, we investigated the effect of C6-
Ceramide on the Human Astrocytoma cell lines to study its therapeutic 
effects and, also, the role of p53 in Ceramide-induced cell death.

Materials and Methods
Cell culture

Human grade4 Astrocytoma cell line HTB12 were obtained from 
ATCC (VA, USA) and cultured in L-15 medium containing 10% 
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Abstract
Ceramide is composed of sphingosine and a fatty acid found in large concentration within the cell membrane 

and often acts as a signaling molecule for various functions including programmed cell death. In the present 
investigation, we observed that C6-ceramide induces p53-dependent apoptosis and effectively killed the 
Astrocytoma grade4 (Glioblastoma Multiforme) HTB12 cell lines. Ceramide-induced cell death was confirmed by 
Trypan blue assay which showed about 65% cells dying from ceramide treatment. Apoptosis was confirmed by 
Caspase3 ELISA assay and DNA fragmentation assay. The p53 induction was confirmed by immunoblot studies. 
Since C6 Ceramide induces apoptosis in Glioblastoma cells, it may be employed in chemotherapeutic strategy to 
treat this highly malignant brain cancer.
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fetal bovine serum, 50U/ml penicillin, and 50ug/ml streptomycin in 
a standard cell culture incubator at 37°C in the presence of 5% CO2.

Reagents

C6 Ceramide was purchased from Sigma Chemicals, USA. Trypan 
Blue, p53 antibody and immunoblot materials were purchased from 
Fisher Scientific, USA. Caspase 3 assay kit was purchased from Clontech 
USA. Single stranded DNA Apoptosis ELISA kit was purchased from 
Chemicon, USA.

Ceramide preparation

Stock solution of Ceramide was prepared in DMSO and stored 
at -20°C; when added to aquatic medium, the final concentration of 
DMSO did not exceed 0.12%. A brief sonication cycle was used to 
dissolve ceramide in the cell culture medium. Dose: 1ug/ml of C6 
Ceramide was used only once for 48 hours of incubation in each case of 
assay since this dose and time of incubation was found to be nearest to 
the IC50 for these cell lines.

Trypan blue viability assay

Viability of cells was assayed by the dye exclusion stain technique. 
In this assay, cells with an intact membrane are able to exclude dye, 
whereas without an intact membrane they retain the dye. In brief, 
1x106 cells were suspended in phosphate buffer saline. A 1:1 dilution 
of the cell suspension was made in 0.4% Trypan blue and loaded into 
a hemocytometer. After 1 -2 minutes of incubation with the dye cells 
were counted immediately as prolong incubation would cause viable 
cells to die. Then the percentage of stained and unstained cells was 
calculated which would represent the dead and live cells [5]. 

Single stranded DNA apoptosis ELISA kit

The protocol described in manufacturer’s kit was followed. In 
brief, this assay is based on the principle of the selective denaturation 
of DNA in apoptotic cells and detection of denatured DNA (ssDNA) 
by a nucleosomal monoclonal antibody in an ELISA format. This assay 
includes attachment of cells to 96 well plates, treatment of cells with 
ceramide, fixing by formamide and detection of ssDNA in apoptotic 
cells by incubation with primary monoclonal antibody and peroxidase–
labeled secondary antibody. This assay was performed by an ssDNA 
Apoptosis ELISA kit from Chemicon International Inc. (CA, USA) and 
by using a standard microplate reader at 405 nm. 

Caspase-3 assay

This assay was performed following the protocols of Apoalert 
Caspase colorimetric assay kit from Clontech Corporation (CA, USA). 
Ceramide treated cells and untreated experimental control cells were 
lysed by cold cell lysis buffer, centrifuged, and the supernatant was 
incubated with 50 µl of 2X reaction buffer along with 5 µl of 1mM 
Caspase -3 substrate (DEVD-pNA, 50 µM final concentration) to each 
tube and incubated for 37°C for one hour in a water bath. The samples 
were then read in a microplate reader at 405 nm. 

Immunoblot analysis for P53

Following 6,12,24 and 48 hours of incubation in the presence or 
absence of Ceramide , astrocytomas were scraped off, washed with 
Hank’s buffer, and homogenized in 50mM Tris-HCl, pH 7.4, containing 

protease inhibitors. After electrophoresis, the proteins were transferred 
on to a nitrocellulose membrane and the p53 band was visualized by 
immunoblotting with monoclonal antibodies against p53.

Statistical analysis

Each experiment was repeated three times and graphs were 
generated considering the mean, ANOVA and the standard error using 
the EXCEL software. 

Results
To study the cytotoxic effects of Ceramide on the Astrocytoma cells, 

the Trypan Blue Assay was used. As shown in Figure 1, Ceramide killed 
cells at a much higher rate than the DMSO or the control (without 
DMSO).

The antibody in the ssDNA ELISA assay selectively binds to only 
DNA that has become fragmentized which exposes nucleosomal 
proteins, characteristic of apoptotic cell death. This observation 
provided conclusive evidence that the ceramide is killing the cells by 
inducing apoptosis. The data also show (Figure 2) that ceramide is 
killing by apoptosis at a higher rate than the untreated control human 
astrocytoma cells. 

Caspases are families of Ca++ dependent cysteine proteases which 
are the executioners of apoptosis (programmed cell death), necrosis 
(accidental cell death), or inflammation (due to harmful stimuli). 
These enzymes get activated when cells are dying. As shown in Figure 
3, the level of caspase-3 enzyme found in ceramide treated cells was 
significantly higher than that of the control cells. The programmed 
cell death can be either p53 dependent or independent. In order to 
reveal which pathway, cells were exposed to ceramide for various time 
periods (6-48 hrs) and then proteins were extracted and subjected to 
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Figure 1: The Trypan Blue Assay. This assay showed that Ceramide (2) killed 
human astrocytoma cells at a higher rate than control (without DMSO, 1) and 
DMSO (3).

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2

CONTROL          CERAMIDE

APOPTOSIS ssDNA ELISA 
ASSAY

A
BO

SR
BA

NC
E 

A
T 

40
5n

m

Figure 2: Ceramide-induced apoptotic cell death. Cell death rate is higher in 
ceramide treated cells than control as shown by higher absorbance at 405 nm.
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acrylamide gel electrophoresis followed by Western blot analysis. A 53 
kilo Dalton bands appeared on the gel signifying the induction of p53 
at different time intervals at a fixed dose of C6 Ceramide and which 
was undetectable at parallel time course in control cells as shown in 
Figure 4. 

Discussion 
Ceramide, a product of sphingolipid metabolism, is generated in 

response to various stress stimuli, such as tumor necrosis factor-alpha, 
CD95/Fas, chemotherapeutic agents, and irradiation. Ceramide may 
modulate the biochemical and cellular processes that lead to apoptosis. 
However, the mechanisms by which ceramide regulates apoptotic 
events are not fully defined. It is believed that the biological effect of 
ceramide depends on its concentration, the activation or differentiation 
status of the cell, and the time frame of action.

Several studies support a role for the hydrolysis of sphingomyelin 
as a stress-activated signaling mechanism in which ceramide plays a 
role in growth suppression and apoptosis in various cell types including 
glial and neuronal cells [10-12,14-16]. Ceramide activates the proteases 
(pr) of the interleukin-converting enzyme (ICE) family (especially 
prICE/YAMA/CPP32), the protease responsible for cleavage of poly 
(ADP)-ribose polymerase, and that the activation of prICE by ceramide 
and induction of apoptosis are inhibited by overexpression of Bcl-2. 
Addition of exogenous ceramides or sphingomyelinase to cells induces 

stress-activated protein kinase-dependent transcriptional activity 
through the activation of c-jun, and a dominant negative mutant 
of SEK1, the protein kinase responsible for phosphorylation and 
activation of stress-activated protein kinase, interferes with ceramide-
induced apoptosis [16-24]. These observations also suggest that both 
Bcl-2 and stress-activated protein kinase function downstream of 
ceramide in the apoptotic pathway. 

In this study on the role of C6-Ceramide in inducing apoptosis 
in human Astrocytoma cells, we first showed that Ceramide induces 
cell death. Cell death assays showed that this cell death is mediated 
by apoptosis which is confirmed by DNA fragmentation analysis and 
Caspase activation assay. We further studied the role of p53 protein 
in Ceramide-induced Apoptosis and found induction of p53 gene 
by Ceramide treatment. Further research is needed, including full 
molecular characterization of the enzymes involved in the generation 
and metabolism of ceramide and developing a more complete 
understanding of the complex pathways that regulate sphingolipid 
synthesis. As ceramide generation and metabolism are likely controlled 
differently among various types of cells, and are potentially altered in 
multi-drug-resistant cells, signaling pathways and pharmacological 
manipulation of those pathways will need to be studied across many 
cell types, and comparisons between chemotherapy-sensitive and 
drug-resistant cancer cells are needed. The events down-stream 
from ceramide generation that result in cell death also remain to be 
completely elucidated, and may vary depending on the type of cell or 
the prior exposure ofthe cell to cytotoxic stress. Continued work in 
these important areas could identify potential therapeutic targets, and 
should increase our understanding of how to best pursue those targets 
already identified. With drugs that target ceramide now entering 
clinical trials, and more such agents in pre-clinical development, we 
can anticipate learning more about the potential for sphingolipids as a 
cancer therapeutic target in the near future.
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