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Abstract
Spinal cord injury (SCI) is a devastating injury resulting in changes in the spinal cord’s motor, sensory, or autonomic 

functions. Following SCI, an inhibitory environment develops at the injury site for neural regeneration. In this review, we 
summary the strategies to rebuild the regenerative microenvironment with functional biomaterials for SCI repair mainly 
based on our research. We have developed a functional biomaterial consisting of collagen scaffolds and biologically 
active molecules (neurotrophic factor or the antagonists to myelin-associated inhibitor), and stem cells to rebuild a 
nerve regeneration microenvironment. Specifically, (1) the linear ordered collagen scaffold (LOCS) was used to guide 
the neural regeneration along its fibers and decrease the formation of glial scars, (2) collagen binding neurotrophic 
factors were incorporated into the scaffolds to promote neuronal survival and neural fiber regeneration, (3) antagonists 
to myelin-associated inhibitors were added to the scaffold to direct the neuronal differentiation of the native or 
transplanted neural stem cells at the injury site, (4) mesenchymal stem cells (MSCs) were also added to the scaffold to 
reduce the acute inflammatory response due to SCI. These strategies were found to promote neural regeneration and 
functional recovery in SCI animals. In addition, the endogenous neural stem cells (NSCs) or implanted NSCs could 
be differentiated into neurons, which re-established the neuronal circuits to improve SCI repair under the favorable 
environment.
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Introduction 
Spinal cord injury (SCI) is a devastating injury to the spinal cord 

resulting in the damage of the cord’s motor or sensory functions 
[1]. Currently, repair after SCI is still a huge challenge because of 
the inhibitory regenerative environment at the injury site. SCI is the 
most often traumatic, mainly caused by trauma such as car accidents, 
falls, and sports injuries. Traumatic SCI often initiates a cascade of 
biochemical reactions. First, following the initial traumatic  insult, 
a variety of inflammatory and cytotoxic mediators is released at the 
injured site, resulting in secondary damage to the spinal cord. This will 
lead to continued and pervasive cell death and tissue  damage [2,3]. 
Second, the residing astrocytes become hypertrophic in response to SCI, 
and the reactive astrocytes produce chondroitin sulfate proteoglycans 
(CSPGs) and form a dense scar at the injury site. The glial scar can 
protect intact neural networks from further damage; however, it also 
serves as an impediment for regenerating axons attempting to reach 
their distal targets [4-6]. Third, following injury, the myelin is disrupted 
locally where the axons degenerate, leaving large amounts of inhibitory 
materials. The myelin-associated inhibitors, such as Nogo-A, MAG, 
and OMgp, inhibit neural regeneration through Nogo-66 Receptor-1 
(NgR1) and Paired-Immunoglobulin-like-Receptor-1(PirB). In 
addition to myelin-associated inhibitors, several members of the axon 
guidance molecules expressed by oligodendrocytes have also been 
implicated to play adverse roles in CNS axon regeneration, such as 
ephrinB3 and semaphrin4D [7,8]. Taken together, these factors make 
up an inhibitory environment following SCI for neural regeneration. As 
a result, the nerve connections between the brain and the spinal cord 
are interrupted, which result in the loss of sensation and movement 
function of the body. Thus, building a regenerative microenvironment 
is essential for spinal cord injury repair. In this review, we summary the 
strategies to rebuild the regenerative microenvironment with functional 
biomaterials for SCI repair mainly based on our research. Functional 
biomaterials consisting of collagen scaffolds and biologically active 
molecules (neurotrophic factor or the antagonists to myelin-associated 
inhibitors), as well as stem cells, are then being designed to rebuild a 
nerve regenerative microenvironment. 
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Collagen Scaffolds for Neural Regeneration
A neuronal regenerating scaffold should provide a physical 

support for axon extension and should be nontoxic and nonirritating. 
Collagen has low antigenicity and excellent biocompatibility and 
biodegradability. Different types of collagen scaffolds have been tested 
to repair SCI in animal models, including collagen tubes, fibers, 
membranes, and gels. They showed that collagen scaffold was a suitable 
biomaterial for guiding neural regeneration [9-11]. Yoshii reported that 
when collagen filaments were grafted to the axis of the spinal cord, it 
supported the axonal regeneration and the  restoration of  function  in 
adult SCI rats [10]. Liu used collagen tube to guide axonal regrowth, they 
found that the spinal axons could regrowth into the caudal sectioned to 
reconnect ventral roots in hemisected adult rat spinal cord [11]. Recently, 
Liu developed electrospun collagen nanofibers and demonstrated 
the potential use of these scaffolds for SCI repair in rat hemi-section 
model [12]. We prepared a novel type of collagen nerve guidance 
material from the bovine aponeurosis, which mainly consists of 
ordered collagen fibers. The processed material could guide the neurite 
outgrowth along its fibers [13]. The linear ordered collagen scaffold 
was named LOCS. When LOCS was transplanted into hemisected or 
transected SCI animal models (rats and canines), the neural fibers grew 
along the direction of the LOCS [14-16]. It is well known that a dense 
glial scar was formed at the injured site following SCI, and the glial-
derived chondroitin sulfate proteoglycans (CSPGs) within the glial scar 
form a barrier to axonal regrowth and sprouting after SCI [4-6]. It was 
reported that antagonizing the CSPG signaling pathway could induce 
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OMgp, and the extracellular domain of Nogo-A (Nogo-66) is 
mediated by the common receptor complexes, the receptor complexes 
were composed of NgR (ligand-binding Nogo-66 receptor) and its 
signaling co-receptors p75/TROY and Lingo-1 [7,8]. Signals induce 
elevation of the intracellular calcium level and then activate epidermal 
growth factor receptor (EGFR). Thus, EGFR was transactivated 
by myelin-associated inhibitors, which is the downstream of NgR 
receptor signaling [27]. Erschbamer reported that local infusion of an 
irreversible EGFR inhibitor, PD168393, onto the damaged area could 
lead to functionally recovery of hindlimb function accompanied by 
improved sensory function in contusion SCI rats [28]. Li demonstrated 
that EGFR  inhibitor, PD168393, decreased reactive astrogliosis and 
proinflammatory cytokine secretion of reactive astrocytes in vitro. 
When PD168393 was used in the injured area of a traumatic SCI, it 
suppressed CSPGs production and glial scar formation, resulting in 
hindlimb motor function and bladder improvement [29]. A monoclonal 
antibody, 151IgG, which was a direct competitive inhibitor of EGFR 
kinase activity, was used to block EGFR in our research. 151IgG was 
cross-linked to LOCS, and then CBD-BDNF was added to make a 
triple-functional biomaterial to induce neural regeneration, which 
could bridge the gap, neutralize the growth inhibitor and promote the 
neural growth. When tested in a 6-mm transected SCI model, most 
NF-positive fibers were consecutive and parallel in the direction along 
with LOCS, and the length of most fibers was above 500 μm. Spinal 
somatosensory evoked responses (SSERs) were significantly restored 
[15].

In addition to myelin-associated inhibitors, several axon guidance 
molecules expressed by oligodendrocytes have also been implicated 
to play adverse roles in CNS axon regeneration, such as ephrinB3 and 
semaphrin4D.CBD-EphA4LBD and CBD-PlexinB1LBD were produced 
to bind specifically to the collagen scaffold and neutralize the inhibitory 
effect of the axon guidance molecules ephrinB3 and sema4D. Their 
effect on promoting neurite outgrowth of cerebellar granular neurons 
and dorsal root ganglion neurons were tested in vitro. Subsequently, 
when functionalized collagen scaffolds, consisted of LOCS, NEP1-40, 
CBD-EphA4LBD and CBD-PlexinB1LBD, were transplanted into T10 
complete removal SCI model, results showed that rats transplanted 
with the functional collagen scaffold displayed great therapy effects on 
SCI by inducing neuronal regeneration and locomotion recovery [30]. 

Directing Neuronal Differentiation of Neural Stem/
Progenitor Cells

Neural stem/progenitor cells (NPCs) are a valuable cell source for 
the therapy of injuries in the central nervous system (CNS). However, 
when NPCs are transplanted into the adult mammalian spinal cord, 
they rarely differentiate into neuronal lineage. The results have also 
been detected for endogenous NPCs during spinal cord injury [31-33]. 
We have first identified that myelin protein and Nogo-66 could inhibit 
the differentiation of NPCs into the neuronal lineage and promote its 
differentiation into the glial lineage. The NgR and mTOR-Stat3 pathways 
were involved in this process [34]. An epidermal growth factor receptor 
(EGFR) neutralizing antibody, cetuximab, was used to inhibit the 
downstream signaling activated by myelin-associated inhibitors, the 
collagen loaded with cetuximab was found to antagonize the effect of 
myelin-associated inhibitors. When NPCs exposed to myelin proteins 
in vitro, it significantly enhance the neuronal differentiation of NPCs. 
Furthermore, when functional biomaterials consisted with LOCS, 
cetuximab and NPCs were implanted into the 4-mm-long hemisaction 
lesion of rats, it induced neuronal differentiation significantly and 
decreased astrocytic differentiation of NPCs and eventually promoted 
functional recovery. Thus, a well-functionalized scaffold was developed, 

the regeneration of serotonergic system, and promote the functional 
recovery of locomotor and urinary systems [17]. However, we found 
when only LOCS was transplanted into complete transected SCI model 
in rat, LOCS could induce a significant decrease in the density of 
astrocytes (GFAP staining) surrounding the lesion site [15]. The same 
result was also found in canine SCI, the accumulation of CSPGs at the 
injury site decreased significantly in LOCS-treated group (unpublished 
data). The results from the rat and canine SCI models suggest that 
LOCS could decrease the formation of glial scar. Accordingly, LOCS 
transplantation alone could promote functional recovery after SCI [14-
16]. These data suggest that LOCS is a suitable neural scaffold to build 
regenerative microenvironments for guiding neural regeneration. 

Collagen Binding Neurotrophic Factors to Promote SCI 
Repair

Neurotrophic factors, such as brain-derived neurotrophic factor 
(BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and 
neurotrophin 4/5 (NT- 4/5), have been proved to promote neuronal 
survival or regeneration of neural fiber in the central nervous system 
[18-20]. However, when growth factors were used at the injury site 
in practice, it is difficult to maintain the therapeutic concentrations 
because these factors rapidly diffuse away from the application site. 
Different method was used to inhibit the diffusion of growth factors. 
Yang  incorporated NGF into the conduit by mixing or encapsulating 
the protein with  microspheres, a sustained release was detected and 
NGF retained its bioactivity [21]. Chang reported that nerve  growth 
factor  was sucked into polycaprolactone (PCL) conduits by using 
genipin as a crosslinking agent. The NGF showed pulse releasing and 
steadily releasing, which promoted nerve regeneration in a 15-mm rat 
sciatic nerve defect model [22]. Zhao produced the sustained-release 
microspheres using the polylactic-co-glycolic acid copolymer, which 
contained NGF, NT-3 and BDNF, the microspheres could sustain the 
release of neurotrophic factors in vitro and promote sciatic nerve repair 
after injury [23]. In our study, a collagen-binding peptide was fused with 
them, and the fusion proteins acquired the ability to bind specifically to 
collagen, which could prevent the rapid diffusion of growth factors at the 
target sites [24,25]. BDNF has positive effects on neuroprotection and 
neural regeneration. As one of the best characterized growth factors, 
BDNF plays an important role in CNS development and repair, such as 
in early-phase long-term potentiation, neural survival, differentiation, 
and synaptogenesis [26]. Using the rat hemisaction SCI model, we 
found that when LOCS loaded with CBD-BDNF was transplanted 
into the injury site, it significantly improved the functional recovery 
of locomotion system and induced axonal regeneration along with the 
collagen scaffold [14]. In addition, when the functional biomaterials 
were implanted into completely transected canine SCI, LOCS + CBD-
BDNF transplantation significantly promoted locomotion and sensory 
functional recovery, some dogs could stand unassisted and walk 
transiently. Furthermore, the transplantation of LOCS + CBD-BDNF 
induced the significant functional recovery by reduction of lesion 
volume, decreasing of the scar deposits, inducing neural regeneration 
and improving axonal myelination. In summary, LOCS + CBD-BDNF 
transplantation showed a striking therapeutic effect on completely 
transected canine SCI models, and this is the first report of such a great 
progress in a completely transected large animal model with long-term 
(38 weeks) observation [16].

Incorporation of Antagonists to Myelin-associated 
Inhibitors to the Scaffolds

Following injury, the myelin is disrupted locally, leaving large 
amounts of inhibitory materials. The inhibitory activity of MAG, 
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which could promote the neuronal differentiation of neural progenitor 
cells and improve the recovery of SCI in vivo [35]. Lu P reported 
that when NSCs were transplanted to sites of severe SCI combined 
with fibrin matrices containing growth factor cocktails, grafted cells 
differentiated into neurons, which extended large numbers of axons 
to form abundant synapses with host cells. Grafted neurons supported 
long-distance connectivity, resulting in functional recovery. The same 
results also observed when human induced pluripotent stem cells were 
transplanted into the injured site after spinal cord injury in rats [36-37]. 

Using Mesenchymal Stem Cells to Improve the 
Regenerative Microenvironment

Mesenchymal stem cells (MSCs) are self-renewing, multipotent 
progenitor cells with the capacity to differentiate into several distinct 
mesenchymal lineages. MSCs have recently been considered as a 
promising source for cellular repair after SCI. MSCs can synthesize 
a number of neurotrophic cytokines, including brain-derived 
neurotrophic factor, NGF, and vascular endothelial growth factor 
(VEGF), which have neuroprotective and growth-promoting effects 
after SCI; Furthermore, there is increasing evidence that MSCs may 
be immunosuppressive. The immunosuppressive properties may 
combine to reduce the acute inflammatory response to SCI and 
hence reduce cavity formation and decrease astrocyte and microglia/
macrophage reactivity [38,39]. It was reported that MSCs could  play 
positive immunomodulatory and neurotrophic effects to promote SCI 
repair. MSCs could exert its effect on both immune cells and neural 
cells simultaneously. It prevented macrophage-mediated axonal 
dieback, and promoted neural regrowth to overcome the negative 
effects of inhibitory proteoglycans [40]. Thus, MSCs may promote 
axonal regeneration or encourage functional plasticity by establishing a 
regenerative environment. Transplantation of MSCs has been reported 
to promote successful functional outcome in  animal models  of SCI, 
and several small clinical trials were performed to investigate the 
efficacy and safety of MSCs in SCI. Our recent work showed that 
LOCS with MSCs implants strikingly promoted locomotion and 
functional recovery after completely transected SCI in the canine with 
multisystem rehabilitation. Further histological analysis showed that 
the transplantation of LOCS with MSCs decreased scar formation. 
In addition, when LOCS with MSCs were implanted into SCI canine, 
there are more neurons and synapse formation in the lesion sites in the 
LOCS with MSCs group than in the control group at 36 weeks after 
SCI (unpublished data). It suggests that the newborn neurons could 
form new synaptic connections in the lesion area and contribute to the 
functional recovery after SCI. 

Mechanisms of Spinal Cord Injury Repair
It is widely accepted that the existence of regeneration inhibitory 

environments such as myelin-associated inhibitors and reactive glia scars 
in the lesion site, which impeded neural regeneration after SCI (Figure 
1A and 1B). It has also long been recognized that axonal regeneration 
is the main way to restore function after severe SCI in which the long 
descending and ascending tracts were interrupted. Many efforts have 
been made to induce long axonal regeneration, but there were few 
evidences to support corticospinal tract (CST) growth into grafts or 
transplants [41]. Beside reconnection of the injured pathway by guiding 
axonal regrowth, we reported that the functional biomaterial consisted 
of the collagen scaffold and cetuximab, an antagonist to myelin-
associated inhibitor, markedly promoted neuronal differentiation and 
decreased astrocytic differentiation of transplanted NSCs in SCI rats 
[29]. Our recent work discovered that the collagen scaffold loaded 
with cetuximab or MSCs increased neuronal differentiation of the 

endogenous neural stem cells to produce different types of neurons 
throughout the lesion area (unpublished data). It suggest that these 
newly generated relay neurons may further rebuild the synaptic 
connections with each other or with the host spinal neurons to improve 
locomotion outcomes in the completely transected SCI canine. We thus 
propose a model that under a favorable environment, the endogenous 
neural stem cells or implanted neural stem cells could be differentiated 
into neurons, form functional neuronal circuits to improve spinal cord 
injury repair (Figures 1C and 1D). We believe that rebuilding neuronal 
relays would be a more efficient way to repair SCI comparing with 
inducing axonal regrowth.

Conclusion
Following SCI, an inhibitory environment for neural regeneration 

develops at the injury site. A regenerative microenvironment was 
made by the functional biomaterial to promote neural regeneration 
and functional recovery after SCI. The functional biomaterial may 
decrease glial scar formation, guide neural fibers regenerating along the 
direction of the LOCS, and induced neuronal differentiation of neural 
stem cells. Rebuilding neuronal relays by newborn neurons induced 
from endogenous neural stem cells or implanted neural stem cells could 
be a major mechanism for SCI repair.
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