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Introduction
Several automatic variable selection and estimation techniques 

have emerged in the past two decades, including Lasso [1], LARS [2] 
and Adaptive Lasso [3]. The Lasso (which stands for “least absolute 
shrinkage and selection operator”) is a popular technique for 
simultaneous variable selection and parameter estimation. It selects 
variables and estimates their coefficients by minimizing the residual 
sum of squares subject to a constraint to the sum of the absolute value of 
the coefficients. It shrinks some coefficients and sets the others to zero 
by the constraint, which adds a little bias but reduces the variance of the 
predicted values, thus improving the overall prediction accuracy [1]. 
Efron et al. [2] introduced Least Angle Regression, abbreviated LARS 
(the “S” suggesting “Lasso” and “Stagewise”). Both Lasso and Stagewise 
linear regressions are variants of LARS. A simple modification of the 
LARS algorithm implements the Lasso, but uses less computer time 
than the original Lasso algorithm. The key characteristic of LARS is its 
computational efficiency. Zou [3] proposed the adaptive Lasso, which 
adds weights in a data adaptive way to the Lasso penalty term. These 
weights provide less shrinkage to important predictors, thus leads to 
consistent variable selection results.

Although those methods have good performance in choosing 
statistically important factors, they do not take into account the cost 
of collecting data for the predictors. Identification of cost efficient 
diagnostic factors is of great interest to health researchers because of the 
heavy burden on the public health system. Due to the development and 
improvement of new technologies, such as nuclear medicine imaging 
and DNA microarray analysis, the costs of health care are escalating. In 
practice, inexpensive factors may have similar statistical significance as 
costly factors, thus could be used as diagnostic or prognostic variables 
by sacrificing minimal prediction accuracy, while reducing the health 
cost burden. This requires statisticians to search for new strategies in 
building statistical models to contain the effect of the cost of collecting 
data for diagnostic factors. The cost of collecting data for a variable 
may include the cost of material, equipment, time, human labor, etc. 
The costs may be different for collecting different variables. A model 
is more cost-efficient than another one if this model costs less, but 
with almost the same prediction accuracy, or this model costs much 
less but with only slightly less prediction power. A health researcher, 
as well as a decision maker, may prefer a more cost-efficient model in 

many situations. If there is a budget constraint on a research project or 
we are at the screening stage of diagnosing a disease, a more accurate 
but costly model may not be necessarily better than a less accurate but 
cheaper model.

There has been relatively little work on cost efficient variable 
selection. To incorporate cost in a predictive model, Lindley [4] 
suggested adding the cost of obtaining the covariates to the objective 
loss function in univariate multiple regression where a Bayesian 
approach was used. Brown et al. [5] worked on variable selection 
in multivariate linear regression using a non-conjugate Bayesian 
decision theory approach, where a terminal cost, a function of the 
cost of retaining the selected variables, was added to the loss function. 
Their approach balances prediction accuracy against costs and omits 
covariates when they cost too much relative to their predictive benefit.

Our goal is to develop a variable selection procedure that can 
simultaneously select the important predictors and estimate their 

cost efficient. We concentrate on developing a method to select cost-
efficient variables based on some existed variable selection algorithm. 
The cost effect is our focus and the developed algorithm can be adapted 
to a variety of variable selection methods. Since the LARS method is 
implemented in the R [6] package lars [7], and this package is publicly 
available, we can conveniently build our cost-efficient variable selection 
strategy, which extends the LARS method to incorporate variable costs 
penalized in the objective loss function. The total loss includes the error 
sum of squares, the Lasso type penalty, and the cost of collecting data 
for the predictors, where the first two parts compose the Lasso loss. 
It employs a branch and bound method to search for a model which 
minimizes total loss. The method is referred to as the Branching LARS 
(BLARS) search procedure in this paper.
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Abstract
Variable selection is a difficult problem in building statistical models. Identification of cost efficient diagnostic factors 

is very important to health researchers, but most variable selection methods do not take into account the cost of collecting 
data for the predictors. The trade-off between statistical significance and cost of collecting data for a statistical model 
is our focus. In this paper, we extend the LARS variable selection method to incorporate costs of factors in variable 
selection, which also works with other methods of variable selection, such as Lasso and adaptive Lasso. A branch and 
bound search method combined with LARS is employed to select cost-efficient factors. We apply the resulting branching 
LARS method to a dataset from an Assertive Community Treatment project conducted in Southwestern Ontario to 
demonstrate the cost-efficient variable selection process, and the results show that a “cheaper” model could be selected 
by sacrificing a user selected amount of model accuracy.

effects to build a model that is not only good at prediction but also 
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memory and 64-bit R software environment, the computation time 
is 3.4 seconds. We then add 5 covariates into the design matrix: the 
squared term BMI2 and the two-way interaction terms Age: Sex, Age: 
BP, BMI: BP and Age: S5. Fixing λ=90 and λ=1, with p=15, we need 
to compare 215=32,768 different results to select the best solution, and 
the computation time is increased to 145.2 seconds or 2.4 minutes. We 
further add in 5 covariates: S32, S52, SEX: BMI, SEX: BP, and AGE: S3. 
Still with λ=90 and γ=1, for p=20, we need to compare 220=1,048,576 
different results to select the best one, and the computation time is 
dramatically increased to 6039 seconds or 1.7 hours. If we consider 
all squared terms and two-way interaction terms, we need to compare 
265=3.69×1019 different results, and the computation time cannot be 
imaginable, although p=65 is not a big number. The branch and bound 
search method can provide a solution to this problem, where relaxation 
is used to make the searching process easier and faster.

0 0, for 1, , , with 1 ,α β= ⇒ = = … ≤ ≤j j j k k p  

i.e. the only difference between Rk and Pk when k<p is that we drop 
the constraints on βj for j>k for Rk. Therefore, the feasible region of 
Rk contains the feasible region of Pk, so the optimal objective value of 
the relaxed problem Rk will be a lower bound on the optimal objective 
value of the subproblem Pk. Without any constraints from j=k+1 to j=p, 
to minimize the total loss in Rk, we set all αj=0 for j=k+1,…,p. Then, the 
value of the vector α is known for the relaxed problem Rk, and Rk can 
be solved by calling the lars function. When k=p, Rk is the same as Pk 
which is the subproblem corresponding to a leaf node. 

The branch and bound process makes use of the lower bound 
obtained from solving Rk to accelerate the search by avoiding solution 
of the generally harder problem Pk. Suppose some subproblems have 
been solved resulting in a best candidate solution found so far. If the 
optimal value of Rk, say v, is greater than or equal to the objective value 
of the best candidate solution found so far, then there is no need to 
solve Pk or branch on Pk since its optimal value cannot be better than 
v. Problem Pk is regarded as having been solved, even though it is not 
actually solved. In this case, the search tree is said to be “pruned” at Pk. 

relaxation of Rk, so we may be able to prune certain relaxed problems to 
speed up the overall search even more. The detailed BLARS algorithm 
is shown in the Appendix.

For comparison to the example introduced at the beginning of 
this section, where the naive method is used to build the cost-efficient 
models on the diabetes data fixing λ=90 and γ=1, we apply the BLARS 
method developed in this paper to the 3 datesets with p=10, p=15, and 
p=20, respectively. The computation time is 0.04 seconds, 0.10 seconds 
and 0.13 seconds, respectively, and the results are exactly the same as 
the ones based on the native approach.

The rest of the paper is organized as follows. In the “Framework” 
section, we derive the theoretical basis of the BLARS method. We 
discuss details of the implementation in the section of “Issues in 
Implementation”. In the “Numerical Studies” section, a simulation study 
is conducted to examine different ordering methods, and the proposed 
BLARS method is applied to a dataset from an Assertive Community 
Treatment (ACT) project conducted in Southwestern Ontario to 
demonstrate the cost-efficient variable selection process. Possible extension 
of the BLARS method is discussed in the “Discussion” section.

Framework
We want to select and simultaneously estimate the coefficients of 

covariates such that a loss function is minimized. The total loss in the 
loss function consists of 3 parts: the error sum of squares of the model, 
the l1 penalty and the cost incurred by collecting those variables in the 
model. The proposed optimization problem P can be written as

2

1
1 1

( , ) | | ( , , )β λ β γ α α
= =

= − + + …∑ ∑
p p

j j j p
j j

min f n Cy xβ α               (2.1)

with domain D:

{0,1}, for 1, , ,α ∈ = …j j p  

1  ( , ) , ,β β ′= … ∈ ℜ p
pβ

and constraints S: 

0 0, for 1, , ,α β= ⇒ = = …j j j p  

where y is the n dimensional vector of observations, β is the regression 
coefficient vector to be estimated; p is the total number of covariates 
of interest; λ ≤ 0 is the regularization or tuning parameter; γ ≤ 0 is a 
user-defined weight imposed on costs, reflecting the level of reluctance 
to use high cost variables. The vector α=(α1,….,αp) contains 0’s and 1’s, 
with αj=1 if the variable Xj is included in the model, as indicated in 
the constraints S. The cost function C(α1,..,αp) is assumed to be non-
decreasing in each αj. For example, costs may accrue additively,

1
1

( , , )α α α
=

… =∑
p

p j j
j

C c                  (2.2)

where cj ≤ 0 is the cost of collecting the variable Xj.

BLARS method

The sum of the first two terms in the objective function (2.1) is the 
Lasso objective function. The third term complicates the problem, but 
if we fix the value of α, then the third term becomes a constant and 
the problem reduces to Lasso variable selection and estimation, and 
lars may be used to solve it. A naive approach would be to try all 2p 
different values of α, compare the results and select the best solution. 
In practice, this approach is not feasible when p is large. For example, 
we build a model to minimize the objective function (2.1) using the 
diabetes data used by Efron et al. [2], which contains 442 observations 
and 10 covariates: Age, Sex, BMI (body mass index), BP (average 
blood pressure), and S1 to S6 representing 6 serum measurements. For 
the purpose of illustration, we let the cost of Age and Sex be zero, let 
the cost of BMI and BP be 5 and 10, respectively, and let the 6 serum 
measurements have a group cost of 20 for the collection of blood 
sample and have additional individual cost of 30 for each blood test. 
Fixing λ=90 and γ=1, we use the naive approach to build the model 
with p=10, where 210=1,024 different results are compared to select the 
best solution. Using a computer with Intel Core6TM i7 CPU and 12GB 

At each step in the BLARS process, we fix the value of one αj 
to be 0 or 1. (The choice of j is discussed later; for simplicity in this 
discussion we will assume numerical order, fixing α1 first, then α2, etc.). 
At step 1, we branch on the problem P and create two subproblems: 
P1 (left) with α1=0 and P1 (Right) with α1=1. We continue to branch on the 
subproblems and create second-level subproblems by fixing α2=0 and 
α2=1, respectively. Suppose at some step k, we have fixed the value of 
α1,α2,...,αk, then the subproblem Pk of P has the objective function (2.1), 
the same domain D and constraints S, but with the given value of αj, 
j=1,…,k. Rk is a relaxed problem of Pk with the same objective function 
(2.1), the same domain D and the same given value of of αj, j=1,…,k, 
but constraints Sk:

Note that for l<k and the same fixed values of αj, j=1,…,l, Rl is also a 
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Pruning based on previous fits

The tuning parameter γ controls the importance of cost in the 
objective function. Often one wants to explore multiple values of γ to 
study the effect of cost. The following proposition allows the efficiency 
of the search.

Proposition 1: Given a fixed value of λ in the BLARS minimization 
procedure, the value of C(α1,..,αp) in the optimal model is a non-
increasing function of γ.

2

1 1 1 1 1 1
1 1

( , ) | | ( )β λ β γ
= =

= − + +∑ ∑
p p

j j j
j j

f n Cy xβ α α  .

Let 
2

1 1 1
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( ) | |β λ β
= =

= − +∑ ∑
p p

j j j
j j

LassoLoss y xβ   and 1 1( )=C nC α , then

1 1 1 1 1( , ) ( ) .γ= +f LassoLoss Cβ α β

Similarly, when we increased the γ value to γ2, the optimal values 
have been changed to β2 and α2. The optimal total loss is

2 2 2 2 2( , ) ( ) .γ= +f LassoLoss Cβ α β  
2

We want to prove that nC(α1) ≥ nC(α2), i.e. C1 ≥ C2. Now we assume 
that C1<C2. Recall that the optimal BLARS solution can be regarded 
as the best one among the 2P different results corresponding to the 2P 
different α values. Thus, for γ=γ1, we must have

1 1 1 2 1 2( ) ( ) .γ γ+ ≤ +LassoLoss C LassoLoss Cβ β  

Equivalently,

1 2 1 2 1( ) ( ) ( )γ− ≤ −LassoLoss LassoLoss C Cβ β    	           (2.3)

Similarly for γ=γ2, we must have

2 2 2 1 2 1( ) ( )γ γ+ ≤ +LassoLoss C LassoLoss Cβ β  .

Equivalently,

1 2 2 2 1( ) ( ) ( )γ− ≥ −LassoLoss LassoLoss C Cβ β    	           (2.4)

Since C1<C2 and γ2>γ1, we have γ2(C2–C1)>γ1(C2–C1), and the 
inequalities (2.3) and (2.4) cannot hold simultaneously. Thus, the 
initial assumption of C1<C2 must be false, and we conclude that C1 ≥ 
C2, i.e. nC(α1) ≥ nC(α2). 

Based on Proposition 1, we may prune a branch if the value of C of 
this branch is larger than the one in the optimal model for a smaller γ.

Issues in Implementation
Cost structure 

The cost of collecting a variable may include the cost of material, 
equipment, time, human labor, etc. One way to assign a cost would be 
to use the dollar amount we have to pay to get that variable; a more 
sophisticated analysis might include both the monetary cost and the 
level of difficulty to collect the data.

The simplest cost structure is the additive cost (2.2), in which the 

total cost of obtaining data for a selected set of variables is the sum of 
the cost of getting data for each variable in the set. This cost structure 
applies to situations where the data for the variable are collected 
individually and independently. More generally, the cost structure can 
be non-additive, as there may be grouping effects. Grouping effects 
occur when selection of one variable causes other variables to decrease 
in cost. For example, the cost of collecting several blood test results 
for one patient may include a group cost of getting the blood sample 
and several additional costs for different blood tests. If one test result is 
selected into a statistical model, the other test results become cheaper 
if they are also selected, since we only need to count the group cost 
once. Suppose we can get two blood test results simultaneously from 
one test, then when one of them is selected into a statistical model, 
the other one becomes free. Another grouping cost may come from 
the situation where higher order or interaction terms are considered 
in a model. These terms become free once the variables involved in the 
terms have been selected.

We could treat additive cost as a special case of non-additive cost 
with all group costs being zero. In BLARS, we deal with non-additive 
cost by updating the cost of each of the undetermined variables (the 
variables that have not entered the search process) after each step based 
on which variables have been selected into the model.

The order of covariates in selection

The order of the variables entering the searching process is an 
important factor affecting the efficiency of the algorithm. Earlier 
pruning will avoid searching more paths, resulting less lars calls during 
the searching process.

should enter the search. We could use the order of the LARS entries. 
The covariate which is most highly correlated with the response is 
added first and less correlated covariates are added later. Alternatively, 
we could order the variables by their costs. If we let the most correlated 
covariate enter the BLARS searching process first, the Lasso loss (the 
first two terms in the objective function) may decrease dramatically, 
and the tree is more likely to be pruned at the node where we force this 
variable out of the model, i.e. the node where we let α1=0. Using this 
ordering method, the computing time may be reduced because the tree 
has more chance to be pruned at upper level left-path nodes. On the 
other hand, when the cost difference of the predictors is large (usually 
associated with a higher value of γ), the cost effect may dominate. 
Ordering variables by descending order of the costs could be a better 
approach in this case. If we let the most expensive covariate enter the 
BLARS searching process first, the gain by the decrease of the Lasso 
loss may be clearly surpassed by the increase of the cost, and the tree is 
more likely to be pruned at the node where we force this variable in the 
model, i.e. the node where we let α1=1. Using this ordering method, the 
computing time may be reduced because the tree has more chance to 
be pruned at upper level right-path nodes.

Our approach is to combine the LARS with the COST ordering 
method to make the search process more efficient. First, we divide the 
costs of potential predictors into bins. Each bin covers a range of costs 
defined as a multiple s of the observed variance of the responses:

2

1

1 ( ) ,
1 =

= −
− ∑

n

i
i

B s y y
n

	    			                (3.1)

Proof: Suppose for a fixed value of λ, we selected an optimal 
BLARS model for γ1 with the corresponding optimal values β1 and α1. 
The optimal total loss is

where 2 2 2
1 1

( ) | |β λ β
= =

= − +∑ ∑
p p

j j j
j j

LassoLoss y xβ   and  2 2( )=C nC α .

Intuition suggests several possible orderings in which the variables 

Through a simulation study described later, we found that the 
results are reasonably good when we set 10 / [log(1 )log(1 )]γ γ λ= + +s , 
where γ and λ are the tuning parameters in (2.1). The incremental cost 
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provide us a reasonable range of the tuning parameter λ of the BLARS 
procedure. A golden section search approach [12] can be implemented 
to choose the optimal λ value given a model selection criterion and a 
fixed γ, for example, the optimal λ could be selected as the one that 
gives a model with minimum BIC value when using BIC as the model 
selection criterion. In practice, we can start from a small value of γ, 
which usually gives the same result as a Lasso model where cost effect is 
ignored, and then we get a group of BLARS models when we gradually 
increase the value of γ and costly variables are gradually excluded. The 
percentage increase in Error Sum of Squares (SSE) is compared with 
the percentage decrease in cost of the group of BLARS models, and 
the user can select their preferred cost-efficient one that sacrificing 
minimal prediction accuracy, i.e. sacrificing a user selected amount of 
SSE increment that surpassed by the gain in cost reduction.

Numerical Studies
Simulation

The order of the variables entering the BLARS, searching process 
is an important factor affecting the efficiency of the algorithm, and 
we propose the Bin ordering method in Section 3.2. To compare this 
ordering method with other potential candidate methods, we conduct 
a simulation study. Another objective of the simulation study is to 
investigate a suitable scalar s in the Equation (3.1) for calculating the 
bin.

In the simulation study, we compare 7 ordering methods by 
assessing the number of calls to the lars function in the BLARS searching 
process. The 7 ordering methods are to order the potential covariates in 
descending order of the correlations with the updated response, i.e. the 
order of the LARS entries (LARSd), ascending order of the correlations 
(LARSa), descending order of the costs (COSTd), ascending order of 
the costs (COSTa), descending order of the absolute value of the OLS 
estimates (OLSd), ascending order of the absolute value of the OLS 
estimates (OLSa), and combined order of LARSd with COSTd (Bin). 
We change the order of the covariates at the beginning of the searching 
process, and once when using the order of COSTd, COSTa, OLSd or 
OLSa. For the order of LARSd, LARSa or Bin, we change the order of 
the covariates based on the lars calls during the searching process.

The data are simulated based on the diabetes data used by Efron 
et al. [2], where they have 10 covariates: Age, Sex, BMI, BP, and S1 
to S6. For example, we simulate 1000 observations of BMI from the 
442 observations of BMI in the diabetes data by random sampling with 
replacement. We choose 5 models in the simulation study. There are 
10 potential predictors in each of the first 4 models as in the diabetes 
data, whereas there are 11 potential predictors in the last model. 

predictor Xj will be cj (fixed for additive costs, varying depending on 
what is already in the model in the general case). This cost will fall into 
one bin ( 1)≤ < +jkB c k B , where k ≥ 0 is an integer and j=1,…,p, as 
shown in Figure 1. We order variables in different bins by the COST 
method, and order the variables in the same bin by the LARS method. 
Thus, for the case in Figure 1, x5 and x6 are the first two variables 
entering the BLARS search process since they have the highest costs, 
but which one enters first depends on the LARS entry order. The 
variables in the lowest cost bin, such as x1, x2, x3 in Figure 1 are the last 
ones entering the BLARS search process. Note that the variables with 
zero cost require no search at all, so may always be placed last.

Note that with non-additive costs, each time after we update the 
costs for the undetermined variables, we may need to reorder them 
based on their new costs.

Tuning parameter and model selection criteria

A fast effective way of selecting the tuning parameter λ is another 
important issue in practice. The selection criteria in the literature 
include Cp, AIC, BIC, and Cross-validation [8]. Efron et al. [2] 
suggested selecting the tuning parameter and the optimal model based 
on Cp. Others claimed that AIC is asymptotically valid if no fixed-

fixed-dimension correct models [9,10]. Zou et al. [11] proved without 
any special assumption on the predictors that the number of nonzero 
coefficients is an unbiased estimate for the degrees of freedom of the 
Lasso. The authors discussed Cp, AIC and BIC model selection criteria 
and suggested using BIC for the Lasso as the model selection criteria, 
when the sparsity of the model is the major concern. BIC for the Lasso 
can be written as

The parameter γ is a user-defined weight imposed on costs, 
reflecting the level of reluctance to use high cost variables. When γ=0, 
we ignore the costs and selection becomes the standard Lasso variable 
selection. The higher the γ value, the more reluctant is the user to select 
high cost variables. Thus, when the user assigns a higher value to γ, the 
BLARS process will be less likely to select higher cost variables. The 
assignment of a γ value is thus based to a large extent on the opinions 
and judgments of the user or the decision maker. Sometimes, the user 
has to use a higher γ because of budget constraints. Once γ is fixed, 
the optimal value of λ and the corresponding optimal statistical model 
could be selected by a chosen model selection criterion. Note that 
LARS builds up estimates in successive steps, each step adding one 
covariate to the model, until all covariates are added [2]. The LARS 
result shows which variable enters the model at each step with the 
corresponding λ value, starting from the largest λ at the first step and 
ending to the smallest λ at the last step. Since our BLARS procedure 
calls lars function, the possible values of the λ from an initial lars call 

Figure 1: The bin of the costs.



2

2

ˆ ( )ˆ ˆ( ) ( )
σ
−

= +
log nBIC df

n n
y µ

µ µ                                     (3.2)

In the following ACT data analysis, we use both Cp and BIC for the 
Lasso as the tuning parameter and model selection criterion. We use 
Cp because it is the default selection criterion in the R package lars, and 
we use BIC for the Lasso as the selection criterion for its simplicity and 
effectiveness.

dimension correct model exists while BIC is preferred if there exist 

where  ˆ( )df µ   equals the number of nonzero coefficients.
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The first model contains only one true predictor (BMI), which is the 
first one of the LARS entries when applying the lars function on the 
original diabetes data. Similarly based on the LARS entries, we choose 
3, 5, and 7 true predictors in the second, third, and fourth model, 
respectively. The fifth model is the same as the third one with 5 true 
predictors, except that we add in a fake predictor called FS5 which has 
a correlation around 0.8 with S5 (the second one of the LARS entries), 
but costs much less than S5.

We simulate a dataset for each model and apply the BLARS 
algorithm with different ordering methods to the dataset for different 
combinations of λ and γ values. There are two non-additive cost 
structures used in the simulation study. The first one contains a small 
group cost and 6 large additional individual costs for the 6 blood test 
results (S1 to S6); and the second one contains a large group cost and 
6 small additional individual costs for the 6 blood test results. Table 
1 shows the details of the costs, where the cost of FS5 only applies to 
model 5.

When using the Bin ordering method, we also change the scalar 
s within a broad range in calculating the bin value, where s can be 
a fixed number, a function of γ, a function of λ or both. We found 
that s could relate to λ by a function 1/ log(1 )λ+ , or relate to γ by a 
function / log(1 )γ γ+  through preliminary simulation studies. Then, 
a thorough comparison are made where 82 different s values are 
under consideration: fixed numbers (0.1,0.5,1,2,…,20), function of 

, 1, 2, , 20
log(1 )λ

λ = …
+

 
 
 

k k  function of , 1, 2, , 20
log(1 )

γγ
γ

 ⋅
= … + 

k k  

and function of both λ and γ , 1, 2, , 20
log(1 )log(1 )

γ
γ λ

 ⋅
= … + + 

k k . We 

repeat this process for 100 times for model 1 and 50 times for each of 
the other 4 models, since more combinations of λ and γ are used there. 
The Bin ordering method shows promising result for a range of s values 
based on the simulation results, with different range of s for different 
situations. We emphasize that the ordering method only affects the 
efficiency of the BLARS algorithm; it does not affect the finally chosen 
model, which have been confirmed by the simulation results. Therefore, 

a relatively suitable s value is chosen as 
10

log(1 )log(1 )
γ

γ λ+ + , which has 

the best overall result. Note that many other values of s give almost 

as good overall results as the chosen one, such as 
log(1 )log(1 )

γ
γ λ
⋅

+ +
j

  

for j=11,…,16 and log(1 )λ+
k

 for k=15,…,18. Even other values of s do 

We compare the times of lars function calls by the 7 ordering 
methods during the searching process. There are 100 replicate datasets 
simulated for model 1 with 8 combinations of cost, λ and γ, leading to 
800 comparisons of the 7 ordering methods. The Bin ordering method 
is the fastest for 790 out of 800 simulations. Table 2 shows typical 
results for one simulated dataset. Similarly, with 18 combinations of 

cost, λ and γ, the Bin ordering method is the fastest for 900 out of 900 
times for both model 2 and model 3. Table 3 presents typical results for 
one simulated dataset using model 3. With 24 combinations of cost, λ 
and γ in model 4, the Bin ordering method is the fastest for 1200 out of 
1200 times. The Bin ordering method is the fastest for 889 out of 900 
times using model 5, where a fake covariate is added.

In model 5, S5 is one of the true predictors and FS5 is a fake 
covariate which is highly correlated with S5, but with much less cost 
(Table 1). S5 is selected into the BLARS model when we choose a small 
γ value, but FS5 is selected instead of S5 due to the cost effect when we 
increase the γ gradually. Choosing one simulated dataset, using the first 
cost structure, and fixing λ=10 and γ=1, we compare the LARSd, OLSd, 
COSTd and Bin ordering method by drawing the search trees in Figure 
2. In Figure 2, the black path is the optimal path. The search trees show 
the difference in the order of covariate entering the searching process, 
resulting in different pruning of the trees and indicating the best result 
for the tree associated with the Bin ordering method.

ACT data analysis

A study was conducted in Southwestern Ontario to assess factors 
which would influence the outcomes of clients with severe mental 
illness (SMI) receiving care from the Assertive Community Treatment 
(ACT) [13] service. The patients recruited in the study were diagnosed 

Times to Call lars Function
Cost λ γ LARSa LARSd COSTa COSTd OLSa OLSd Bin
1 1 0.3 147 48 52 88 147 49 32

1 1.0 147 54 57 112 147 53 36
3 0.3 24 17 36 12 26 18 9
3 1.0 24 27 29 14 26 28 10

2 1 0.3 167 54 52 105 163 56 36
1 1.0 159 60 57 117 156 60 40
3 0.3 24 17 36 12 26 18 9
3 1.0 24 27 29 14 26 28 10

Table 2: Comparison of 7 ordering methods using simulation model 1. Model 1 
contains 10 potential predictors, and only one is the true predictor.

Times to Call lars Function
Cost λ γ LARSa LARSd COSTa COSTd OLSa OLSd Bin
1 1 0.3 338 16 75 61 338 16 14

1 1.0 431 23 100 76 431 25 19
1 5.0 424 48 102 144 424 56 36
3 0.3 247 14 67 41 247 14 12
3 1.0 325 18 93 55 325 20 14
3 5.0 357 42 94 106 357 50 30
10 0.3 134 15 66 23 134 15 9
10 1.0 202 14 81 38 202 16 10
10 5.0 265 45 87 72 265 53 30

2 1 0.3 268 17 55 51 268 17 15
1 1.0 396 17 89 59 396 17 15
1 5.0 572 48 100 136 572 56 36
3 0.3 229 14 49 36 229 14 12
3 1.0 321 12 83 42 321 12 10
3 5.0 513 45 94 118 513 53 33
10 0.3 170 8 39 22 170 8 6
10 1.0 230 8 73 24 230 8 6
10 5.0 423 45 88 99 423 53 30

Table 3: Comparison of 7 ordering methods using simulation model 3. Model 3 
contains 10 potential predictors, and there are three true predictors.

not give much worse results, and still make the Bin ordering method 
superior to other ordering methods.

Cost Structure Age Sex BMI BP S1 S2 S3 S4 S5 S6 FS5
Group                           80

1 Additional 0 0 20 40 120 120 120 120 120 120 20
Group                          170

2 Additional 0 0 20 40 30 30 30 30 30 30 20

Table 1: Non-additive cost structure used in simulation study.
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as having psychosis or multiple co-morbid psychiatric and physical 
disorders, as well as a history of high hospital use, long-term illness, 
high needs and low functioning. There were about 19 potential 
predictive factors. Table 4 presents the names and descriptions of 
the variables used in the data analysis of the ACT project. Long term 
outcome was the overall Colorado Client Assessment Record (CCAR) 
score revised for use in Southwestern Ontario [14], which is the overall 
degree of problem severity (a larger score associates with a higher level 
of problem severity), and was measured at 12 and 24 months after 
enrollment in the project.

Our goal in this study was to assess what cost-efficient factors 
influence outcomes of clients with SMI receiving care from ACT. We 
wanted to find the risk factors not only with higher prediction accuracy, 
but also cheaper and easier to collect the data, so that we can reduce the 
burden of the ACT teams and the patients.

Figure 2: Search trees for simulation model 5 with λ=10 and γ=1 using different 
ordering methods.
Model 5 contains 11 potential predictors, and there are five true predictors 
including S5 which is highly correlated with a fake predictor FS5 but costs much 
more. 
(a): Using LARSd.

Figure 2: Search trees for simulation model 5 with λ=10 and γ=1 using different 
ordering methods.
Model 5 contains 11 potential predictors, and there are five true predictors 
including S5 which is highly correlated with a fake predictor FS5 but costs much 
more. 
(b): Using OLSd.

Cost structure

Since the sources of data collection were different, the costs of 
collecting data were different for the potential predictors. In the ACT 
project, data were collected from the following sources: client self-
reports, ACT clinicians, client records, hospital archives, ACT team’s 
staff activity records and ACT coordinators. The data that involved the 
professional work of clinicians cost more than the data from the work 
of research assistants, while the client self-reported data were harder 
to obtain than the data extracted from hospital archives due to the fact 
that the clients were having severe mental illness.

The cost of collecting the data had two components in the ACT 
project. The first was the monetary cost for human labor, time, 
material, equipment, compensation paid to the clients in some research 
activities, etc. The second was the level of difficulty to get an answer 
or a value for a potential predictor. For example, since the clients we 
dealt with were the patients with severe mental illness, they might 
refuse to provide some information and some results reported from 
the clients might need to be double checked or traced. This resulted in 
some variables being more “expensive” than others. We also needed 
to take into account the grouping effects of cost for both of the two 
components.

The two components of costs of the potential predictors were 
estimated between 0 and 100 by the ACT project researcher and 
coordinator and are listed in Table 5, where both monetary cost 
and level of difficulty consist of two parts: group cost and additional 
individual cost. We considered an overall cost for each predictive 
factor, which was a combination of the above two components. One 
predictor cost more than another if this predictor was more expensive 
overall. Since the scales of the two components were comparable (with 
minimum 0 and maximum 100), one simple way to combine them was 
to use summation. For convenience, we divided the combined costs by 
200, which are also displayed in Table 5.

Cost-efficient variable selection

We applied the BLARS method to the ACT data to select cost-
efficient variables and estimate their effects. First, we used BIC for 
the Lasso (Equation 3.2) as the tuning parameter and model selection 
criterion. When we assigned 0.1 to γ, there were 4 predictors selected 
into the BLARS model: number of months in ACT, average number 
of contacts per month, CCAR substance use subscale and CCAR 
functioning subscale. The same 4 variables were selected using the 
Lasso model (γ=0). When γ was increased to 0.2, 3 predictors remained 
in the BLARS model, where average number of contacts per month was 
dropped out. When γ was increased to 0.5, only number of months in 
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Compared with models using Cp as the model selection criterion, 
models selected by BIC were much more parsimonious for small values 
of γ. However, when γ was larger (γ>0.1), BLARS results were similar, 
regardless of which model selection criterion was used (Table 9).

The value of γ is user-defined and the selection criteria of tuning 

Figure 2: Search trees for simulation model 5 with λ=10 and γ=1 using different ordering methods.
Model 5 contains 11 potential predictors, and there are five true predictors including S5 which is highly 
correlated with a fake predictor FS5 but costs much more. 
(c): Using COSTd.

parameter and model selection are also user’s choice. The health 
researchers or decision makers should make overall judgments 
based on the percentage increase of the error sum of squares and the 
percentage decrease of the cost to choose their preferred cost-efficient 
model from the BLARS results.

Discussion
We developed a cost-efficient variable selection method based on 

the LARS technique with focus on the cost effect. The proposed BLARS 
algorithm can be generalized by replacing the Lasso loss (the first two 

the cost effect whenever we have a method to solve that minimization 
problem. For example, if we adjust the l1 penalty (the second term in 
Equation (2.1)) by adaptive weights to penalize different coefficients, 
we obtain Adaptive Lasso type object function. The same efficient 
algorithm (LARS) for solving the Lasso can be employed to solve the 
problem by using a transformation to the design matrix [3]. Thus, 
our BLARS procedure can be easily adjusted to an Adaptive Lasso 
type cost-efficient variable selection method. Recently Friedman et al. 
[15] proposed new fast algorithms for regression estimation, which 
are based on cyclical coordinate descent methods. Their methods 
are a remarkably fast approach for solving convex problems with l1 
(the Lasso) penalty or l2 (the ridge-regression) penalty, or mixtures 

ACT remained in the model. For γ=1.0, no variable was selected in 
the BLARS model due to the cost effect and the best prediction in this 
case was the grand mean of the response. The Lasso model and BLARS 
models for different γ values are shown in Table 6, where some non-
selected variables are not displayed. Table 7 gives the components in 
objective functions including SSE, l1 penalty and cost penalty of the 
corresponding models, where the percentage increases or decreases are 
compared with the first BLARS model (γ=0.1). When we choose a small 
value of γ, as in the case of γ=0.1, the BLARS model select the same 
covariates as the Lasso model, although the estimated coefficients are 
slightly different; the SSE of the BLARS model is smaller than the SSE 
of the Lasso model. Second, we used Cp as the tuning parameter and 
model selection criterion. Table 8 presents Lasso model and BLARS 
models for different γ values and Table 9 displays the components in 
the objective functions of the corresponding models. When we choose 
a small value of γ, as in the case of γ=0.01, the BLARS result is exactly 
the same as the Lasso result, with the same estimated coefficients and 
the same SSE.

terms in Equation (2.1)) with other objective functions to incorporate 
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Figure 2: Search trees for simulation model 5 with λ=10 and γ=1 using different 
ordering methods.
Model 5 contains 11 potential predictors, and there are five true predictors 
including S5 which is highly correlated with a fake predictor FS5 but costs much 
more. 
(d): Using Bin.

Figure 3: The recursive step of the BLARS algorithm.

Figure 4: The initialization step of the BLARS algorithm.

Predictors Description
Age     Age in years                                                                               
Sex     1: Female ; 0: Male                                                                        
Mstatus Marital Status, 1: Married or Common-law; 0: Otherwise                                     
CoMorbid Number of co-morbid diagnoses                                                              
Duration Number of years since first diagnosis                                                      
Lifetime Lifetime days in hospital                                                                  
Jail    Ever in jail, 1: No; 0: Yes                                                                
EmpSC   CCAR employment subscale. 1: Employed (full-time or part-time); 0: 

Otherwise                                                                   
SubSC   CCAR substance use subscale. A larger score associates with a higher 

level of substance abuse.                                                                
FunSC   CCAR functioning subscale. A larger score associates with a lower level of 

functioning.                                                                   
ACTmo   Total service use: number of months in ACT                                                 
Medtype Medications prescribed: number of medication categories                                    
Contacts Intensity of contacts: average number of contacts per month by ACT staff                   
DACTS   Fidelity of team to ACT model: Dartmouth ACT Scale                                         
        A larger score associates with a higher level of fidelity to ACT model                     
WAI     Therapeutic alliance: Working Alliance Inventory                                           
        A larger score associates with a higher level of alliance between patient 

and therapist
PSE     Insight into psychosis: Present State Exam-insight score. 1: Limited insight; 

0: Full insight                                   
EMP     Empowerment scale                                                                          
        A higher score associates with a higher level of client's participation in their 

recovery  
DAI     Satisfaction with medications: Drug Attitude Inventory                                     
        A higher score associates with a higher level of client's satisfaction with 

medication     
MEDC    Medication compliance: Adherence to medication scale                                       
        A higher score associates with a lower level of client's adherence to 

medication           

Table 4: Potential predictive factors in ACT project.

Monetary Cost Level of Difficulty Overall Cost
Predictors Group Additional Group Additional Group Additional
Age

15

0 0

0.125

0
Sex 0 0 0
Mstatus 0 0 0
CoMorbid 0 0 0
Duration 10 0 0.1
ACTmo 0 0 0
Medtype 0 0 0
Contacts 25 0 20 0 0.225 0
Jail 20 0 30 0 0.25 0
MEDC 20 0 30 0 0.25 0
WAI

30

0 0

0.3

0
PSE 0 0 0
EMP 0 0 0
DAI 0 0 0
Lifetime 30 0 70 0 0.5 0
EmpSC

30
20 20

0.4
0.2

SubSC 20 20 0.2
FunSC 20 20 0.2
DACTS 60 0 100 0 0.8 0

Table 5: Two cost components and the overall costs used in ACT data analysis.

of the two (the elastic-net penalty). Since these alternatives are well 
developed, they can be adapted to the node-level in our cost efficient 
variable searching approach, but unfortunately they are not directly 
applicable to minimizing the full problem (2.1), which is not convex.

We illustrated the cost-efficient variable selection procedure in 

10

30

50
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Estimated Coefficients
Method γ ACTmo Contacts Jail MEDC WAI EMP DAI EmpSC SubSC FunSC DACTS
Lasso - -0.006 0.0028 0 0 0 0 0 0 0.07 0.16 0
BLARS 0.10 -0.011 0.0074 0 0 0 0 0 0 0.11 0.20 0
 0.20 -0.010 0 0 0 0 0 0 0 0.10 0.21 0
 0.50 -0.015 0 0 0 0 0 0 0 0 0 0
 1.00 0 0 0 0 0 0 0 0 0 0 0

Table 6: Optimal Lasso and BLARS models for different γ values using BIC as the model selection criterion.

this paper with either BIC or Cp as the turning parameter and model 
selection criteria. There is a lot of controversy on which criterion is 
the best, and it seems that no one surpasses others in all situations. 
Researchers may have their preferred selection criteria other than 
BIC or Cp, and they have to make the judgment based on their own 
experience. But the BLARS algorithm is the same, regardless which 
model selection criterion is used.

Method γ Total Loss 𝑙1 Penalty SSE SSE Increase Cost Penalty Cost 
(per patient)

Cost Decrease

Lasso - 348 17 331 - - - -
BLARS 0.1 348 9 317 - 22 1.150 -

0.2 370 10 325 2.5% 35 0.925 19.6%
0.5 384 4 368 15.8% 12 0.125 89.1%
1.0 388 0 388 22.2% 0 0.000 100.0%

Table 7: Components in objective functions for different γ values using BIC as the model selection criterion. 
The percentage increase or decrease are compared with the first BLARS model (γ=0.1). Lasso model was fitted without considering cost effect, and the total loss has only 
two components.

Method γ Total Loss 𝑙1 Penalty SSE SSE Increase Cost Penalty Cost 
(per patient)

Cost Decrease

Lasso - 316 15 301 - - - -
BLARS 0.01 322 15 301 - 7 2.950 -

0.02 325 14 303 0.9% 8 2.150 27.1%
0.04 335 14 308 2.5% 13 1.650 44.1%
0.10 348 9 317 5.5% 22 1.150 61.0%
0.20 370 10 325 8.2% 35 0.925 68.6%
0.50 384 4 368 22.2% 12 0.125 95.8%
1.00 388 0 388 28.9% 0 0.000 100.0%

Table 9: Components in objective functions for different γ values using Cp as the model selection criterion. The percentage increase or decrease are compared with the 
first BLARS model (γ=0.01). Lasso model was fitted without considering cost effect, and the total loss has only two components. 

Estimated Coefficients
Method γ ACTmo Contacts Jail MEDC WAI EMP DAI EmpSC SubSC FunSC DACTS
Lasso - -0.014 0.0070 -0.11 0.086 -0.057 -0.32 -0.026 0.17 0.096 0.18 0.33
BLARS 0.01 -0.014 0.0070 -0.11 0.086 -0.057 -0.32 -0.026 0.17 0.096 0.18 0.33

0.02 -0.012 0.0069 -0.15 0.091 -0.060 -0.35 -0.046 0.17 0.090 0.18 0
0.04 -0.012 0.0067 0 0 -0.055 -0.29 -0.070 0.17 0.100 0.19 0
0.10 -0.011 0.0074 0 0 0 0 0 0 0.112 0.20 0
0.20 -0.010 0 0 0 0 0 0 0 0.101 0.21 0
0.50 -0.015 0 0 0 0 0 0 0 0 0 0
1.00 0 0 0 0 0 0 0 0 0 0 0

Table 8: Optimal Lasso and BLARS models for different γ values using Cp as the model selection criterion.
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Appendix

The detailed BLARS algorithm can be described as follows.

At step k, we let α+ be equal to (α1,….,αk,1,…,1). This vector indicates which 
variables are passed to lars for optimization. Once we have the lars result in hand, 
we set each of αk+1,….,αp to 0 if the corresponding β̂k  is zero and 1 otherwise. 
This gives α to use in the cost calculations. We also calculate α- as (α1,….,αk,0,…,0) 
to use in the cost calculations for the bound.

In the algorithm below, we use the following notation. lars refers to the R 
package or the lars function in that package. Our own variables and functions will 
be written in small caps, e.g. SOLUTION below. For 0 ≤ k ≤ p, the solution of a 
relaxation Rk is denoted by SOLUTIONk; the corresponding objective value uses 
α- to give the lower bound for Pk, and is referred to as BOUNDk. (We suppress the 
dependence on α-, but in fact there are potentially 2k different relaxations called 

We considered two cost components, monetary cost and level 
of difficulty, in the ACT data analysis. Because the two components 
were estimated in the same scale, we used the combined overall costs 
in the data analysis. In general cases, the two cost components may 
not be in the same scale, therefore, it may be better to consider them 
separately by using two cost terms in Equation (2.1) with two user-
defined weights γ1 and γ2, and it will give researchers more flexibility to 
balance between the two kind of costs.
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Rk, and a corresponding number of other entities subscripted with k.) The real total 
loss of the model selected by Rk computed using α is denoted by LOSSk. The lars 
solution from the previous step is denoted by PRESOLUTION with corresponding 
objective value PREBOUND. Note that P0=P, and plain lars is sufficient to solve R0, 
since there are no restrictions on it. The best total loss seen so far is BESTLOSS.

The recursive step of the BLARS algorithm is shown in Figure 3. This is 
invoked as shown in Figure 4.
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