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Abstract

by sacrificing a user selected amount of model accuracy.

Variable selection is a difficult problem in building statistical models. Identification of cost efficient diagnostic factors
is very important to health researchers, but most variable selection methods do not take into account the cost of collecting
data for the predictors. The trade-off between statistical significance and cost of collecting data for a statistical model
is our focus. In this paper, we extend the LARS variable selection method to incorporate costs of factors in variable
selection, which also works with other methods of variable selection, such as Lasso and adaptive Lasso. A branch and
bound search method combined with LARS is employed to select cost-efficient factors. We apply the resulting branching
LARS method to a dataset from an Assertive Community Treatment project conducted in Southwestern Ontario to
demonstrate the cost-efficient variable selection process, and the results show that a “cheaper” model could be selected

Keywords: BLARS; Branch and bound; Cost efficient; LARS; Lasso;
Variable selection

Introduction

Several automatic variable selection and estimation techniques
have emerged in the past two decades, including Lasso [1], LARS [2]
and Adaptive Lasso [3]. The Lasso (which stands for “least absolute
shrinkage and selection operator”) is a popular technique for
simultaneous variable selection and parameter estimation. It selects
variables and estimates their coefficients by minimizing the residual
sum of squares subject to a constraint to the sum of the absolute value of
the coeflicients. It shrinks some coeflicients and sets the others to zero
by the constraint, which adds a little bias but reduces the variance of the
predicted values, thus improving the overall prediction accuracy [1].
Efron et al. [2] introduced Least Angle Regression, abbreviated LARS
(the “S” suggesting “Lasso” and “Stagewise”). Both Lasso and Stagewise
linear regressions are variants of LARS. A simple modification of the
LARS algorithm implements the Lasso, but uses less computer time
than the original Lasso algorithm. The key characteristic of LARS is its
computational efficiency. Zou [3] proposed the adaptive Lasso, which
adds weights in a data adaptive way to the Lasso penalty term. These
weights provide less shrinkage to important predictors, thus leads to
consistent variable selection results.

Although those methods have good performance in choosing
statistically important factors, they do not take into account the cost
of collecting data for the predictors. Identification of cost efficient
diagnostic factors is of great interest to health researchers because of the
heavy burden on the public health system. Due to the development and
improvement of new technologies, such as nuclear medicine imaging
and DNA microarray analysis, the costs of health care are escalating. In
practice, inexpensive factors may have similar statistical significance as
costly factors, thus could be used as diagnostic or prognostic variables
by sacrificing minimal prediction accuracy, while reducing the health
cost burden. This requires statisticians to search for new strategies in
building statistical models to contain the effect of the cost of collecting
data for diagnostic factors. The cost of collecting data for a variable
may include the cost of material, equipment, time, human labor, etc.
The costs may be different for collecting different variables. A model
is more cost-efficient than another one if this model costs less, but
with almost the same prediction accuracy, or this model costs much
less but with only slightly less prediction power. A health researcher,
as well as a decision maker, may prefer a more cost-efficient model in

many situations. If there is a budget constraint on a research project or
we are at the screening stage of diagnosing a disease, a more accurate
but costly model may not be necessarily better than a less accurate but
cheaper model.

There has been relatively little work on cost efficient variable
selection. To incorporate cost in a predictive model, Lindley [4]
suggested adding the cost of obtaining the covariates to the objective
loss function in univariate multiple regression where a Bayesian
approach was used. Brown et al. [5] worked on variable selection
in multivariate linear regression using a non-conjugate Bayesian
decision theory approach, where a terminal cost, a function of the
cost of retaining the selected variables, was added to the loss function.
Their approach balances prediction accuracy against costs and omits
covariates when they cost too much relative to their predictive benefit.

Our goal is to develop a variable selection procedure that can
simultaneously select the important predictors and estimate their
effects to build a model that is not only good at prediction but also
cost efficient. We concentrate on developing a method to select cost-
efficient variables based on some existed variable selection algorithm.
The cost effect is our focus and the developed algorithm can be adapted
to a variety of variable selection methods. Since the LARS method is
implemented in the R [6] package lars [7], and this package is publicly
available, we can conveniently build our cost-efficient variable selection
strategy, which extends the LARS method to incorporate variable costs
penalized in the objective loss function. The total loss includes the error
sum of squares, the Lasso type penalty, and the cost of collecting data
for the predictors, where the first two parts compose the Lasso loss.
It employs a branch and bound method to search for a model which
minimizes total loss. The method is referred to as the Branching LARS
(BLARS) search procedure in this paper.
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The rest of the paper is organized as follows. In the “Framework”
section, we derive the theoretical basis of the BLARS method. We
discuss details of the implementation in the section of “Issues in
Implementation”. In the “Numerical Studies” section, a simulation study
is conducted to examine different ordering methods, and the proposed
BLARS method is applied to a dataset from an Assertive Community
Treatment (ACT) project conducted in Southwestern Ontario to
demonstrate the cost-efficient variable selection process. Possible extension
of the BLARS method is discussed in the “Discussion” section.

Framework

We want to select and simultaneously estimate the coefficients of
covariates such that a loss function is minimized. The total loss in the
loss function consists of 3 parts: the error sum of squares of the model,
the [, penalty and the cost incurred by collecting those variables in the
model. The proposed optimization problem P can be written as

min f(B,a) = +lzp:|ﬂf [+nyC(e,....a,) (2.1)

»
y- Z X, 5
=1

with domain D:
a; €{0,1},for j=1,..., p,
B=(B....5,) € R,

and constraints S:
aj =0 = ﬂj :0, forjzl,“'spa

where y is the n dimensional vector of observations, P is the regression
coeflicient vector to be estimated; p is the total number of covariates
of interest; A < 0 is the regularization or tuning parameter; y < 0 is a
user-defined weight imposed on costs, reflecting the level of reluctance
to use high cost variables. The vector a=(a....,a ) contains 0’s and 1’s,
with a=1 if the variable X is included in the model, as indicated in
the constraints S. The cost function C(al,..,ap) is assumed to be non-
decreasing in each o For example, costs may accrue additively,

p
C(al,...,ap)zz%cj (2.2)
j=1

where ¢, < 0 is the cost of collecting the variable X..

BLARS method

The sum of the first two terms in the objective function (2.1) is the
Lasso objective function. The third term complicates the problem, but
if we fix the value of a, then the third term becomes a constant and
the problem reduces to Lasso variable selection and estimation, and
lars may be used to solve it. A naive approach would be to try all 27
different values of a, compare the results and select the best solution.
In practice, this approach is not feasible when p is large. For example,
we build a model to minimize the objective function (2.1) using the
diabetes data used by Efron et al. [2], which contains 442 observations
and 10 covariates: Age, Sex, BMI (body mass index), BP (average
blood pressure), and S1 to S6 representing 6 serum measurements. For
the purpose of illustration, we let the cost of Age and Sex be zero, let
the cost of BMI and BP be 5 and 10, respectively, and let the 6 serum
measurements have a group cost of 20 for the collection of blood
sample and have additional individual cost of 30 for each blood test.
Fixing A=90 and y=1, we use the naive approach to build the model
with p=10, where 2'°=1,024 different results are compared to select the
best solution. Using a computer with Intel Core6™ i7 CPU and 12GB

memory and 64-bit R software environment, the computation time
is 3.4 seconds. We then add 5 covariates into the design matrix: the
squared term BMI* and the two-way interaction terms Age: Sex, Age:
BP, BMI: BP and Age: S5. Fixing A=90 and A=1, with p=15, we need
to compare 2'°=32,768 different results to select the best solution, and
the computation time is increased to 145.2 seconds or 2.4 minutes. We
further add in 5 covariates: S32, S5%, SEX: BMI, SEX: BP, and AGE: S3.
Still with A=90 and y=1, for p=20, we need to compare 2*°=1,048,576
different results to select the best one, and the computation time is
dramatically increased to 6039 seconds or 1.7 hours. If we consider
all squared terms and two-way interaction terms, we need to compare
2%=3.69x10" different results, and the computation time cannot be
imaginable, although p=65 is not a big number. The branch and bound
search method can provide a solution to this problem, where relaxation
is used to make the searching process easier and faster.

At each step in the BLARS process, we fix the value of one o,
to be 0 or 1. (The choice of j is discussed later; for simplicity in this
discussion we will assume numerical order, fixing a, first, then a, etc.).
At step 1, we branch on the problem P and create two subproblems:
P (g With @=0 and P, Right with a =1. We continue to branch on the
subproblems and create second-level subproblems by fixing a,=0 and
a,=1, respectively. Suppose at some step k, we have fixed the value of
505l then the subproblem P, of P has the objective function (2.1),
the same domain D and constraints S, but with the given value of a,
j=L,...k. R, is a relaxed problem of P, with the same objective function
(2.1), the same domain D and the same given value of of a, j=1,....k,
but constraints S,:

a;=0 = B,=0, for j=1,....k, with1<k < p,

i.e. the only difference between R, and P, when k<p is that we drop
the constraints on p, for j>k for R,. Therefore, the feasible region of
R, contains the feasible region of P,, so the optimal objective value of
the relaxed problem R, will be a lower bound on the optimal objective
value of the subproblem P,. Without any constraints from j=k+1 to j=p,
to minimize the total loss in R, we set all a,=0 for j=k+1,...,p. Then, the
value of the vector « is known for the relaxed problem R, and R, can
be solved by calling the lars function. When k=p, R, is the same as P,
which is the subproblem corresponding to a leaf node.

The branch and bound process makes use of the lower bound
obtained from solving R, to accelerate the search by avoiding solution
of the generally harder problem P,. Suppose some subproblems have
been solved resulting in a best candidate solution found so far. If the
optimal value of R, say v, is greater than or equal to the objective value
of the best candidate solution found so far, then there is no need to
solve P, or branch on P, since its optimal value cannot be better than
v. Problem P, is regarded as having been solved, even though it is not
actually solved. In this case, the search tree is said to be “pruned” at P.

Note that for [<k and the same fixed values of a, j=1.....,, R is also a
relaxation of R, so we may be able to prune certain relaxed problems to
speed up the overall search even more. The detailed BLARS algorithm
is shown in the Appendix.

For comparison to the example introduced at the beginning of
this section, where the naive method is used to build the cost-efficient
models on the diabetes data fixing A=90 and y=1, we apply the BLARS
method developed in this paper to the 3 datesets with p=10, p=15, and
p=20, respectively. The computation time is 0.04 seconds, 0.10 seconds
and 0.13 seconds, respectively, and the results are exactly the same as
the ones based on the native approach.
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Pruning based on previous fits

The tuning parameter y controls the importance of cost in the
objective function. Often one wants to explore multiple values of y to
study the effect of cost. The following proposition allows the efficiency
of the search.

Proposition 1: Given a fixed value of A in the BLARS minimization
procedure, the value of C(al,..,ap) in the optimal model is a non-
increasing function of y.

Proof: Suppose for a fixed value of A, we selected an optimal
BLARS model for y, with the corresponding optimal values §, and a,.
The optimal total loss is

f®0)= A3 UB, |4y Ca)

»
y- Z X5,
Jj=1

2
»
Let LassoLoss(B,) = +AZI,B” | and C, =nC(a,), then
Jj=1

P
y- Z X, B,
j=1

S (B.,) = LassoLoss(B,)+7,C..

Similarly, when we increased the y value to y,, the optimal values
have been changed to B, and a,. The optimal total loss is

f(B,,0a,)=LassoLoss(B,)+7,C,.

2
p »
where LassoLoss(B,) = Hy - Z X5, + iz 16,;1 and C,=nC(a,).
j=1 J=1

We want to prove that nC(a,) > nC(a,), i.e. C, > C,. Now we assume
that C <C,. Recall that the optimal BLARS solution can be regarded
as the best one among the 2 different results corresponding to the 2°
different a values. Thus, for Y=Y,» we must have

LassoLoss(B,)+ y,C, < LassoLoss(B,) + y,C,.

Equivalently,

LassoLoss(B,)— LassoLoss(B,) < y,(C, -C,) (2.3)
Similarly for y=y,, we must have

LassoLoss(B,)+y,C, < LassoLoss(B,) +7,C, -

Equivalently,

LassoLoss(B,)— LassoLoss(B,) > y,(C, - C,) (2.4)

Since C,<C, and y,>y,, we have y,(C,-C)>y (C,-C)), and the
inequalities (2.3) and (2.4) cannot hold simultaneously. Thus, the
initial assumption of C <C, must be false, and we conclude that C, >
C, ie.nC(a,) 2 nC(a,).

Based on Proposition 1, we may prune a branch if the value of C of
this branch is larger than the one in the optimal model for a smaller y.

Issues in Implementation

Cost structure

The cost of collecting a variable may include the cost of material,
equipment, time, human labor, etc. One way to assign a cost would be
to use the dollar amount we have to pay to get that variable; a more
sophisticated analysis might include both the monetary cost and the
level of difficulty to collect the data.

The simplest cost structure is the additive cost (2.2), in which the

total cost of obtaining data for a selected set of variables is the sum of
the cost of getting data for each variable in the set. This cost structure
applies to situations where the data for the variable are collected
individually and independently. More generally, the cost structure can
be non-additive, as there may be grouping effects. Grouping effects
occur when selection of one variable causes other variables to decrease
in cost. For example, the cost of collecting several blood test results
for one patient may include a group cost of getting the blood sample
and several additional costs for different blood tests. If one test result is
selected into a statistical model, the other test results become cheaper
if they are also selected, since we only need to count the group cost
once. Suppose we can get two blood test results simultaneously from
one test, then when one of them is selected into a statistical model,
the other one becomes free. Another grouping cost may come from
the situation where higher order or interaction terms are considered
in a model. These terms become free once the variables involved in the
terms have been selected.

We could treat additive cost as a special case of non-additive cost
with all group costs being zero. In BLARS, we deal with non-additive
cost by updating the cost of each of the undetermined variables (the
variables that have not entered the search process) after each step based
on which variables have been selected into the model.

The order of covariates in selection

The order of the variables entering the searching process is an
important factor affecting the efficiency of the algorithm. Earlier
pruning will avoid searching more paths, resulting less lars calls during
the searching process.

Intuition suggests several possible orderings in which the variables
should enter the search. We could use the order of the LARS entries.
The covariate which is most highly correlated with the response is
added first and less correlated covariates are added later. Alternatively,
we could order the variables by their costs. If we let the most correlated
covariate enter the BLARS searching process first, the Lasso loss (the
first two terms in the objective function) may decrease dramatically,
and the tree is more likely to be pruned at the node where we force this
variable out of the model, i.e. the node where we let a,=0. Using this
ordering method, the computing time may be reduced because the tree
has more chance to be pruned at upper level left-path nodes. On the
other hand, when the cost difference of the predictors is large (usually
associated with a higher value of y), the cost effect may dominate.
Ordering variables by descending order of the costs could be a better
approach in this case. If we let the most expensive covariate enter the
BLARS searching process first, the gain by the decrease of the Lasso
loss may be clearly surpassed by the increase of the cost, and the tree is
more likely to be pruned at the node where we force this variable in the
model, i.e. the node where we let a,=1. Using this ordering method, the
computing time may be reduced because the tree has more chance to
be pruned at upper level right-path nodes.

Our approach is to combine the LARS with the COST ordering
method to make the search process more efficient. First, we divide the
costs of potential predictors into bins. Each bin covers a range of costs
defined as a multiple s of the observed variance of the responses:

1 & _
B=s— > (=), (3.1)
—Lli=

Through a simulation study described later, we found that the
results are reasonably good when we set s=10y/[log(l+y)log(l+A)],
where y and A are the tuning parameters in (2.1). The incremental cost
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predictor X, will be ¢, (fixed for additive costs, varying depending on
what is already in the model in the general case). This cost will fall into
one bin kB <¢, <(k+1)B, where k > 0 is an integer and j=1,...,p, as
shown in Figure 1. We order variables in different bins by the COST
method, and order the variables in the same bin by the LARS method.
Thus, for the case in Figure 1, x, and x, are the first two variables
entering the BLARS search process since they have the highest costs,
but which one enters first depends on the LARS entry order. The
variables in the lowest cost bin, such as x,, x,, x, in Figure 1 are the last
ones entering the BLARS search process. Note that the variables with
zero cost require no search at all, so may always be placed last.

Note that with non-additive costs, each time after we update the
costs for the undetermined variables, we may need to reorder them
based on their new costs.

Tuning parameter and model selection criteria

A fast effective way of selecting the tuning parameter A is another
important issue in practice. The selection criteria in the literature
include CP, AIC, BIC, and Cross-validation [8]. Efron et al. [2]
suggested selecting the tuning parameter and the optimal model based
on C . Others claimed that AIC is asymptotically valid if no fixed-
dimension correct model exists while BIC is preferred if there exist
fixed-dimension correct models [9,10]. Zou et al. [11] proved without
any special assumption on the predictors that the number of nonzero
coeflicients is an unbiased estimate for the degrees of freedom of the
Lasso. The authors discussed C , AIC and BIC model selection criteria
and suggested using BIC for the Lasso as the model selection criteria,
when the sparsity of the model is the major concern. BIC for the Lasso
can be written as

Iy -

BIC(j) = EEL

no

+122 G (3.2)

where QJ\’ (1) equals the number of nonzero coefficients.

The parameter y is a user-defined weight imposed on costs,
reflecting the level of reluctance to use high cost variables. When y=0,
we ignore the costs and selection becomes the standard Lasso variable
selection. The higher the y value, the more reluctant is the user to select
high cost variables. Thus, when the user assigns a higher value to vy, the
BLARS process will be less likely to select higher cost variables. The
assignment of a y value is thus based to a large extent on the opinions
and judgments of the user or the decision maker. Sometimes, the user
has to use a higher y because of budget constraints. Once y is fixed,
the optimal value of A and the corresponding optimal statistical model
could be selected by a chosen model selection criterion. Note that
LARS builds up estimates in successive steps, each step adding one
covariate to the model, until all covariates are added [2]. The LARS
result shows which variable enters the model at each step with the
corresponding A value, starting from the largest A at the first step and
ending to the smallest A at the last step. Since our BLARS procedure
calls lars function, the possible values of the A from an initial lars call

provide us a reasonable range of the tuning parameter A of the BLARS
procedure. A golden section search approach [12] can be implemented
to choose the optimal A value given a model selection criterion and a
fixed y, for example, the optimal A could be selected as the one that
gives a model with minimum BIC value when using BIC as the model
selection criterion. In practice, we can start from a small value of y,
which usually gives the same result as a Lasso model where cost effect is
ignored, and then we get a group of BLARS models when we gradually
increase the value of y and costly variables are gradually excluded. The
percentage increase in Error Sum of Squares (SSE) is compared with
the percentage decrease in cost of the group of BLARS models, and
the user can select their preferred cost-efficient one that sacrificing
minimal prediction accuracy, i.e. sacrificing a user selected amount of
SSE increment that surpassed by the gain in cost reduction.

In the following ACT data analysis, we use both C_and BIC for the
Lasso as the tuning parameter and model selection criterion. We use
C because it is the default selection criterion in the R package lars, and
we use BIC for the Lasso as the selection criterion for its simplicity and
effectiveness.

Numerical Studies

Simulation

The order of the variables entering the BLARS, searching process
is an important factor affecting the efficiency of the algorithm, and
we propose the Bin ordering method in Section 3.2. To compare this
ordering method with other potential candidate methods, we conduct
a simulation study. Another objective of the simulation study is to
investigate a suitable scalar s in the Equation (3.1) for calculating the
bin.

In the simulation study, we compare 7 ordering methods by
assessing the number of calls to the lars function in the BLARS searching
process. The 7 ordering methods are to order the potential covariates in
descending order of the correlations with the updated response, i.e. the
order of the LARS entries (LARSd), ascending order of the correlations
(LARSa), descending order of the costs (COSTd), ascending order of
the costs (COSTa), descending order of the absolute value of the OLS
estimates (OLSd), ascending order of the absolute value of the OLS
estimates (OLSa), and combined order of LARSd with COSTd (Bin).
We change the order of the covariates at the beginning of the searching
process, and once when using the order of COSTd, COSTa, OLSd or
OLSa. For the order of LARSd, LARSa or Bin, we change the order of
the covariates based on the lars calls during the searching process.

The data are simulated based on the diabetes data used by Efron
et al. [2], where they have 10 covariates: Age, Sex, BMI, BP, and S1
to S6. For example, we simulate 1000 observations of BMI from the
442 observations of BMI in the diabetes data by random sampling with
replacement. We choose 5 models in the simulation study. There are
10 potential predictors in each of the first 4 models as in the diabetes
data, whereas there are 11 potential predictors in the last model.

1 To I3 Ia
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The first model contains only one true predictor (BMI), which is the
first one of the LARS entries when applying the lars function on the
original diabetes data. Similarly based on the LARS entries, we choose
3, 5, and 7 true predictors in the second, third, and fourth model,
respectively. The fifth model is the same as the third one with 5 true
predictors, except that we add in a fake predictor called FS5 which has
a correlation around 0.8 with S5 (the second one of the LARS entries),
but costs much less than S5.

We simulate a dataset for each model and apply the BLARS
algorithm with different ordering methods to the dataset for different
combinations of A and y values. There are two non-additive cost
structures used in the simulation study. The first one contains a small
group cost and 6 large additional individual costs for the 6 blood test
results (S1 to S6); and the second one contains a large group cost and
6 small additional individual costs for the 6 blood test results. Table
1 shows the details of the costs, where the cost of FS5 only applies to
model 5.

When using the Bin ordering method, we also change the scalar
s within a broad range in calculating the bin value, where s can be
a fixed number, a function of y, a function of A or both. We found
that s could relate to A by a function 1/log(1+4), or relate to y by a
function y/log(l+y) through preliminary simulation studies. Then,
a thorough comparison are made where 82 different s values are
under consideration: fixed numbers (0.1,0.5,1,2,...,20), function of

k-y

:1,2,...,2oj function of y|—"—,
log(1+y)

Al —k & k=12,...20
log(1+4)
k-y

and function of both A and y (m,

k =1,2,...,20j_ We
repeat this process for 100 times for model 1 and 50 times for each of
the other 4 models, since more combinations of X and y are used there.
The Bin ordering method shows promising result for a range of s values
based on the simulation results, with different range of s for different
situations. We emphasize that the ordering method only affects the
efficiency of the BLARS algorithm; it does not affect the finally chosen
model, which have been confirmed by the simulation results. Therefore,
10y
log(1+ y)log(1+ A1)
the best overall result. Note that many other values of s give almost
Jr
log(1+y)log(1+ 1)

for k=15,...,18. Even other values of s do

a relatively suitable s value is chosen as , which has

as good overall results as the chosen one, such as

k
forj=11,...,1 —
orj 6 and Tog(1+ 4)
not give much worse results, and still make the Bin ordering method
superior to other ordering methods.

We compare the times of lars function calls by the 7 ordering
methods during the searching process. There are 100 replicate datasets
simulated for model 1 with 8 combinations of cost, A and v, leading to
800 comparisons of the 7 ordering methods. The Bin ordering method
is the fastest for 790 out of 800 simulations. Table 2 shows typical
results for one simulated dataset. Similarly, with 18 combinations of

Cost |Structure Age Sex BMI BP |[S1 [S2 S3 S4 S5 S6 FS5
Group 80
1 Addiional 0 0 20 40 120 120 120 120 120 120 20
Group 170
2 |Additonal 0 0 |20 40 30 [30 30 30 30 30 20

Table 1: Non-additive cost structure used in simulation study.

Page 5 of 10
Times to Call /ars Function
Cost A Y LARSa LARSd COSTa COSTd OLSa |OLSd Bin
1 1 0.3 147 48 52 88 147 49 32
1 1.0 147 54 57 112 147 53 36
3 03 24 17 36 12 26 18 9
3 1.0 24 27 29 14 26 28 10
2 1 0.3 167 54 52 105 163 56 36
1 1.0 159 60 57 117 156 60 40
3 03 |24 17 36 12 26 18 9
3 1.0 24 27 29 14 26 28 10

Table 2: Comparison of 7 ordering methods using simulation model 1. Model 1
contains 10 potential predictors, and only one is the true predictor.

Times to Call /ars Function

Cost . |y LARSa LARSd COSTa COSTd OLSa OLSd Bin

1 1 0.3 [338 16 75 61 338 16 14
1 1.0 431 23 100 76 431 25 19
1 50 |424 48 102 144 424 56 36
3 0.3 |247 14 67 41 247 14 12
3 1.0 325 18 93 55 325 20 14
3 50 |357 42 94 106 357 50 30
10 0.3 [134 15 66 23 134 15 9
10 1.0 |202 14 81 38 202 16 10
10 |5.0 |265 45 87 72 265 53 30

2 1 0.3 1268 17 55 51 268 17 15
1 1.0 396 17 89 59 396 17 15
1 5.0 |572 48 100 136 572 56 36
3 0.3 1229 14 49 36 229 14 12
3 1.0 321 12 83 42 321 12 10
3 50 [513 45 94 118 513 53 33
10 0.3 [170 8 39 22 170 8 6
10 1.0 |230 8 73 24 230 8 6
10 |5.0 |423 45 88 99 423 53 30

Table 3: Comparison of 7 ordering methods using simulation model 3. Model 3
contains 10 potential predictors, and there are three true predictors.

cost, A and vy, the Bin ordering method is the fastest for 900 out of 900
times for both model 2 and model 3. Table 3 presents typical results for
one simulated dataset using model 3. With 24 combinations of cost, A
and y in model 4, the Bin ordering method is the fastest for 1200 out of
1200 times. The Bin ordering method is the fastest for 889 out of 900
times using model 5, where a fake covariate is added.

In model 5, S5 is one of the true predictors and FS5 is a fake
covariate which is highly correlated with S5, but with much less cost
(Table 1). S5 is selected into the BLARS model when we choose a small
y value, but FS5 is selected instead of S5 due to the cost effect when we
increase the y gradually. Choosing one simulated dataset, using the first
cost structure, and fixing A=10 and y=1, we compare the LARSd, OLSd,
COSTd and Bin ordering method by drawing the search trees in Figure
2. In Figure 2, the black path is the optimal path. The search trees show
the difference in the order of covariate entering the searching process,
resulting in different pruning of the trees and indicating the best result
for the tree associated with the Bin ordering method.

ACT data analysis

A study was conducted in Southwestern Ontario to assess factors
which would influence the outcomes of clients with severe mental
illness (SMI) receiving care from the Assertive Community Treatment
(ACT) [13] service. The patients recruited in the study were diagnosed
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Figure 2: Search trees for simulation model 5 with A=10 and y=1 using different
ordering methods.

Model 5 contains 11 potential predictors, and there are five true predictors
including S5 which is highly correlated with a fake predictor FS5 but costs much
more.

(a): Using LARSd.
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Figure 2: Search trees for simulation model 5 with A=10 and y=1 using different
ordering methods.

Model 5 contains 11 potential predictors, and there are five true predictors
including S5 which is highly correlated with a fake predictor FS5 but costs much
more.

(b): Using OLSd.

as having psychosis or multiple co-morbid psychiatric and physical
disorders, as well as a history of high hospital use, long-term illness,
high needs and low functioning. There were about 19 potential
predictive factors. Table 4 presents the names and descriptions of
the variables used in the data analysis of the ACT project. Long term
outcome was the overall Colorado Client Assessment Record (CCAR)
score revised for use in Southwestern Ontario [14], which is the overall
degree of problem severity (a larger score associates with a higher level
of problem severity), and was measured at 12 and 24 months after
enrollment in the project.

Our goal in this study was to assess what cost-efficient factors
influence outcomes of clients with SMI receiving care from ACT. We
wanted to find the risk factors not only with higher prediction accuracy,
but also cheaper and easier to collect the data, so that we can reduce the
burden of the ACT teams and the patients.

Cost structure

Since the sources of data collection were different, the costs of
collecting data were different for the potential predictors. In the ACT
project, data were collected from the following sources: client self-
reports, ACT clinicians, client records, hospital archives, ACT team’s
staff activity records and ACT coordinators. The data that involved the
professional work of clinicians cost more than the data from the work
of research assistants, while the client self-reported data were harder
to obtain than the data extracted from hospital archives due to the fact
that the clients were having severe mental illness.

The cost of collecting the data had two components in the ACT
project. The first was the monetary cost for human labor, time,
material, equipment, compensation paid to the clients in some research
activities, etc. The second was the level of difficulty to get an answer
or a value for a potential predictor. For example, since the clients we
dealt with were the patients with severe mental illness, they might
refuse to provide some information and some results reported from
the clients might need to be double checked or traced. This resulted in
some variables being more “expensive” than others. We also needed
to take into account the grouping effects of cost for both of the two
components.

The two components of costs of the potential predictors were
estimated between 0 and 100 by the ACT project researcher and
coordinator and are listed in Table 5, where both monetary cost
and level of difficulty consist of two parts: group cost and additional
individual cost. We considered an overall cost for each predictive
factor, which was a combination of the above two components. One
predictor cost more than another if this predictor was more expensive
overall. Since the scales of the two components were comparable (with
minimum 0 and maximum 100), one simple way to combine them was
to use summation. For convenience, we divided the combined costs by
200, which are also displayed in Table 5.

Cost-efficient variable selection

We applied the BLARS method to the ACT data to select cost-
efficient variables and estimate their effects. First, we used BIC for
the Lasso (Equation 3.2) as the tuning parameter and model selection
criterion. When we assigned 0.1 to y, there were 4 predictors selected
into the BLARS model: number of months in ACT, average number
of contacts per month, CCAR substance use subscale and CCAR
functioning subscale. The same 4 variables were selected using the
Lasso model (y=0). When y was increased to 0.2, 3 predictors remained
in the BLARS model, where average number of contacts per month was
dropped out. When y was increased to 0.5, only number of months in
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Figure 2: Search trees for simulation model 5 with A=10 and y=1 using different ordering methods.
Model 5 contains 11 potential predictors, and there are five true predictors including S5 which is highly
correlated with a fake predictor FS5 but costs much more.

ACT remained in the model. For y=1.0, no variable was selected in
the BLARS model due to the cost effect and the best prediction in this
case was the grand mean of the response. The Lasso model and BLARS
models for different y values are shown in Table 6, where some non-
selected variables are not displayed. Table 7 gives the components in
objective functions including SSE, [, penalty and cost penalty of the
corresponding models, where the percentage increases or decreases are
compared with the first BLARS model (y=0.1). When we choose a small
value of y, as in the case of y=0.1, the BLARS model select the same
covariates as the Lasso model, although the estimated coefficients are
slightly different; the SSE of the BLARS model is smaller than the SSE
of the Lasso model. Second, we used C as the tuning parameter and
model selection criterion. Table 8 presents Lasso model and BLARS
models for different y values and Table 9 displays the components in
the objective functions of the corresponding models. When we choose
a small value of y, as in the case of y=0.01, the BLARS result is exactly
the same as the Lasso result, with the same estimated coefficients and
the same SSE.

Compared with models using CP as the model selection criterion,
models selected by BIC were much more parsimonious for small values
of y. However, when y was larger (y>0.1), BLARS results were similar,
regardless of which model selection criterion was used (Table 9).

The value of y is user-defined and the selection criteria of tuning

parameter and model selection are also user’s choice. The health
researchers or decision makers should make overall judgments
based on the percentage increase of the error sum of squares and the
percentage decrease of the cost to choose their preferred cost-efficient
model from the BLARS results.

Discussion

We developed a cost-efficient variable selection method based on
the LARS technique with focus on the cost effect. The proposed BLARS
algorithm can be generalized by replacing the Lasso loss (the first two
terms in Equation (2.1)) with other objective functions to incorporate
the cost effect whenever we have a method to solve that minimization
problem. For example, if we adjust the [, penalty (the second term in
Equation (2.1)) by adaptive weights to penalize different coefficients,
we obtain Adaptive Lasso type object function. The same efficient
algorithm (LARS) for solving the Lasso can be employed to solve the
problem by using a transformation to the design matrix [3]. Thus,
our BLARS procedure can be easily adjusted to an Adaptive Lasso
type cost-efficient variable selection method. Recently Friedman et al.
[15] proposed new fast algorithms for regression estimation, which
are based on cyclical coordinate descent methods. Their methods
are a remarkably fast approach for solving convex problems with [,
(the Lasso) penalty or [, (the ridge-regression) penalty, or mixtures
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Figure 2: Search trees for simulation model 5 with A=10 and y=1 using different
ordering methods.

BP=0 BP=1

Monetary Cost Level of Difficulty Overall Cost
Predictors Group Additional Group |Additional Group |Additional
Age 0 0 0
Sex 0 0 0
Mstatus 0 0 0
CoMorbid 15 0 10 0 0.125 0
Duration 10 0 0.1
ACTmo 0 0 0
Medtype 0 0 0
Contacts 25 0 20 0 0.225 0
Jail 20 0 30 0 0.25 0
MEDC 20 0 30 0 0.25 0
WAI 0 0 0
PSE 0 0 0
EMP 30 0 30 0 0.3 0
DAI 0 0 0
Lifetime 30 0 70 0 0.5 0
EmpSC 20 20 0.2
SubSC 30 20 50 20 0.4 0.2
FunSC 20 20 0.2
DACTS 60 0 100 0 0.8 0

Table 5: Two cost components and the overall costs used in ACT data analysis.

Table 4: Potential predictive factors in ACT project.

Model 5 contains 11 potential predictors, and there are five true predictors n"'\m;éﬁilf,":;' OB PRESOUTION, E REBOUID 5 1) 3
including S5 which is highly correlated with a fake predictor FS5 but costs much SoL
more. g‘]’;m
_ (d): Using Bin. 5
Predictors Description Else
Age Age in years
Sex 1: Female ; 0: Male
Mstatus Marital Status, 1: Married or Common-law; 0: Otherwise
CoMorbid | Number of co-morbid diagnoses Salve iy
Duration  Number of years since first diagnosis If oy, = B
Lifetime Lifetime days in hospital ) +— LO8E{panay '
Jail Everinjail, 1: No; 0: Yes HN‘.; 0 and select design matrix based on ot
EmpSC CCAR employment subscale. 1: Employed (full-ime or part-time); 0: f;"ll;'(:[’.:b'l‘l’l *:‘ el 1
Otherwise SOLUTION, py, + “pruned”
SubSC CCAR substance use subscale. A larger score associates with a higher e
level of substance abuse. ““;”‘I:'I’J"l Jf;:f”""_%>~=-n;u -
FunSC CCAR functioning subscale. A larger score associates with a lower level of STLOSS  LOsS) gy
functioning.
ACTmo Total service use: number of months in ACT T .‘f;f!['mh"" + 1, BESTLOSS, SOLUTION 1,501, BOUND g 1y, )
Medtype  Medications prescribed: number of medication categories  Return (SOLUTIONjrigi), LOSS{rignn)
Contacts | Intensity of contacts: average number of contacts per month by ACT staff mwn..\ urn (SOLUTION 1. py), LOSSjiepe))
DACTS Fidelity of team to ACT model: Dartmouth ACT Scale
A larger score associates with a higher level of fidelity to ACT model Figure 3: The recursive step of the BLARS algorithm.
WAI Therapeutic alliance: Working Alliance Inventory
A larger score associates with a higher level of alliance between patient
and therapist
PSE Insight into psychosis: Present State Exam-insight score. 1: Limited insight; &L‘:}:ﬂ"& ﬁ;’;“;‘uz‘ff'g”::‘ft Boag;
0: Full insight Call BLARS(k =1, BrsTLOSS — Lossg, PRESOLUTION = SOLUTIONg,
EMP Empowerrnent scale PREBOUND = BouNDg, & = (1,...,1)) and return the result.
A higher score associates with a higher level of client's participation in their Figure 4: The initialization step of the BLARS algorithm.
recovery
DAI Satisfaction with medications: Drug Attitude Inventory
A higher score associates with a higher level of client's satisfaction with of the two (the elastic-net penalty). Since these alternatives are well
medication developed, they can be adapted to the node-level in our cost efficient
MEDC Medication compliance: Adherence to medication scale variable searching approach, but unfortunately they are not directly
Az(i?hetf score associates with a lower level of client's adherence to applicable to minimizing the full problem (2.1), which is not convex.
medication

We illustrated the cost-efficient variable selection procedure in
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Estimated Coefficients

Method Y ACTmo Contacts Jail MEDC WAI EMP DAI EmpSC SubSC FunSC DACTS
Lasso - -0.006 0.0028 0 0 0 0 0 0 0.07 0.16 0
BLARS 0.10 -0.011 0.0074 0 0 0 0 0 0 0.11 0.20 0

0.20 -0.010 0 0 0 0 0 0 0 0.10 0.21 0

0.50 -0.015 0 0 0 0 0 0 0 0 0 0

1.00 0 0 0 0 0 0 0 0 0 0 0

Table 6: Optimal Lasso and BLARS models for different y values using BIC as the model selection criterion.
Method Y Total Loss [, Penalty SSE SSE Increase Cost Penalty Cost Cost Decrease
(per patient)

Lasso - 348 17 331 - - - -
BLARS 0.1 348 9 317 - 22 1.150 -

0.2 370 10 325 2.5% 35 0.925 19.6%

0.5 384 4 368 15.8% 12 0.125 89.1%

1.0 388 0 388 22.2% 0 0.000 100.0%

Table 7: Components in objective functions for different y values using BIC as the model selection criterion.
The percentage increase or decrease are compared with the first BLARS model (y=0.1). Lasso model was fitted without considering cost effect, and the total loss has only
two components.

Estimated Coefficients

Method b ACTmo Contacts Jail MEDC WAI EMP DAI EmpSC SubSC FunSC DACTS

Lasso - -0.014 0.0070 -0.11 0.086 -0.057 -0.32 -0.026 0.17 0.096 0.18 0.33

BLARS 0.01 -0.014 0.0070 -0.11 0.086 -0.057 -0.32 -0.026 0.17 0.096 0.18 0.33
0.02 -0.012 0.0069 -0.15 0.091 -0.060 -0.35 -0.046 0.17 0.090 0.18 0
0.04 -0.012 0.0067 0 0 -0.055 -0.29 -0.070 0.17 0.100 0.19 0
0.10 -0.011 0.0074 0 0 0 0 0 0.112 0.20 0
0.20 -0.010 0 0 0 0 0 0 0.101 0.21 0
0.50 -0.015 0 0 0 0 0 0 0 0 0
1.00 0 0 0 0 0 0 0 0 0 0

Table 8: Optimal Lasso and BLARS models for different y values using Cp as the model selection criterion.
Method Y Total Loss [, Penalty SSE SSE Increase Cost Penalty Cost Cost Decrease
(per patient)

Lasso - 316 15 301 - - - -

BLARS 0.01 322 15 301 - 7 2.950 -
0.02 325 14 303 0.9% 8 2.150 27.1%
0.04 335 14 308 2.5% 13 1.650 44.1%
0.10 348 9 317 5.5% 22 1.150 61.0%
0.20 370 10 325 8.2% 35 0.925 68.6%
0.50 384 4 368 22.2% 12 0.125 95.8%
1.00 388 0 388 28.9% 0 0.000 100.0%

Table 9: Components in objective functions for different y values using Cp as the model selection criterion. The percentage increase or decrease are compared with the
first BLARS model (y=0.01). Lasso model was fitted without considering cost effect, and the total loss has only two components.

this paper with either BIC or C, as the turning parameter and model
selection criteria. There is a lot of controversy on which criterion is
the best, and it seems that no one surpasses others in all situations.
Researchers may have their preferred selection criteria other than
BIC or C, and they have to make the judgment based on their own
experience. But the BLARS algorithm is the same, regardless which
model selection criterion is used.

We considered two cost components, monetary cost and level
of difficulty, in the ACT data analysis. Because the two components
were estimated in the same scale, we used the combined overall costs
in the data analysis. In general cases, the two cost components may
not be in the same scale, therefore, it may be better to consider them
separately by using two cost terms in Equation (2.1) with two user-
defined weights y and y,, and it will give researchers more flexibility to
balance between the two kind of costs.
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Appendix
The detailed BLARS algorithm can be described as follows.

At step k, we let a* be equal to (a,,....,0,,1,...,1). This vector indicates which
variables are passed to lars for optimization. Once we have the lars result in hand,
we set each of 0(k+1,....,o(p to 0 if the corresponding ﬂk is zero and 1 otherwise.
This gives a to use in the cost calculations. We also calculate a- as (a,,....,0,,0,...,0)

to use in the cost calculations for the bound.

In the algorithm below, we use the following notation. /ars refers to the R
package or the /ars function in that package. Our own variables and functions will
be written in small caps, e.g. SOLUTION below. For 0 < k < p, the solution of a
relaxation R, is denoted by SOLUTION,; the corresponding objective value uses
o to give the lower bound for P, and is referred to as BOUND,. (We suppress the
dependence on a, but in fact there are potentially 2* different relaxations called
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R,, and a corresponding number of other entities subscripted with k.) The real total
loss of the model selected by R, computed using a is denoted by LOSS,. The /ars
solution from the previous step is denoted by PRESOLUTION with corresponding

[¢]

bjective value PREBOUND. Note that P =P, and plain /ars is sufficient to solve R,

since there are no restrictions on it. The best total loss seen so far is BESTLOSS.

The recursive step of the BLARS algorithm is shown in Figure 3. This is

invoked as shown in Figure 4.
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