Bruck decomposition for endomorphisms of quasigroups

Péter T. NAGY^a and Peter PLAUMANN^b

^aInstitute of Mathematics, University of Debrecen, P.O. Box 12, 4010 Debrecen, Hungary ^bDepartment Mathematik, Universität Erlangen-Nürnberg, Bismarckstraße 1¹/₂, 91054 Erlangen, Germany

E-mails: nagypeti@math.unideb.hu, peter.plaumann@mi.uni-erlangen.de

Abstract

In 1944, R. H. Bruck has described a very general construction method which he called the extension of a set by a quasigroup. We use it to construct a class of examples for *LF*-quasigroups in which the image of the map $e(x) = x \setminus x$ is a group. More generally, we consider the variety of quasigroups which is defined by the property that the map e is an endomorphism and its subvariety where the image of the map e is a group. We characterize quasigroups belonging to these varieties using their Bruck decomposition with respect to the map e.

2000 MSC: 20N05

1 Introduction

A binary algebra (Q, \cdot) with multiplication $(x, y) \mapsto x \cdot y$ is called a *quasigroup* if the equations $a \cdot y = b$ and $x \cdot a = b$ have precisely one solution in Q which we denote by $y = a \setminus b$ and x = b/a. The element $1_l(a) = a/a$ (resp., $1_r(a) = a \setminus a$) is the left (resp., the right) local unit element of the element a. If the left (right) local unit elements coincide for all elements of (Q, \cdot) , then the element $1_l = 1_l(a)$ (resp., $1_r = 1_r(a)$) is called the left (resp., right) unit element of (Q, \cdot) . If a quasigroup (Q, \cdot) has both left and right unit elements, then they coincide $1 = 1_l = 1_r$; in this case (Q, \cdot) is called a *loop*.

In 1944, R. H. Bruck has described a very general construction method which he called the extension of a set by a quasigroup (cf. [3, 4]). Epimorphisms of quasigroups in general cannot be described by cosets of a normal subquasigroup, but only by congruence relations in the sense of universal algebra. Bruck's construction takes this into account giving a manageable description of quasigroup epimorphisms. In this note we discuss this method for endomorphisms of quasigroups.

A quasigroup (Q, \cdot) is called an *LF*-quasigroup if the identity

 $x \cdot yz = xy \cdot (x \backslash x \cdot z)$

holds in Q. In his book [1], Belousov initiated a systematic study of LF-quasigroups using isotopisms. Recently progress has been made in this topic (cf. [7, 8, 9]). It is known that in an LF-quasigroup the map $e(x) = x \setminus x$ is an endomorphism, which we call the left deviation. In this situation Bruck's theory is available. We use it to construct a class of examples for LF-quasigroups Q in which e(Q) is a group.

More generally, we consider the variety \mathfrak{D}_l of quasigroups which is defined by the property that the left deviation is an endomorphism and its subvariety \mathfrak{aD}_l where the image of the left deviation is a group. We characterize quasigroups belonging to these varieties using their Bruck decomposition with respect to their left deviation.

2 The Bruck decomposition of a quasigroup

In Bruck's papers [3, Theorem 10 A, pp. 166–168] and [4, pp. 778–779], a principal construction for quasigroups is given. Let $(E, \cdot, \backslash, /)$ be a quasigroup, let T be a set, and let $\{\nabla_{a,b}; a, b \in E\}$ be a family of multiplications on T. Define on the set $Q = T \times E$ a multiplication by

$$(\alpha, a) \circ (\beta, b) = (\alpha \nabla_{a, b} \beta, ab), \quad (\alpha, a), (\beta, b) \in T \times E$$

$$(2.1)$$

Then (Q, \circ) is a quasigroup if and only if for any $a, b \in E$ the multiplication $\nabla_{a,b}$ on T defines a quasigroup $\mathcal{T}_{a,b} = (T, \nabla_{a,b})$. In this case we call $\mathcal{B} = (E, T, (\nabla_{a,b})_{a,b\in E})$ a Bruck system and put $Q(\mathcal{B}) = Q$. Obviously, the projection $((\alpha, a) \mapsto a) : Q(\mathcal{B}) \to E$ is an epimorphism of quasigroups (cf. [6, pp. 35–36]). We call this epimorphism the *canonical epimorphism* for \mathcal{B} .

Conversely, let (Q, \circ) and (E, \cdot) be quasigroups and let $\pi : Q \to E$ be an epimorphism. For the inverse images $T_a = \pi^{\leftarrow}(a), a \in E$, one has

$$T_a \circ T_b = T_{ab}$$

hence the set $\{T_a, a \in E\}$ forms a quasigroup \mathcal{E}' isomorphic to (E, \cdot) . Using a transversal for the partition $\{T_a, a \in E\}$ of the set Q, one can identify the inverse images $T_a, a \in E$, with a subset $T \subset Q$ and the set Q with the cartesian product $T \times E$. The multiplication in Q can be written in the form (2.1), where $\alpha, \beta \in T$, $a, b \in E$. This means that we have obtained a Bruck system $\mathcal{B}_{\pi} = (E, T, (\nabla_{a,b})_{a,b \in E})$ for which $Q(\mathcal{B}_{\pi})$ is isomorphic to Q and which has π as canonical epimorphism. We call this representation of (Q, \circ) a Bruck decomposition of (Q, \circ) with respect to $\pi : Q \to E$.

Let $\eta: Q \to Q$ be an endomorphism. We consider the set E of the congruence classes $T_x = \eta^{\leftarrow}(x), x \in \eta(Q)$. The multiplication $T_x \star T_y = T_{xy}$ defines a quasigroup (E, \star) such that the mapping $\pi: (x \mapsto T_x): Q \to E$ is an epimorhism. We put $\iota = \eta \circ \pi^{\leftarrow} = (T_x \mapsto \eta(x)): E \to Q$. Then ι is an injective homomorphism (see [5, Theorem 6.12, p. 50]).

We consider the Bruck decomposition $Q = T \times E$ with respect to the epimorphism π . For $a \in E = \{T_x, x \in \eta(Q)\}$ one has $\iota(a) = (\gamma(a), g(a))$, where $\gamma(a) \in T, g(a) \in E$. The maps $\gamma: E \to T$ and $g: E \to E$ satisfy

$$(\gamma(ab), g(ab)) = \iota(ab) = \iota(a)\iota(b) = (\gamma(a), g(a))(\gamma(b), g(b))$$
$$= (\gamma(a) \nabla_{g(a), g(b)}\gamma(b), g(a)g(b))$$

It follows that $g: E \to E$ is an endomorphism and

$$\gamma(ab) = \gamma(a) \nabla_{g(a),g(b)} \gamma(b) \tag{2.2}$$

holds for all $a, b \in E$. We call the structure described here the Bruck decomposition of the quasigroup (Q, \circ) with respect to the endomorphism $\eta : Q \to Q$.

If the quasigroup Q is a loop and $\eta: Q \to Q$ is an endomorphism, then $K = \eta^{\leftarrow}(1)$ is a normal subloop of Q. In this situation Q is a semidirect product of K and $\eta(Q)$ if and only if $\eta = \eta^2$ holds. We describe the Bruck decomposition with respect to an idempotent endomorphism for arbitrary quasigroups.

Proposition 2.1. An endomorphism η of a quasigroup Q is idempotent if and only if in the Bruck decomposition with respect to η the maps $\gamma : E \to T$ and $g : E \to E$ satisfy

$$g^2 = g \quad and \quad \gamma \circ g = \gamma$$

i.e., if and only if the endomorphism $g: E \to E$ is idempotent and the map $\gamma: E \to T$ factors over the congruence relation defined by g on E.

Proof. Since $\eta(\alpha, a) = \iota(\pi(\alpha, a)) = \iota(a) = (\gamma(a), g(a))$ the assertion follows from $\eta(\eta(\alpha, a)) = \eta(\gamma(a), g(a)) = \gamma(g(a), g(g(a)))$

3 The left deviation of a quasigroup

For a quasigroup $(Q, \cdot, \backslash, /)$ we call the map $e = (x \mapsto x \backslash x) : Q \to Q$ the *left deviation*. As mentioned in the preliminaries, the left deviation of $x \in Q$ is the local right unit element of x. In a Bruck decomposition $Q = T \times E$ with respect to an epimorphism $Q \to E$, the deviation is $e(\alpha, a) = (\alpha \backslash \alpha, a \backslash a)$, where $a \backslash a$ is computed in the quasigroup E and $\alpha \backslash \alpha$ is computed in the quasigroup $\mathcal{T}_{a,a \backslash a} = (T, \nabla_{a,a \backslash a})$. Obviously, the quasigroups in which the *left deviation is an endomorphism form a variety* \mathfrak{D}_l of quasigroups. For $(Q, \cdot, \backslash, /) \in \mathfrak{D}_l$ we consider the Bruck decomposition $Q = T \times E$ with respect to the left deviation. In this case $e(\alpha, a) = (\gamma(a), g(a))$ and hence $g(a) = a \backslash a$ (computed in E) and

$$\alpha \,\nabla_{a,g(a)} \,\gamma(a) = \alpha \tag{3.1}$$

Theorem 3.1. A quasigroup Q belongs to the variety \mathfrak{D}_l if and only if there exists a Bruck system $\mathcal{B} = (E, T, (\nabla_{a,b})_{a,b \in E})$ satisfying

- (i) $Q \cong Q(\mathcal{B}),$
- (ii) for any a ∈ E the quasigroup T_{a,a\a} = (T, ∇_{a,a\a}) has a right unit element, denoted by ε(a),
- (iii) the map $(a \mapsto (\epsilon(a), a \setminus a)) : E \to Q(\mathcal{B})$ is a homomorphism.

In this case the left deviation of $Q(\mathcal{B})$ is the map

$$e = \left((\alpha, a) \longmapsto \left(\epsilon(a), a \backslash a \right) \right) : Q(\mathcal{B}) \longrightarrow Q(\mathcal{B})$$

Proof. Assume first that Q belongs to \mathfrak{D}_l and consider the Bruck decomposition with respect to the left deviation $e(x) = x \setminus x$ of Q. Then E is isomorphic to the subquasigroup e(Q) of Q. Putting $\epsilon = \gamma$ the assertion (ii) follows from equation (3.1) and the assertion (iii) follows from equation (2.2).

Conversely, if $\mathcal{B} = (E, T, (\nabla_{a,b})_{a,b \in E})$ is a Bruck system satisfying (i), then

$$e(\alpha, a) = (\alpha, a) \backslash (\alpha, a) = (\alpha', a \backslash a)$$

where $\alpha = \alpha \nabla_{a,a \setminus a} \alpha'$. From (ii) it follows that $\alpha' = \epsilon(a)$ and the deviation satisfies $e(\alpha, a) = (\epsilon(a), a \setminus a)$. Hence we obtain from (iii) that the quasigroup Q belongs to the variety \mathfrak{D}_l . \Box

Corollary 3.2. Let $\mathcal{B} = (E, T, (\nabla_{a,b})_{a,b \in E})$ be a Bruck system satisfying the conditions (ii) and (iii) of the previous theorem. Then \mathcal{B} is a Bruck decomposition of the quasigroup $Q(\mathcal{B})$ with respect to the left deviation of $Q(\mathcal{B})$ if and only if the homomorphism

$$\iota = \left(a \longmapsto \left(\epsilon(a), a \backslash a\right)\right) : E \longrightarrow Q(\mathcal{B})$$

is injective.

Example 3.3. Let (E, \cdot) , $\mathcal{T}^{(1)} = (T, \circ)$, and $\mathcal{T}^{(2)} = (T, \star)$ be quasigroups such that the following properties are satisfied:

(a) E is a \mathfrak{D}_l -quasigroup,

(b) $\mathcal{T}^{(1)}$ has a right unit element ϵ ,

(c) ϵ is idempotent in the quasigroup $\mathcal{T}^{(2)}$.

Put

(i) $\mathcal{T}_{a,a\setminus a} = (T, \nabla_{a,a\setminus a}) = \mathcal{T}^{(1)} = (T, \circ),$

(*ii*) $\mathcal{T}_{a \setminus a, b \setminus b} = (T, \nabla_{a \setminus a, b \setminus b}) = \mathcal{T}^{(2)} = (T, \star) \text{ if } b \setminus b \neq (a \setminus a) \setminus (a \setminus a),$

(*iii*) $\mathcal{T}_{c,d} = (T, \nabla_{c,b\setminus d})$ arbitrary in all other cases.

According to Theorem 3.1 the multiplication $(\alpha, a) \circ (\beta, b) = (\alpha \bigtriangledown_{a,b} \beta, ab)$ on the set $T \times E$ is a \mathfrak{D}_l -quasigroup Q with left deviation $e(\alpha, a) = (\epsilon, a \setminus a)$. For (E, \cdot) one can take idempotent quasigroups or groups. Clearly, the construction of the quasigroup $Q = T \times E$ gives a Bruck decomposition with respect to the left deviation of Q if and only if the left deviation of (E, \cdot) is an automorphism. If (E, \cdot) is a group with unit element 1, then the left deviation of Q is the constant $(\epsilon, 1)$ which is the right unit element of Q.

4 Associative image of the left deviation map

The class of \mathfrak{D}_l -quasigroups for which the image of the left deviation map is a group forms a variety, too, as can be seen from the identities

 $xy \backslash xy = x \backslash x \cdot y \backslash y, \quad (x \backslash x \cdot y \backslash y) \cdot z \backslash z = x \backslash x \cdot (y \backslash y \cdot z \backslash z)$

We denote this variety by \mathfrak{aD}_l and investigate the Bruck decomposition in \mathfrak{aD}_l . As an immediate consequence of Theorem 3.1 one obtains the following.

Theorem 4.1. A quasigroup Q belongs to the variety \mathfrak{aD}_l if and only if there exists a Bruck system $\mathcal{B} = (E, T, (\nabla_{a,b})_{a,b\in E})$ with $Q \cong Q(\mathcal{B})$ satisfying

- (i) E is a group (with unit element 1),
- (ii) the quasigroup $\mathcal{T}_{a,1} = (T, \nabla_{a,1})$ has right unit element, denoted by $\epsilon(a)$, for any $a \in E$,
- (iii) the map $\epsilon : E \to \pi^{\leftarrow}(1) = \mathcal{T}_{1,1} = (T, \nabla_{1,1})$ is a homomorphism of the group E into the normal subquasigroup $\pi^{\leftarrow}(1) = \mathcal{T}_{1,1} = (T, \nabla_{1,1})$ of $Q(\mathcal{B})$.

In this case one has $e(\alpha, a) = (\epsilon(a), 1)$ for any $(\alpha, a) \in T \times E$.

Proof. *E* is a group since it is isomorphic to the image of the left deviation map. Hence $e(\alpha, a) = (\epsilon(a), a \setminus a) = (\epsilon(a), 1)$ for any $(\alpha, a) \in T \times E$ and $\epsilon : (a \mapsto (\epsilon(a), 1)) : E \to \pi^{\leftarrow}(1) = \mathcal{T}_{1,1}$.

Example 4.2. Let $(E, \cdot), (T, \circ)$ be quasigroups and let $\epsilon : E \to T$ be a homomorphism such that the following properties are satisfied:

- (i) (E, \cdot) is a group with unit element 1,
- (*ii*) $\epsilon(1)$ is a right unit element of (T, \circ) .

Put

- (a) $\alpha \nabla_{a,1} \beta = (\alpha/\epsilon(a)) \circ \beta$ in the quasigroup $\mathcal{T}_{a,1} = (T, \nabla_{a,1})$, where / is the right division in (T, \circ) ,
- (b) $\mathcal{T}_{a,b} = (T, \nabla_{a,b})$ arbitrary for $b \neq 1$.

According to Theorem 4.1 the multiplication $(\alpha, a) \circ (\beta, b) = (\alpha \nabla_{a,b} \beta, ab)$ on the set $T \times E$ is an \mathfrak{aD}_l -quasigroup. For (E, \cdot) and (T, \circ) one can take groups having $\epsilon : E \to T$ as a group homomorphism. The decomposition $Q = T \times E$ is a Bruck decomposition with respect to the left deviation of Q if and only if the homomorphism $\epsilon : E \to T$ is injective.

5 *LF*-quasigroups

It is known that the *LF*-quasigroups form a subvariety of \mathfrak{D}_l (cf. [2, p. 108] and [9, Lemma 2.1]). We will now give examples of *LF*-quasigroups even belonging to the variety \mathfrak{aD}_l . Let E, T be groups and let $\epsilon : E \to T$ be a homomorphism. Put

$$\alpha \nabla_{a,b} \beta = \alpha \cdot \epsilon(a)^{-1} \cdot \beta$$

for all $a, b \in E$. Then every $\mathcal{T}_{a,b} = (T, \nabla_{a,b})$ is a group (with unit element $\epsilon(a)$) which is isotopic and hence isomorphic to the group T.

As in the previous example the multiplication $(\alpha, a) \circ (\beta, b) = (\alpha \nabla_{a,b} \beta, ab)$ on the set $T \times E$ defines an $\mathfrak{a}\mathfrak{D}_l$ -quasigroup (with left unit element (1, 1)) in which the left deviation is given by $e(\alpha, a) = (\epsilon(a), 1)$ (Theorem 4.1).

Theorem 5.1. Let E, T be groups and let $\epsilon : E \to T$ be a homomorphism. The set $Q = T \times E$ equipped with multiplication $(\alpha, a) \circ (\beta, b) = (\alpha \cdot \epsilon(a)^{-1} \cdot \beta, ab)$ is an LF-quasigroup with left unit element (1, 1) satisfying the left inverse property.

Proof. An easy calculation shows

$$(\alpha, a) \circ \left((\beta, b) \circ (\gamma, c) \right) = \left(\alpha \cdot \epsilon(a)^{-1} \cdot \beta \cdot \epsilon(b)^{-1} \cdot \gamma, abc \right)$$

On the other hand,

$$((\alpha, a) \circ (\beta, b)) \circ ((\epsilon(a), 1) \circ (\gamma, c)) = (\alpha \cdot \epsilon(a)^{-1} \cdot \beta, ab) \circ (\epsilon(a) \cdot \gamma, c) = (\alpha \cdot \epsilon(a)^{-1} \cdot \beta \cdot \epsilon(ab)^{-1} \cdot \epsilon(a) \cdot \gamma, abc)$$

Hence (Q, \circ) is an *LF*-quasigroup in which (1, 1) is the left unit element. The left inverse of an element (α, a) is given by $(\epsilon(a) \cdot \alpha^{-1} \cdot \epsilon(a)^{-1}, a^{-1})$. Indeed one has $(\epsilon(a) \cdot \alpha^{-1} \cdot \epsilon(a)^{-1}, a^{-1}) \circ ((\alpha, a) \circ (\beta, b)) = (\beta, b)$.

The decomposition $Q = T \times E$ is a Bruck decomposition with respect to the left deviation of Q if and only if the homomorphism $\epsilon : E \to T$ is injective.

We note that in accordance with [9, Theorem 4.1] the quasigroup $Q = T \times E$ is isotopic to the direct product of the groups T and E; the isotopism is given by the triple $(\phi, \text{id}, \text{id})$, where $\phi : (\alpha, a) \mapsto (\alpha \cdot \epsilon(a)^{-1}, a)$.

References

- V. D. Belousov. Foundations of the Theory of Quasigroups and Loops. Izdat. "Nauka", Moscow, 1967 (in Russian).
- [2] V. D. Belousov. Elements of Quasigroup Theory: A Special Course. Kishinev State University Press, Kishinev, 1981 (in Russian).
- [3] R. H. Bruck. Some results in the theory of linear non-associative algebras. Trans. Amer. Math. Soc., 56 (1944), 141–199.
- [4] R. H. Bruck. Simple quasigroups. Bull. Amer. Math. Soc., 50 (1944), 769–781.
- [5] S. Burris and H. P. Sankappanavar. A Course in Universal Algebra. Grad. Texts in Math., 78, Springer-Verlag, New York, 1981.
- [6] O. Chein. Examples and methods of construction. Chapter II. In "Quasigroups and Loops: Theory and Applications". O. Chein, H. O. Pflugfelder, and J. D. H. Smith, Eds. Sigma Series in Pure Mathematics, 8, Heldermann Verlag, Berlin, 1990, 27–93.

- [7] T. Kepka, M. K. Kinyon, and J. D. Phillips. The structure of F-quasigroups. J. Algebra, 317 (2007), 435-461.
- [8] P. Plaumann, L. Sabinina, and L. Sbitneva. A decomposition of LF-quasigroups. In "Algebras, Representations and Applications". V. Futorny, V. Kac, I. Kashuba, and E. Zelmanov, Eds. Contemp. Math., 483, American Mathematical Society, Providence, RI, 2009, 221–228.
- [9] V. A. Shcherbacov. On the structure of left and right F-, SM-, and E-quasigroups. J. Gen. Lie Theory Appl., 3 (2009), 197–259.

Received February 15, 2009 Revised June 21, 2009