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Abstract
Because pharmacologic treatment of patients with the established Acute Respiratory Distress Syndrome (ARDS) 

has not been successful, the emphasis on discovering biomarkers that predict ARDS development in at-risk individuals 
is being rekindled so that ways of preventing ARDS can be advanced and tested. However, the low incidence of ARDS 
in at-risk individuals, the variable time between becoming at risk and developing ARDS, and the varying incidence 
of ARDS following different predisposing conditions makes finding clinically-useful ARDS predicting biomarkers 
challenging. Ideally, biomarkers reflecting ARDS development will be obtainable non-invasively and repeatedly and 
provide sensitive, specific, accurate and real time results. Biomarkers will also likely need to mirror key events in the 
pathogenesis of ARDS and meaningfully reflect the effect of therapies on ARDS development. At the moment, analysis 
of potential biomarkers in breath samples offers an intriguing way of addressing these objectives. A number of ARDS 
implicated molecules (e.g. hydrogen peroxide, nitric oxide, lipid peroxidation byproducts, cytokeratins) are measurable 
in breath or breath condensates from ARDS patients. Moreover, powerful new approaches (e.g. proton transfer 
reaction mass spectrometry, carbon nanotubes analyses using aptamer based multiplexed proteomic technology 
and cavity-enhanced frequency comb spectroscopy) are emerging that may provide biomarkers that could generate 
insight regarding the responsible mechanisms for ARDS, monitor ARDS development, enable testing of new ARDS 
interventions, and guide treating and preventing ARDS. 
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Introduction

Interest in finding biomarkers that predict the development and 
potentially provide the opportunity of preventing acute respiratory 
distress syndrome (ARDS – used herein to include ALI, ARDS and 
early forms of acute inflammatory lung injury) is being rekindled [1]. 
One attractive possibility is the analysis of breath and breath condensate 
products. Evaluating breath biomarkers that reflect ARDS development 
may provide a useful method alone and/or in conjunction with other 
approaches in accomplishing the objectives of learning more about 
the pathogenesis, treatment and prevention of ARDS [2-4]. Some 
pioneering work has already been done in the field of breath analysis. 
For example, Phillips identified three thousand different compounds in 
the breath of a normal person [5]. Because of the intense inflammatory, 
oxidative and other reactions occurring in the lungs of patients as they 
develop ARDS, it is likely that breath analysis could provide useful new 
information.

In the present review, we identify molecules that have been 
measured in the breath and breath condensates of patients with ARDS 
and consider their potential as ARDS biomarkers. A number of these 
molecules, most notably hydrogen peroxide, have also been measured 
in the breath or breath condensates of animal models of ARDS but this 
review focuses only on findings in human subjects [6]. Our review will 
also not describe some of the important considerations that have been 

raised in prior articles including potential issues related to exhaled 
breath sample collection [7,8], low concentration/dilution effects [9-
13], contamination by water and other substances [14,15], processing 
and storage issues [16], “head-to head” comparisons of breath and 
breath condensate findings to bronchoalveolar lavage findings [17,18], 
ensuring samples are only from the lung [14,15], validation [19,20], 
instability [21], reproducibility [22-24] and analysis [25,26]. 

ARDS
ARDS, the most severe form of Acute Lung Injury (ALI), remains 

a formidable medical problem [27]. ARDS has a high mortality 
approaching 40% in many studies [28,29]. ARDS kills approximately 
75,000 Americans yearly; by some estimates, more than breast cancer 
and AIDS combined [28,29]. ARDS is characterized by the rapid onset 
of a diffuse non-cardiogenic edematous lung injury that produces 
severe hypoxemia. For largely unknown reasons, ARDS follows a 
wide variety of predisposing conditions including trauma, infection, 
pancreatitis, blood transfusions, and aspiration [2,3]. ARDS often 
predisposes to multiple organ failure (MOF) and this devastating 
complication along with ARDS creates considerable mortality and 
expense [30]. Even survivors of ARDS have appreciable residual 
disabilities including lung, musculoskeletal, and mental abnormalities 
[31,32]. Despite laudable advances in supportive care and judicious use 
of mechanical ventilation, the syndrome remains lethal and there is no 
pharmacologic treatment [33].
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Lack of Pharmacologic Success in Treating Established 
ARDS

Numerous attempts with pharmacologic agents have been 
universally unsuccessful in reducing the high mortality of established 
ARDS [33]. The list of ineffective therapeutics encompasses a variety of 
agents chosen for their potential in limiting different pathologic features 
that appear to contribute to ARDS. The unsuccessful candidates include 
methylprednisolone, lysofylline, prostaglandin E1, N-acetylcysteine, 
ketoconazole, nitric oxide, and surfactant [34]. Although not 
effective in increasing survival, some of these interventions improved 
physiologic and/or biochemical abnormalities associated with ARDS 
and may hold potential if given earlier to at-risk patients who are in the 
process of developing ARDS [34]. For example, nitric oxide, surfactant, 
methylprednisolone and prostaglandin E1 improved oxygenation in 
patients with established ARDS. N-acetylcysteine (NAC) prevented 
glutathione depletion [35] and surfactant reduced lung lavage IL-6 
levels - again without improving mortality in patients with established 
ARDS [34]. 

Emphasis on Preventing ARDS
Disappointment in treating established ARDS has fueled a lack of 

enthusiasm on many fronts for attempting to treat established ARDS. 
The disillusionment is substantial since investigators have repeatedly 
found that agents that work effectively in animal models of ARDS do 
not produce the same results in full-scale clinical trials in patients with 
established ARDS [36,37]. However, many times, these interventions 
were given just before the ARDS inciting insult was administered to the 
animal [36,37]. The discouraging track record in treating patients with 
established ARDS has also engendered skepticism in pharmaceutical 
companies, Wall Street and Venture Capital Investors. These pivotal 
entities must now more carefully weigh the potential risks and 
substantial expense involved in developing interventions for treating 
established ARDS - not the least of which is the multi-million dollar 
definitive phase III trial that will likely need 1000 patients or more to 
establish efficacy [1,38]. Indeed, by the time the diagnosis of ARDS is 
fully established and patients meet definitive entry criteria for most 
clinical trials, nearly all ARDS patients are extremely ill and many 
detrimental processes are in full swing. The multiple redundant, likely 
synergizing, inflammatory, oxidative stress and other responses that 
contribute to ARDS do not obviously lend themselves to a simple rescue 
intervention. While all efforts at discovering ways to treat established 
ARDS have not been abandoned, emphasis on preventing ARDS 
development rather than treating established ARDS is an attractive 
emerging perspective [1]. This rationale has significant merit [27]. 

While theoretically appealing, the proposition of preventing ARDS 
development must nonetheless overcome many obstacles. A primary 
concern is that many at-risk individuals have conditions like trauma or 
infection that predispose to ARDS, but only a relatively small number 
of presently indefinable at-risk individuals develop the syndrome [39]. 
Using a sophisticated cleverly constructed clinical scoring system, Gajic 
and his colleagues were only able to predict ARDS development in at-
risk individuals at a rate of approximately 18% [39]. Clearly, if we treat 
everyone at-risk, we will treat many individuals who are not destined 
to develop ARDS. This strategy means that we will unnecessarily 
expose many at-risk individuals - many of whom like many victims of 
trauma are in completely good health just beforehand - to the obvious 
expense and potential risk of the therapy. The latter approach is also 
complicated because many diverse disorders predispose to ARDS and 
because ARDS does not develop in any fixed time period in at-risk 
individuals. In addition, many patients would need to be studied in 

clinical trials to show the efficacy of an intervention when the primary 
endpoint is ARDS prevention and no subject enriching biomarkers or 
other limiting directives are employed [1]. 

Need for Biomarkers for Predicting ARDS
The strategy of preventing ARDS with efficiency is being addressed 

by a search for biomarkers that can predict ARDS development in 
at-risk individuals. Appropriate ARDS predictive biomarkers will 
not only facilitate earlier treatment, but also increase the odds of 
preventing ARDS in someone who has a greater chance of developing 
it. The complexity of ARDS and its variable development in different 
individuals makes this quite difficult and indicates that a panel of 
biomarkers, rather than a single biomarker, will be needed to predict 
ARDS [1]. Since we do not know exactly when ARDS will develop 
in any individual, the ideal biomarker will need to be obtainable 
repeatedly, non-invasively and provide real-time information. Most 
likely, the approach will require frequent measurements of significant 
biomarker changes that occur in the same individual over time. This 
concern effectively makes analysis of lung lavage and lung tissue 
problematic since they are difficult to perform and repeat in critically-
ill individuals [40]. This requirement also raises a similar, albeit to a 
lesser degree, concern for using blood and urine analyses. For this 
reason alone, the potential for evaluating exhaled breath samples has 
appeal. Breath samples coming directly from the lung are theoretically 
relatively easy to collect non-invasively and repeatedly, especially in 
intubated patients. If nothing else, the search for pragmatic biomarkers 
will provide additional insights regarding the mechanisms contributing 
to ARDS and lead to new therapeutic strategies.

Known Breath Biomarkers in ARDS
The initial pathogenesis of ARDS remains largely centered on 

inflammatory cytokine elaboration, neutrophil recruitment and 
activation and oxidative stress in the lung. This myriad of related 
inflammatory and oxidative stress reactions occur in the lung could 
generate molecules that could be detectable by analysis of breath or 
breath condensates. Not surprisingly, inflammatory, oxidative stress 
and nitrosative stress related molecules are the most frequently 
measured targets explored in the breath and breath condensate 
molecules of ARDS patients. 

Cytokines 

Despite the importance of cytokines in the early development of 
ARDS, only one report has shown increased interleukin and tumor 
necrosis factor levels in the exhaled breath of patients with acute lung 
injury compared to healthy volunteer control subjects [41]. 

Hydrogen peroxide 

One of the most fascinating molecules measured in exhaled breath 
condensates is hydrogen peroxide [42], a reactive oxygen species likely 
formed by the dismutation of superoxide anion made by NADPH 
oxidase, xanthine oxidoreductase, mitochondrial or other processes in 
phagocytic and other cells [1]. H2O2 is important since its reaction with 
superoxide anion in the presence of ferrous iron produces the highly 
toxic hydroxyl radical which is one of the most potent oxidants known 
[43]. In addition, reaction of H2O2 and the neutrophil constituent 
myeloperoxidase with a halide generates hypochlorous acid that 
can cause appreciable cell damage [44]. Baldwin and his colleagues 
found increased breath condensate H2O2 levels (1.68 +/- 0.35 µmol/l) 
measured on the day of diagnosis in ARDS patients compared to 
breath H2O2 condensate levels (0.34 +/- 0.08 µmol/l) in comparable 
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patients who did not develop ARDS [42]. Increased exhalation of H2O2 
was associated with an increased turnover of neutrophil lysozyme 
implicating the possible role of neutrophils in the production of 
H2O2, but the exact source of exhaled H2O2 remains unproven. 
Interestingly, the breath H2O2 levels of patients with pneumonia were 
lower than in ARDS patients and breath H2O2 levels did not correlate 
with inspired oxygen concentrations [42]. Significantly, serial breath 
condensate H2O2 levels fluctuated in accordance with the clinical 
status of the patients. The central importance of oxidative stress and 
H2O2 was underscored by another investigation in which patients with 
acute respiratory failure exhibited higher breath H2O2 condensate 
concentrations [45]. Sznajder and colleagues found that patients with 
respiratory failure and lung infiltrates but not ARDS per se, exhaled 
high concentrations of H2O2 but ARDS patients still had the highest 
median breath H2O2 concentrations [46]. Their observation emphasizes 
the inherent challenges in distinguishing at-risk individuals who will 
or will not subsequently develop ARDS [1]. Similarly, patients with 
acute respiratory failure exhaled higher H2O2 concentrations than 
control patients (median 95 nmol/l, range 76-144 nmol/l) with the 
highest median value in ARDS patients (552 nmol/l, range 154-893 
nmol/l) [47] Notwithstanding, spectrophotometric analysis of H2O2 
levels in breath condensate may lack specificity due to variable levels 
of contaminants in the samples that potentially lead to false positives 
[48] – an issue that can likely be addressed using other measurement 
approaches [49-51] and, when possible, by adding catalase to provide a 
catalase-inhibitable specific assessment of H2O2. 

Nitric oxide 

Although treatment with nitric oxide did not decrease the 
mortality of ARDS patients [34], there is still interest in using exhaled 
nitric oxide as a biomarker [52-54]. Exhaled breath condensate nitrite 
levels increased and correlated with reduced tidal volume and lung 
injury, but not inflammation reflected by IL-8 and IL-6 levels in serum 
samples, in ARDS patients receiving mechanical ventilation [55]. 
Nitrite likely reflects the production of nitric oxide by phagocytes or 
other lung cells and, accordingly, it is another potential biomarker 
that could reflect lung inflammation and oxidative stress. Moreover, 
exhaled nitrite levels correlated with lung distension and related lung 
injury. The importance of nitrate or nitric oxide exhalation resides 
in its ability to reflect nitrosative reactions, such as the production of 
peroxynitrite, following reaction of nitric oxide with superoxide anion-
--a process that might account for nitrotyrosine increases that occur 
and reflect lung inflammation and injury in ARDS patients [56]. Nitric 
oxide as measured in mixed expired air samples has also been proposed 
as a possible biomarker for detecting early acute lung injury in patients 
requiring coronary artery bypass grafting [57]. However, another study 
reported that exhaled nitric oxide levels of ARDS patients (1.13 ± 0.36 
parts/billion) were lower than in a control group of ventilated subjects 
(5.5 ± 0.8 parts/billion) [58].

Acidification

Acidification of the exhaled breath condensate occurs in patients 
with acute lung injury and correlates with pro-inflammatory cytokine 
concentrations locally but not systemically [59,60]. Exhaled breath 
condensate pH was decreased in ventilated patients (5.85 ± 0.32) 
compared to volunteers (7.46 ± 0.48). Exhaled breath condensate pH 
correlated with exhaled breath condensate IL-6, IL-8, ammonia and 
lactate levels but not serum IL-6 and IL-8 levels. Measuring acidification 
does not require extensive instrumentation and can be repeated easily. 
Exhaled breath condensate pH decreases also develop following lung 
resection and one lung ventilation [61] and in mechanically-ventilated, 

brain-injured patients without acute lung injury or sepsis compared 
to healthy and brain injured control subjects [62]. Although the exact 
physiologic significance of this abnormality is unknown, breath pH still 
may prove useful as a biomarker especially if its cause can be discerned 
since neurogenic inflammation is triggered by airway or esophageal 
acidification, innate immune cells are affected by acidity, and there are 
pathways by which the acquired immune system also can be activated 
by the chemistry of an acidic airway [63]. 

Lipid peroxidation byproducts 

Lipid peroxidation is the result of the oxidative degradation of 
lipids. It occurs when free radicals attach themselves to electrons in cell 
membranes and cell damage results. This process then propagates via 
a free radical chain reaction mechanism. Polyunsaturated fatty acids 
(PUFA’s) are most commonly affected because of the methylene groups 
that separate the multiple double bonds. The well established products 
of PUFA include aldehydes, ethane, pentane, malondialdehyde, 
acrolein, hydroxynonenal, crotonaldehyde and neuroprostanes. 
Methylene groups contain reactive hydrogens. The radical reaction 
consists of three major steps: initiation, propagation, and termination. 
Carpenter and his colleagues found that the mean level of 8-iso-PGF2α 
in the exhaled breath condensate in patients with ALI/ARDS (87 ± 28 
pg/ml) was higher than the mean of the normal group (7 ± 4 pg/ml) 
[64]. Breath pentane concentrations were increased in ARDS patients 
compared to subjects with head injury and subjects at-risk for ARDS. 
Pentane exhalation increased with increasing inflammatory status and 
generally were associated with malondialdehyde and thiobarbituric 
acid increases in plasma [65]. In the same study, breath isoprene levels 
were lower in ARDS patients [65]. The latter change was also found in 
two additional evaluations of ARDS patients [15,66]. 

Volatile organic compounds 

Volatile organic compounds (VOCs) are derived from saturated 
hydrocarbons (including PUFA’s), unsaturated hydrocarbons, 
oxygen-containing compounds, sulphur-containing compounds, 
and nitrogen-containing compounds. Hydrocarbons such as ethane, 
pentane and isoprene; oxygen-containing compounds like acetone, 
acetaldehyde, methanol, ethanol, and 2-propanol; sulphur-containing 
compounds such as dimethylsulfide, methyl, and ethyl mercaptanes; 
and carbon disulfide and nitrogen-containing substances such as 
ammonia and dimethyl/trimethylamine are also considered in some 
reports as VOC’s. VOC’s can be generated anywhere systemically and 
then via the blood be exhaled through the lung [67]. VOCs measured 
by integrative analysis of 60 second samples of exhaled air from the 
ventilatory circuit closed to the endotrachial tube with an electronic 
nose (eNose) revealed that the breath prints of 17 patients with ALI/
ARDS were significantly (p<0.001) different from 9 control ventilated 
neurosurgery patients not matching any criterion for acute lung injury.

Cytokeratins 

Cytokeratins - indicators of lung epithelial damage- were increased 
in the breath condensate of individuals with ARDS compared to 
samples from healthy control subjects [68]. 

Response of Breath Biomarkers to Pharmacologic 
Intervention

While the capacity of breath biomarkers to reflect and perhaps 
predict ARDS development is of paramount importance, an additional 
benefit would be achieved if biomarkers change informatively in 
response to a therapy that has a beneficial effect clinically [69]. Ideally, a 
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treatment that successfully reduces responses that contribute to ARDS 
would be accompanied by a corresponding change in an appropriate 
biomarker or biomarkers. Conversely, treatment with an intervention 
that does not decrease a mechanistically linked biomarker might 
be discontinued in favor of another therapy. Studies have begun to 
address this possibility but without success. Corticosteroid treatment 
decreased breath H2O2 levels but not mortality in ARDS patients [47]. 
Despite its ability to down regulate DM11/CD18 neutrophil receptor, 
liposomal PGE1 treatment improved the P/F ratio and decreased the 
white blood cell count but did not reduce exhaled H2O2 levels [70]. 
Roca and associates examined the exhaled breath condensate collected 
from six patients with acute lung injury before and 30 minutes after 
administration of inhaled salbutamol [71]. Salbutamol increased 
breath condensate pH and in a trend way decreased nitrosactive species 
and 8-isoprostane levels, but not leukotriene B4, concentrations [71]. 
N-acetylcysteine (NAC) and rutin treatment decreased expired ethane 
concentrations in ARDS patients [72].

Breath Biomarkers and ARDS-State of the Art
Ideal breath biomarker characteristics

Molecules have been indentified in breath samples that may 
have potential as biomarkers for predicting and monitoring the 
development of ARDS but none have been fully developed and tested 
formally for their usefulness in practice. Likewise, no other biomarker 
candidates from blood, urine or other sources are currently used 
routinely as ARDS biomarkers. The reasons for the lack of adoption 
of these existing possibilities are unclear, but may reflect that none of 
these molecules meet enough of the desired characteristics for being 
a practical biomarker for use in clinical settings. The characteristics 
of an ideal biomarker for use in ARDS patients are extensive (Table 
1). Since the optimal biomarker should reflect some key, hopefully 
early, contributor to the pathogenesis leading to ARDS development, 
the initial focus will probably be directed to finding inflammation, 
oxidative stress and related factors that are frequently implicated in the 
early development of ARDS [1]. 

ARDS breath measuring technologies 

A number of techniques are available for analyzing biomarkers 
in ARDS. The approaches include electronic noses, metabolomics, 
gas chromatography/mass spectrometry (GC-MS), proton transfer 
reaction mass spectrometry (PTR-MS), carbon nanotubes, proteomics 
and cavity-enhanced frequency comb mid-infrared spectrometry. 

Electronic noses: An electronic nose detects unique chemical 
signatures by reproducing the sensitivity of the human nose. They are 
used extensively in breathalyzers and for assessing lung cancer, halitosis, 
solvent exposure, metabolic products, respiratory infections, asthma, 
ketosis, vaginal inflammation, gastritis, fructose malabsorption, and 
peptic ulcers [73]. However, these devices are designed to measure 
various volatile organic compounds and, consequently, have difficulty 

distinguishing and accurately measuring concentrations of individual 
molecules. Electronic nose systems have the benefit of being easy to 
miniaturize, commercialize, and useful for providing immediate 
feedback. 

Metabolomics: This newly emphasized approach assesses changes 
in the proteome, transcriptome or genome as reflected by alterations 
in metabolite concentrations in biological fluids, gases and tissues 
[74,75]. This technology has clinical appeal for testing blood and breath 
products. Metabolomics identified biomarkers may be indicators of 
systemic reactions rather than just pulmonary changes but are not 
yet amenable for generating information rapidly for clinical decision 
making [76]. 

Gas chromatography/mass spectrometry: Gas Chromatography 
(GC) and Mass Spectrometry (MS) can independently and 
simultaneously detect volatile organic compounds [77]. GC provides 
high separation efficiency and MS provides high identification capability. 
This combination makes gas chromatography-mass spectroscopy (GC-
MS) an excellent tool for measuring small quantities of volatile organic 
compounds in human breath. The main limitation of GC-MS is the 
long turnaround time necessary to collect and analyze the samples. If 
necessary, samples that are solid or liquid at room temperature can be 
converted into a gaseous state by thermal desorption. This combination 
technology is known as TD-GC-MS [78]. Another technology - ion 
mobility spectrometry - separates ions according to their mobilities. 
Ion-mobility spectrometry can be combined with gas chromatography 
(IMS-GC) or mass spectrometry (IMS-MS). One can also use proton-
transfer-reaction to ionize the molecules prior to mass spectrometry 
analysis (PTR-MS). PTR-MS has the advantage of being very quick and 
cost-effective but it does not detect many compounds.

Proton-transfer-reaction mass spectrometry: PTR-MS basically 
employs H3O+ as the ionizing agent in a chemical ionization [79,80]. 
The advantage of using H3O+ as the primary ion lies in its non-
dissociative proton transfer reaction with most volatile organic 
compounds, whereas it does not react with any natural air components. 
Compared to conventional mass spectroscopy, the non-dissociative 
character of the proton transfer reaction leads to less complex spectra 
and no previous separation of the sample compounds is required. PTR-
MS is a very fast, powerful online monitoring tool for obtaining real-
time data with a detection limit of a few parts per trillion.

Carbon nanotubes: Carbon nanotubes provide sensitive and 
selective responses to vaporous analytes. They are unresponsive to 
water vapors because they already have water molecules tightly bound 
to the phosphate groups on the DNA oligomers. This feature provides 
a unique advantage when trying to locate unique biomarkers because 
they do overlap with the H2O signature and H2O2 is a major constituent 
in exhaled breath samples. DNA oligomer sensors can be modified to 
recognize any DNA signature so in the future that they can “smell” 
viral proteins signatures and also “taste” various substances. Carbon 

Characteristics of an Ideal ARDS Breath Biomarker
* Reflects meaningful clinical changes in real-time that occur during ARDS development irrespective of the predisposing condition
* Discriminates ARDS from other inflammatory lung conditions
* Provides independent high-probability information about ARDS risk and/or prognosis
* Obtainable non-invasively, repeatedly, easily and inexpensively
* Responds appropriately to therapies that reduce ARDS
* Generates trend analysis so each individual can be used as his own control
* Synergizes with other ARDS biomarkers and ARDS defining criteria
* Suitable for automated bedside analysis

Table1: Characteristics of an Ideal ARDS Breath Biomarker.
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nanotubes have already been used to develop a “Nano NOSE” which 
has great promise in distinguishing various organic diseases [81].

Proteomics: Analysis of proteins in breath condensates is possible 
and may be efficient using SomaLogic aptamer-based multiplexed 
proteomic approaches that can measure many proteins in a small 
sample [82,83]. This new approach can simultaneously measure 800 or 
more proteins with an average detection limit of 1pM and a 5% average 
coefficient of variation [82,83]. Depending on the concentration of 
proteins in breath condensates, this comprehensive approach may 
be a versatile tool which complements measurements made using 
metabolomics and other approaches [82,83]. 

Cavity-enhanced frequency comb mid-infrared spectroscopy: 
The main benefit of mid-infrared spectroscopy is its ability to detect 
volatile compounds in a massively parallel fashion in seconds (Figure 
1). Potentially, this approach could provide instant feedback and 
simultaneous recognition of multiple breath metabolites in intensive 
care units. Cavity enhancement techniques also permit highly sensitive 
detection at the level of parts per billion or more. The unique absorption 
spectrum also allows accurate identification and concentration 
measurements of a single molecule in the presence of many other 
molecules [84]. Frequency comb spectroscopy combines many 
attributes into one platform: broad spectral bandwidth, high spectral 
resolution, precise frequency calibration, and ultra high detection 
sensitivity. This platform consists of an optical frequency comb 
interacting with a high-finesse optical cavity. The optical frequency 
comb is under a very intricate level of scrutiny and precision that allows 

coupling of the individual comb components with their resonant 
modes of the cavity. Because the cavity allows the molecules to remain 
in the detector for a long time, the interaction between the light field 
and intracavity matter are increased. This increases the sensitivity of 
the measurement of optical losses by a factor that is directly relatable to 
the finesse of the cavity. The entire spectral bandwidth of the frequency 
comb which is approximately 10% of the actual optical frequency 
is examined because of the use of low dispersion mirrors. Spectral 
resolution of the light from the cavity creates multiple detection 
channels with a range of hundreds of kilohertz to several gigahertz. The 
femtosecond enhancement of the cavity provides for a wide bandwidth 
and real-time detection. 

Overview and Future Directions
New strategies are needed for treating and preventing ARDS. 

Advances in this area will likely depend on the use of biomarkers to 
facilitate and guide early and more specific treatment. A number of 
approaches for assessing biomarkers in breath and breath condensates 
have been proposed but none used so far. Numerous compounds that 
have been measured in exhaled breath or breath condensate samples of 
human subjects but have not been rigorously measured to determine 
if they are abnormal in patients with ARDS. A partial list includes 
ethane [85], pentane [85], acetone [86], butane dimethylsulfide 
[86], isoprene [86], hexane [86], isoflurane [87], malondialdehyde 
[88], pro-oxidant iron [89], urea [90], surfactant protein A [91], 
antioxidant capacity [92], IL-1α and TNFα [93], lactate [94,95], carbon 
monoxide [96-99], glutathione [100], ammonia [101], cysteinyl-

Figure 1: Schematic diagram of inflammatory and oxidative stress reactions in lungs of ARDS patient as measured by frequency comb spectroscopy analysis of 
exhaled breath.
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leukotrienes [102], adenosine [102], 4-hydroxy-2-nonenal [100] and 
sodium and chloride [103] There are also reports that bacteria [104], 
viruses [105] and particles [106] are measurable in exhaled breath 
and breath condensates. Many of these substances might be relevant 
to the development of ARDS. For example, cytokines are increased 
in the lung [107,108], glutathione levels are decreased in the blood 
[35], uncomplexed ferrous iron could facilitate the formation of the 
highly-toxic hydroxyl radical [43,109], lactate might reflect the altered 
metabolic state or an increased exercise of breathing [43,109] of 
ARDS patients. Nonetheless, the potential for using analysis of breath 
biomarkers is substantial since they might provide a non-invasive way 
of directly and repeatedly analyzing inflammatory, oxidative stress, and 
other processes that contribute to ARDS development.

Breath biomarkers might also help assess the effectiveness of 
interventions. For example, largely based on the lack of effect of omega-3 
fatty acids on biomarkers of pulmonary and systemic inflammation in 
a phase II study of acute lung injury, the authors concluded that the 
results did not support conducting a larger clinical trial [110]. One 
might foresee that the treatment of ARDS could be individualized 
using breath and other biomarkers as a way to adjust the dose as well 
as guiding the starting and stopping therapy [69,111]. Consequently, 
ARDS treatment might differ in different individuals and at different 
times in the same patient during the development and course of ARDS. 
Considerable benefit could accrue in matching a therapy to a surrogate 
biomarker and a related clinical response. Moreover, the development 
of effective ARDS therapies is more likely to prosper as they become 
more customized and linked with key aspects of the pathophysiology 
of the syndrome. Perhaps stopping therapy sooner will facilitate 
important repair mechanisms that can help patients survive ARDS and 
have less sequelae thereafter. 

The challenge will be finding the best biomarker or battery 
of biomarkers that correlate well with the fundamental disease 
mechanisms. The validity of the battery approach has already been 
demonstrated by Fremont and his associates who found that a panel 
of 7 plasma biomarkers provided the best insight into the importance 
of alveolar epithelial injury in early acute lung injury [112]. Additional 
advances will include reducing the necessary sample volume and 
potentially separating molecules of interest from other molecules 
including water [113]. Some breath measurements may require 
simultaneous analysis of blood levels of the same substance to achieve 
meaningful significance [87].

Biomarkers must be measurable in real time to optimally reflect the 
dynamic state of these critically ill patients. None of these approaches 
discussed herein will likely be the final instrumentation that provides 
a practical way to assess biomarkers in seriously ill individuals who 
undergo rapid changes in their condition. However, as more and 
more individuals are evaluated using these and other techniques, 
biomarkers will hopefully be identified that have general value and that 
are suitable for automated sampling and analyses [113]. Subsequently, 
new simplified bedside instruments will be developed that provide the 
careful monitoring needed by these critically-ill individuals, the ability 
to distinguish patients with different forms of lung inflammation 
[114,115], and a way to better guide treatment and prevention. 
Developing breath biomarker analysis offers a way to help save the lives 
and reduce the disability of individuals afflicted with ARDS.

Conclusion
The possibility of measuring breath biomarkers holds potential to 

improve the understanding, diagnosis, treatment and prevention of 
ALI/ARDS. Once a suitable biomarker or panel of biomarkers that can 

be measured repeatedly, accurately and easily is identified, sequential 
evaluations of ALI/ARDS patients can be done and the findings 
carefully correlated with important clinical findings including outcome 
and response to treatment.
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