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Abstract
Breast cancer is very common and is considered as the second dangerous disease all over the world due to its 

death rate. Affected can survive if the disease diagnoses before the appearance of major physical changes in the 
body. Now a day, mammographic (X-ray of breast region) images are widely used for premature revealing of breast 
cancer. Aim of the proposed system is to design a Computer Aided Diagnosis system (CAD) used to distinguish 
between benign (non- cancerous) and malignant (cancerous) mammogram. CAD system are used to help radiologist 
to increase his diagnosis accuracy. In the proposed system, texture features from mammogram were calculated 
using Gray Level Co-occurrence Matrix (GLCM) along 0°, from the calculate features most effective features having 
large contribution to achieve the desired output were chosen and applied to Artificial Neural Network (ANN) for 
training and classification, as ANN is widely use in various field such as, pattern recognition, medical diagnosis, 
machine learning and so on. For this research work mini-MIAS database is used and the overall sensitivity, specificity 
and accuracy achieved by using the proposed system is 99.3%, 100% and 99.4% respectively.

Keywords: GLCM; CAD system; ANN, Breast cancer; Features 
extraction; Malignant; Benign

Introduction
Death rate due to breast cancer is very high. According to WHO 

(World health Organization) breast cancer impact over 1.5 million 
women each year worldwide [1]. In 2015; 570,000 women died due to 
breast cancer which is approximately 15% of all death among women 
from cancer. In 2017 about 252,710 cases of breast cancer are diagnosed 
and about 40, 610 women die in America [2].

Pakistan is at alarming rate in Asia [3] with 90 thousand cases 
of breast cancer are being annually reported, and death rate is 
approximately 40,000 per year [4]. Death rate due to breast cancer can 
be reduce by following proper screaming and diagnosis technique at 
initial stage before major physical symptoms started appearing on the 
body. Various techniques have been used for the detection of breast 
cancer by using ANN, Support vector machine (SVM) etc [5-10]. 
Mammography is very effective and most commonly used technique 
for the early detection of breast cancer [11-16]. It detects a very small 
change in the body even.

Medical experts examine mammograms and recommend biopsy 
if abnormalities are found in the mammogram. Biopsy is a standard 
clinical approach used to detect breast cancer, it is a costly, time 
consuming as well as painful procedure. Radiologist recommendation 
is very important at this stage, in case of wrong diagnosis; patient has to 
go through unnecessary biopsy [5].

Automation of this analysis helps radiologist to improve his 
diagnostic accuracy, such type of system can be used as second reader. 
A CAD system is proposed which helps to classify mammogram into 
one of its appropriate class i.e. Benign (not harmful for the body and 
does not spread to other part of the body) or malignant (cell spreads to 
other part of the body and cause to death).

Related Work
Approach proposes Berbar [17] recommends a wavelet based 

contourlet method for extracting features from mammogram 
classification. Before extracting features, contrast stretching function 
‘stretchlim’ was used for pre-processing. Seven features extracted 
from the GLCM [18] are entropy, contrast, energy, inverse difference 
moment, homogeneity and sum average. ST-GLCM merges seven 

statistical features (i.e. skewness, entropy, kurtosis, standard deviation, 
smoothness, energy and mean) with texture features extracted by 
using GLCM. Support Vector Machine classifier was used to class 
mammogram into effected or normal. Mini MIAS database [19] were 
used for the evaluation of the system. The performance of the system 
was measured in term of sensitivity, specificity and accuracy. Sensitivity 
and accuracy achieved by this system are 97% and 97.89% respectively.

Research work presented in the study by Preetha [20] defined a 
method for classification of mammogram that consist of 4 stages, pre-
processing stage used median filter to enhance quality of image and to 
remove noise from the image. The suspicious region from the enhanced 
image is segmented by using Histon based fuzzy c-means segmentation 
algorithm. After segmentation several types of features such as texture, 
shape and intensity are extracted from the segmented image. To 
check the abnormality of the mammograms ANN classifier was used 
to classify the image into appropriate class. Sensitivity, specificity and 
accuracy claimed in the work was 72.72%, 93.6% and 88.66%.

Kumar and Chandra [21] proposed a method in which wavelet base 
adaptive sigmoid function was used for pre-processing. Pre-processing 
was done in three steps, first wavelet decomposition, secondly image 
was processed by using variable gain modified sigmoid function an 
at last step image was processed by adaptive histogram equalization. 
Region of interest (ROI) was cropped after the pre-processing. 13 
combined features of texture and GLCM were used in this work. For 
training purpose cascade feed-forward back propagation technique 
was used. Classification accuracy of more than 95% was claimed to be 
achieved by using mini MIAS database.

Xie et al. [22] proposed a system for the diagnoses of breast cancer 
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based on extreme learning machine. Pre-processing was done in two 
stage background and second was removing pectoral muscle. Hough 
transform method was used for ROI. A total of 32 grey level and texture 
features were extracted from mammograms. Accuracy claimed by 
using mini MIAS database was 96.02%.

In the study by Nithya and Santhi [23] GLCM features were 
calculated along four angles and at four distances. Five statistical 
measures were determined from GLCM. For results verification mini 
MIAS database was taken into consideration, and were classified by 
using ANN. Accuracy, sensitivity, and specificity achieved by using this 
model was 96%, 100% and 93%.

Dheeba et al. [13] used particle swarm optimized wavelet neural 
network (PSOWNN) for investigation of new classification technique 
for the detection of abnormalities in mammograms. Algorithm is based 
on extraction of law texture energy measures from mammograms and 
classification was done by using pattern classifier. By using proposed 
system, they achieved 94.167%, 93.67% and 92.105% for sensitivity, 
accuracy and specificity respectively.

Proposed Approach
Figure 1 shows the methodology adopted in this research work. 

Overall system comprises of 4 stages, first one is acquisition of image, 
second extracting features from the mammograms, selecting more 
optimal features, classifier to identify appropriate class of mammogram. 
The suspicious parts were extracted from the mammogram by using 
texture features. Database for this experiment is taken from mini-
MIAS this data set contains 322 mammograms, 270 images are normal 
(non-cancerous) and 52 images are malignant (cancerous). Every 
image in this database is 1024 × 1024 pixels. This database can be access 
easily [19]. Figures 2 and Figure 3 are sample images for normal and 
malignant class respectively.

Texture features are extracted using GLCM along 0° for each 
mammogram. Features represent image in a specific format that 

focus especially on relevant information. In the next stage features are 
selected for training and testing; this stage is very important because 
classification accuracy mainly depend on careful selection of features. 
In the other step mammograms are classified, for this research work 
neural network is used as a classifier to distinguish mammogram and 
classify it into normal and malignant class.

Features Extraction using GLCM
Feature extraction plays a vital role for pattern classification. Gray 

Level Co-occurrence Matrix (GLCM) features are determine along 
0° for all mammograms. In the proposed system, 10 texture features 
define by Haralick et al. [24] shown in Table 1 are extracted from the 
texture feature sub-space based on GLCM. Readers are advised to read 
[25-27] for the basic understating of GLCM. Numbers of gray level 
in an image determine the size of GLCM. For each formula given in 
the equations, n determine the number of grey level used. The matrix 
element Q (i,j) is the relative frequency with two pixels, separated by 
pixel distance, occur within given neighbourhood with intensity i and 
j. Texture features that are derived from the GLCM are given below

Contrast

It measures grey level values between reference and its neighbour 
pixel, variance present in the mammograms is measured through it. Its 
value is high in case of Q (i,j ) has huge variation in the matrix. It can be 
measure through equation shown below

21 1

0 0
( , )

− −

= =

= −∑∑
n n

i j
con i j Q i j

Correlation

Correlation shows the linear dependency of grey value. The value of 

Figure 1: System architecture.

Figure 2: Sample image of benign class.

Figure 3: Sample image of malignant class.

Variables Image 1 Image 2 Image 3 Image 4 Image 5
contrast 0.024 0.037 0.042 0.038 0.038

Correlation 0.996 0.995 0.995 0.995 0.995
Entropy 1.195 1.233 1.277 1.262 1.115

Sum of square 
variance 6.986 8.385 9.065 8.723 7.535

Sum average 3.980 4.356 4.585 4.399 3.993
Sum variance 20.170 24.691 26.565 25.733 22.786
Sum entropy 1.180 1.211 1.256 1.244 1.098

Difference variance 0.024 0.037 0.042 0.038 0.038
Difference entropy 0.092 0.124 0.123 0.097 0.089

Info measure of 
correlation1 -0.925 -0.905 -0.906 -0.926 -0.925

Table 1: Statistical value for sample images.
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correlation will be high in case of mammogram contain linear structure 
up to considerable amount.
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Entropy

Entropy is a measure of randomness, it also describes the 
distribution variance in a region. It can be calculated by using equation 
given below.
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It tells about variation between two dependent variables. Variance 
puts relatively high weights on the elements that differ from the average 
value of Q (i,j).

1
2

0
( ) ( )

−

=

= −∑
n

x x
i

VA i u Q i

Where
1

0
( ) ( , )

−

=

=∑
n

x
j

Q i Q i j

Sum average

Relation between clear and dense area in a mammogram.
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It reveals spatial heterogeneity of an image.
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Sum entropy

It is a measure of the sum of micro (local) differences in an image.
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Information measure of correlation1

In this feature two derived arrays are used, first array represents the 
summation of rows, while the second one represents the summation of 
columns in the GLCM.
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Above ten features are calculated for all mammograms, values of 
features for five mammograms are shown in the Table 1.

Features Selection
Features subset selection is used to reduce feature space that helps 

to reduce the computation time. This is achieved by removing noisy, 
redundant and irrelevant features i.e., it selects the effective features to 
get desire output.

For this research work, rank feature method is using to select 
optimal features that contribute more toward target output. This 
function rearranges the features from top to bottom according to 
their contribution. In this work top six ranked features are selected for 
training the network. List of selected features is shown in Table 2.

Classification
Artificial Neural Network (ANN) classifier is used in this work 

as it is a commonly used classifier for breast cancer classification [28-
36]. Neural Network composed of simple elements that are inspired 
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by biological neuron operates in parallel. We train neural network 
to perform specific function by adjusting weights between elements. 
Neural network is trained to get desired output. Such situation is 
shown in Figure 4. The network is adjusted based on the comparison 
with the output and the corresponding target until the network output 
matches the target. ANN classifier is based on two steps, i.e. training 
and testing. Classification accuracy depends on training.

From the selected data base 70% data is used for training, 15% 
data for testing and remaining 15% data is used for validation. Neural 
network contains three layers namely input layer, hidden layer and 
output layer. Parameter used for artificial neural network are shown in 
the training window (Figure 5). 

Training function Levenberg-Marquardt is used for training 
the network, it shows good results in training and classification. 
Other training function resilient back propagation, Conjugate 
Gradient with Powell etc. are used; from all these training function 
Levenberg-Marquardt is selected by comparing classification accuracy, 
training time to converge and mean square error. Optimize network 
architecture used in this study has 20 neuron. Optimize network is 
selected by observing mean square error (mse) for different values of 
hidden neurons.

Regression analysis

Regression analysis is a statistical process to estimate association 
among all variables. In the regression plot output from network are 
plotted versus the target set shown in the Figure 6. In the regression 
plot perfect fit is indicated by dotted line while the solid line shows 
the output from the network. Solid line perfectly equal to dashed line 
is achieved if the classifier predicts 100% accurately. The difference 
between two line shows there are some sample which are not correctly 
predicted by network. Data is represented by circle. In the plot shown 
below value of R is 0.718, this value also shows the result accuracy. The 
value of R equals to 1 shows 100% prediction (Figures 7 and 8).

Optical Features
F1 Sum variance
F2 Sum of square variance
F3 Correlation
F4 Sum entropy
F5 Entropy
F6 Difference variance

Table 2: Optimal features selected by using rank method.

Figure 4: Working of ANN.

Figure 5: Training window.

Figure 6: Regression plot for whole data.

Figure 7: Regression plot.
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Performance Evaluation
The problem under evaluation is binary classification, the 

parameters used for weighing are accuracy, specificity, and sensitivity.

These parameters are defined as:

Sensitivity=TP/TP+FN × 100

Specificity=TN/TN+FP × 100 

Accuracy=TP+TN/TP+TN+FP+FN × 100

Where TP is true positive, TN is true negative, and FP and FN 
are false positive and false negative respectively. Sensitivity measures 
the percentage of truly predicted cancer class, specificity measures 
the percentage of truly predicted benign/normal class and accuracy is 
percentage of rightly predicted cancer and normal cases. Data is rotated 
five time and the best result out of fivefold is shown in the confusion 
matrix below. Overall results of confusion matrix are summarizing in 
the Table 3. In training set there are 226 mammograms, 193 are normal 
and 33 are malignant; network predict all benign as benign, out of 193 
normal cases 2 samples are miss classified. Validation set comprises 
of 48 samples, 42 are normal and 6 are malignant, network predict all 
normal and malignant correctly. Test set consists of 48 samples, 37 
normal and 11 malignant; prediction is 100% for this dataset.

Discussion and Future Work
In the proposed solution 10 texture features from GLCM are 

calculated along 0° are under consideration. Further sample space is 
reduced to 6 features. In future more, features can be considered, and 
other dataset can be used to increase robustness of system.

Conclusion
To reduce the death rate due to breast cancer it is very essential that 

cancer must be identified at initial stage. Mammograms from mini-
MIAS database are used in this research work for experiment. This 

database comprises of 322 mammograms, out of which 270 are normal 
and 52 are cancerous. Ten texture features from the GLCM were 
calculated along 0°, Features space is further reduced to six features 
by using the rank features method. Results show accuracy of 100% for 
validation and test data, and overall accuracy achieved by using the 
proposed method is 99.4%.
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