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Background and Introduction
Brain Machine Interfaces (BMI) have gained increased attention 

over the last decades because they offer intuitive control in a plethora 
of applications where other interfaces (e.g. joysticks) are inadequate 
or impractical. Moreover, these kinds of interfaces allow people with 
motor disabilities due to amyotrophic lateral sclerosis (ALS), spinal 
cord injuries (SCI) etc. to interact with the world. This interaction is 
found in many forms and can vary between controlling the motion 
of a cursor on a screen to interacting with an actual robotic platform. 
However, most of the existing systems allow only binary control, while 
the number of degrees of freedom directly.

Brain-machines interfaces have been widely used in many 
applications ranging from the control of prosthetics [1,2] to human-
computer interfaces [3]. Electroencephalographic (EEG) signals in 
particular have been used in the past for this scope [4-7]. There are 
two main approaches towards BMI using EEG signals: one is based on 
event related potentials (ERPs) and another is based on the multiple 
sensor EEG activities recorded in the course of ordinary brain activity. 
The latter approach is more comprehensive and does not require any 
particular stimulus. The author has extensive research back-ground 
on BMIs using electromyography (EMG) signals from upper limb 
muscles [8-19], and neural recordings [20,21]. We recently proposed 
that instead of using the decoder-based technique for BMIs, human 
subjects can learn to map their neural activity into control actions 
for an artificial system [22-28]. More specifically we have shown 
that subjects can control artificial systems using muscular activation, 
without requiring a decoding function to map one to the other. This 
method requires no training of the interface itself, therefore no decoder. 
We have also shown that once the subjects learn to control a system, 
their learned techniques are transferable to different tasks. This result 
led us to propose new avenues for BMIs, going beyond decoder-based 
techniques, and significantly improving human-machine embodiment.

Focusing on EEG signals, previous studies have demonstrated the 
ability of the subjects to develop control of their own brain activity 

using biofeedback [29,30]. More specifically, it was shown that human 
subjects gained voluntary control over brain rhythms. Leveraging 
this result, and based on our recent findings, we recently proposed to 
develop a novel framework of embedded human controllers using EEG 
signals. More-over, in contrary to all previous studies on BMIs that 
built methods for the control of a single system (usually a teleoperated 
or prosthetic device), we proposed to extend the current state of the art 
by introducing the control of a multi-agent system (swarm) using brain 
interfaces. This article presents the motivation of the brain-swarm 
control interfaces project, as well as recent results.

Motivation and Recent Developments
Without loss of generality, this article focuses on the control of 

unmanned aerial vehicles (UAVs) by a human. State of the art systems 
usually involve one human controller for a single UAV. The human has 
spatial feedback of the controlled vehicle, and provides it with high-
level commands (e.g. fly to a specific location or follow a predefined 
surveillance path) [31,32]. However, the swarming paradigm, deriving 
inspiration from the behaviour of natural swarms, offers myriad 
advantages to a team of UAVs. A swarm system consists of a large 
group of relatively inexpensive, interchangeable vehicles that execute 
autonomous decisions using information obtained via local sensing 
and communication. The redundancy in a swarm makes its operation 
robust to vehicle failures and disturbances, which also enable the use 
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Abstract
Brain-Machine Interfaces (BMIs) has been one of the most influential and disruptive science fields of the past 

decades. Prosthetic or remotely operated robotic devices being controlled by brain signals has transitioned from 
science fiction to reality. Advances in the recording electrodes technology and the machine learning and signal 
decoding algorithms were critical in the realization of those systems. The second decade of the 21st century brings 
new challenges found in both frontiers; first, advancements in neuroscience are sought via high-resolution mapping 
of the brain for better understanding of its function and decision making processes. On the robotics frontiers, the 
challenge of the human controlling many robots simultaneously is of utmost importance for applications spanning 
from industrial and entertainment, to disaster response and military. As the swarming paradigm, deriving inspiration 
from the behaviour of natural swarms such as bird flocks and fish schools, offers myriad advantages to a team 
of robots, the way humans interact and control a robotic swarm creates new avenues of research. This article 
summarizes recent developments and novel methods for brain-swarm interfaces, and poses challenges for the 
future researchers.

Brain-Swarm Control Interfaces: The Transition from Controlling One 
Robot to a Swarm of Robots
Panagiotis Artemiadis*
Director of the ASU Human-Oriented Robotics and Control (HORC) Lab, School for Engineering of Matter, Transport and Energy, Arizona State University, USA



Citation: Artemiadis P (2016) Brain-Swarm Control Interfaces: The Transition from Controlling One Robot to a Swarm of Robots. Adv Robot Autom 
5: e127. doi: 10.4172/2168-9695.1000e127

Page 2 of 3

Volume 5 • Issue 2 • 1000e127
Adv Robot Autom
ISSN: 2168-9695 ARA, an open access journal 

of sacrificial platforms and its distributed activity, can conceal the 
system’s mission from an opponent. Recent advances in computing, 
sensing, actuation and control technologies are currently enabling the 
development of swarms of aerial vehicles, varying in complexity, size 
and overall scale [33,34]. The integration of very large teams of robots 
into comprehensive systems enables new tasks and missions ranging 
from search, exploration, rescue, surveillance, pursuit, up to deploying 
infrastructure.

The trend of deploying multi-agent systems, however, poses 
a challenge for the control of such systems, especially for human 
operators. Currently, most large robotic systems are controlled by 
multiple operators, often via remote control. For larger systems with 
more agents, such an approach is not practical. Although most of these 
agents can act autonomously, the distributed algorithms and complex 
dynamics of those systems pose another challenge to the human 
operators. Therefore, as the “power of the many” UAVs is facilitating 
an increasing number of applications, the human role in the high-level 
control architecture of this population is becoming more and more 
significant.

We recently demonstrated a hybrid control interface for a human 
and a swarm of UAVs using both a manual controller (joystick) and 
brain interfaces via EEG. The EEG signals were recorded using a non-
invasive set of 64 electrodes placed on the head of human subjects. 
The data were recorded at 500 Hz. A 5th order Butterworth band pass 
filter between the frequencies of 1 and 40 Hz was applied to the data 
in order to remove low-frequency trends and line noise. In order to 
accommodate for the volume conduction effects that are typical in scalp 
EEG measurements [35], a large Laplacian filter was applied to each of 
the channels of interest. We focused our analysis on 11 channels located 
over the sensorimotor cortex, namely C3, Cz, C4, FC3, CP3, C1, FCz, 
CPz, C2, FC4, and CP4. An electrooculogram (EOG) artifact removal 
algorithm [36] was applied before the large Laplacian referencing in 
order to eliminate any artifacts from eye blinks and eye movements.

After the pre-processing step, Fast Fourier Transform (FFT) was 
applied to the data in order to extract the spectral features of the 
signals. For each channel, a dedicated algorithm selected automatically 
a frequency band of interest. Its goal was to find for each channel the 
frequency band that the user was activating the most. In this work, we 
were interested in ERD/ERS phenomena on the motor cortex while 
the subjects were performing limb movement imagination or actual 
limb movement (joystick movement) and we focused our search on the 
alpha (α) and beta (β) bands (i.e. 7 to 30 Hz). In order to further extract 
features that would guarantee good differentiation among the tasks, we 
applied Principal Component Analysis (PCA) to the final FFT features. 
Finally, a Hidden Markov Models (HMMs) classifier was developed. 
The final output of the hybrid system combines a continuous measure 
about the amplitude of the EEG signals with the classification decision 
about the brain state of the subject and a joystick input in order to 
output a command vector where each of its elements regulates a 
specific DOF of the robotic platform.

A swarm of 3 quad rotors was controlled using the pro-posed hybrid 
BMI system. In Figure 1, we show snapshots of the experiment, where 
the user changes the formation of the quad rotors, passes them through 
the hoop and then returns them in their original formation. A video 
of the experiment is included in ref. [37]. The joystick was used for 
the directional motion control of the swarm, while the cohesion of the 
swarm, defined as their inter-distance in the lateral axis, was controlled 
from the subject’s brain signals. As it can be seen in the figures, the 
subject was able to use the hybrid interface, i.e. use simultaneously 

both the joystick and the brain interface to pass the swarm through 
the narrow hoop. This was a real-time demonstration of controlling a 
swarm of quad rotors using our proposed hybrid BMI using both EEG 
activations and joystick inputs.

Conclusion and Future Directions
The system we proposed is going to generate a novel generation of 

Brain-Swarm Control Interfaces that will provide human operators with 
a wealth of control capabilities over multi-agent systems. Advancing 
our understanding of swarm perception and control at the brain level 
offer a myriad of applications that involve human-in-the-loop multi-
agent systems, spanning from industrial and entertainment, to disaster 
response and military situations. The avenues of multidisciplinary re-
search required to address the challenges are numerous and exciting. 
The transition from controlling one robot to a swarm of them using 
brain-machine interfaces has just started.
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