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Introduction
The mechanisms underlying neurogenic hypertension have been 

matter of continuous research worldwide. This review focus on the 
hypothesis that neurogenic hypertension is, in part, caused by the 
formation of Angiotensin-II (Ang II)-derived reactive oxygen species 
in key cardiovascular nuclei, especially in the Rostral Ventrolateral 
Medulla (RVLM). 

Ang II is the major effector of the Renin–Angiotensin–Aldosterone 
System (RAAS). This system consists mainly of a 2-step enzymatic 
cascade catalyzed by renin and Angiotensin-Converting Enzyme 
(ACE), generating Ang II [1], the effect of Ang II is mediated by Ang 
II receptors. Two isoforms of Ang II receptor have been identified: 
type 1 receptor (AT1R) and type 2 receptor (AT2R). In general, it is 
accepted that cardiovascular effects of Ang II such as vasoconstriction, 
regulation of fluid and drinking behavior are ascribed to AT1R. 
Besides, AT1R is involved in the progression of cardiovascular diseases 
including hypertension, atherosclerosis, cardiac hypertrophy and heart 
failure [2,3].

An additional component of the RAAS family, angiotensin- 
converting enzyme2 (ACE2) cleaves Ang I and Ang II into Ang 1-9 
and Ang 1-7, respectively [4]. Studies show that ACE2 promotes 
beneficial effects, such as important in vasodilatation, natriuresis and 
to inhibit heart failure. These effects seems to be related with inhibition 
of oxidative stress, since ACE2 deficiency leads to an Ang II-mediated 
activation of the NADPH oxidase system and exacerbated oxidative 
stress leading to hypertension [4,5]. Abundant evidence now points to 
oxidative stress as a key mechanism in Ang II-dependent neurogenic 
hypertension [6,7]. Furthermore, it has become evident that reactive 
oxygen species are important in the increase in blood pressure elicited 
by Ang II administered peripherally or directly in the Central Nervous 
System (CNS). However, considering that Ang II is composed by eight 
amino acids, which makes it incapable of crossing the Blood Brain 
Barrier (BBB), the mechanisms underlying how circulating Ang II 
acts within the brain to eventually modulate sympathetic activity and 
induce hypertension remain unknown. The most accepted hypothesis 
is that angiotensin II, as any other circulating lipophobic substance, 
acts on neurons in specialized regions of the brain known as the 

Circumventricular Organs (CVOs), which partially lack the normal 
BBB, in order to alter the function of other brain regions protected by 
this important barrier that “filters” what enters the CNS. As a result, 
activation of the CVOs triggers the local production of Ang II in 
brain areas protected by BBB, mainly the RVLM, which in turn alters 
sympathetic drive. Here we will discuss the recent advances regarding 
the mechanisms by which neurons in the RVLM are activated by Ang 
II/ROS and how Ang II-derived reactive oxygen species participate 
along the SFO-PVN-RVLM pathway in the context of neurogenic 
hypertension.

Reactive Oxygen Species in the Brain
The pathways for production of reactive oxygen species in 

mammalian cells have been revised elsewhere [8]. The first evidence 
that Ang II activates NADPH oxidase in vascular smooth muscle 
cells to produce ROS was presented by Griendling and colleagues [9]. 
More recently, accumulating evidence from our laboratory and others 
suggest that, like vascular cells, neurons also require ROS to carry out 
crucial functions related to central control of blood pressure [10-15]. 

There is compelling evidence that superoxide anion is necessary to 
elicit the vasopressor, bradycardic, and dipsogenic responses produced 
by intracerebroventricular (ICV) administration of Ang II in conscious 
mice [16]. It has also been shown that Ang II causes robust increases 
in superoxide production in cultured SFO neurons. In addition, 
adenoviral-mediated delivery of cytoplasmically targeted superoxide 
dismutase (SOD) selectively to the SFO abolishes the cardiovascular 
and dipsogenic actions of Ang II in normotensive mice and prevents 
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the hypertension in chronic peripheral Ang II infused mice [10,16]. 
Moreover, adenoviral vectors encoding small interfering RNA to 
selectively silence Nox2 or Nox4 (two isoforms of the NADPH oxidase) 
expression in the subfornical organ demonstrate that both Nox2 and 
Nox4 are required for the full vasopressor effects of brain Ang II [17,18]. 
One possible downstream mechanism of the activation of AT1R in the 
SFO and subsequent production of ROS is the superoxide-mediated 
intracellular calcium influx observed in neuroblastoma Neuro-2A 
cells, which is inhibited by the adenoviral-mediated expression of a 
dominant-negative isoform of Rac1 (AdN17Rac1), a critical component 
for NADPH oxidase activation and superoxide production. These 
evidences suggest that increased intracellular superoxide production in 
the SFO is critical in the development of neurogenic hypertension by 
increasing in sympathetic outflow via RVLM activation.

Reactive Oxygen Species in the Rostral Ventrolateral 
Medulla

The RVLM is a brainstem region that contains bulbospinal 
neurons providing a major input to the preganglionic neurons of the 
sympathetic nervous system [19,20]. The importance of the RVLM 
for maintaining blood pressure in anesthetized animals had first been 
documented 130 years ago [21]. However, only after the pioneer 
studies performed by Guertzenstein and colleagues [22] suggesting that 
supraspinal sympathetic vasomotor drive originates from the RVLM 
that truly brought researcher’s attention to this brainstem area [22,23]. 

The RVLM receives inputs from the SFO and the PVN as discussed 
earlier in this review, forming the so called SFO-PVN-RVLM pathway, 
where Ang II seems to be the key neurotransmitter. For instance, 
immunohistochemistry studies showing Ang II-like immunoreactive 
neurons in PVN and terminals in RVLM support the concept that 
angiotensinergic neurons in the PVN innervate the RVLM [24]. Of 
note, angiotensin receptors, mainly AT1R subtype, are also present in 
the RVLM [25] and plays an important role in altering the activity of 
RVLM neurons [26]. For example, injection of Ang II into the RVLM 
of the cat produces pressor response [27]. In addition, pharmacological 
blockade of AT1R attenuates the pressor response to Ang II 
microinjection in the RVLM of rats [28]. Furthermore, microinjection 
of losartan in the RVLM attenuates the pressor response produced by 
peripheral chemoreflex activation [13].

In experimental models of hypertension, the actions of Ang II 
seem to be enhanced and AT1R seem to be tonically stimulated. In the 
Spontaneously Hypertensive Rat (SHR), for example, it has been shown 
that injection of Ang II in the RVLM produces a significantly greater 
increase in blood pressure in SHR compared to normotensive rats [29]. 
Additionally, candesartan and valsartan, AT1R antagonists, injected in 
the RVLM decreased blood pressure in SHR to normotensive levels but 
had no effect in normotensive rats [29].

Regarding reactive oxygen species in the RVLM, our laboratory 
and others have shown that Ang II-derived superoxide anions 
accumulation in the RVLM is critical for the pathogenesis of neurogenic 
hypertension (Figure 1) [12,17,18,30-32]. The increase of superoxide 
anions leads to changes in ion channels, particularly calcium and 
potassium channels, altering neuronal properties in RVLM resulting 
in increase in sympathetic nerve activity and increase in blood 
pressure [33]. To date, we have shown that chronic peripheral Ang II 
infusion in mice produces a slow developing hypertension, which is 
accompanied of superoxide accumulation in the RVLM and increased 
sympathetic activity [30]. Similar results have been found in 2K1C rats 
[31]. Interestingly, scavenging of superoxide by adenovirus-mediated 

overexpression of Copper/Zinc Superoxide Dismutase (CuZnSOD) 
in the RVLM prevents both the accumulation of superoxide and 
the increase in sympathetic activity. Of note, we demonstrated in 
rats that the association of dietary salt to Ang II infusion potentiates 
the superoxide accumulation in the RVLM and the increase in 
sympathetic activity caused by Ang II alone [12]. Furthermore, we 
demonstrated that selective ablation of the AT1R in the RVLM using 
the loxP-Crerecombinase technique also prevented hypertension and 
superoxide accumulation in the RVLM of Ang II infused mice [30].

In addition to superoxide accumulation in the RVLM, it has been 
documented that AT-1 mRNA expression and NAD(P)H oxidase 
subunits are greater in the RVLM and PVN of 2K-1C rats when 
compared to their sham control group, while the CuZnSOD expression 
remains. Furthermore, injection of tempolinto the RVLM reduced 
blood pressure and renal sympathetic activity in 2K1C but not in sham 
rats unchanged [33].

Oxidative stress in the RVLM has also been associated to the 
pathogenesis of the hypertension observed in chronic renal failure. For 
instance, rats with chronic renal failure show increased p47phox and 
gp91phox mRNA expression in the RVLM associated to a reduction of 
AT1 mRNA in the brainstem compared to their controls [34]. 

Conclusions
Although the basic research using laboratory animals has 

considerably contributed to unraveling the mechanisms underlying the 
role of reactive oxygen species in the pathogenesis of hypertension, its 
translation towards the human benefit is still matter of debate, mainly 
because some clinical trials have failed in documenting the benefits 
of antioxidant therapies [35]. Therefore, the challenge for the next 
decades will be finding a path to safely interfere with reactive oxygen 
species inside the human’s brain, especially in hypertensive patients, 
in order to prove the benefits of local antioxidant therapy as a reliable 
treatment for neurogenic hypertension.
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Figure 1: Scheme showing the mechanism by which angiotensin II induces the 
increase of ROS in the rostral ventrolateral medulla (RVLM) and modulate the 
sympathetic flow leading to hypertension.
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