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Introduction
Among the usual engineering materials, concrete is widely utilized 

around world due to its low production cost, geometry adaptability, 
chemical properties and strength capacities. Moreover, the collapse 
of engineering structures is caused by the growth of internal 
discontinuities, such as cracks, which leads to the mechanical failure by 
fracture. Therefore, the scientific community has applied the fracture 
mechanics to predict accurately the collapse conditions of concrete. 
In such material, the mechanical degradation processes, especially 
due to the crack growth, introduce nonlinear mechanical effects that 
cannot be disregarded. Consequently, nonlinear models were proposed 
to represent the concrete fracture, in which the cohesive crack model 
must be highlighted [1]. This approach was introduced by Barenblatt 
and Dugdale [2,3] and was extensively used in numerical applications 
of fracture problems [4-8]. The crack propagation modelling in 
concrete by the cohesive crack approach requires the solution of a 
nonlinear system of equations, generally relating the Crack Opening 
Displacements (COD) to the tractions values along the crack surfaces. 
The traction values represent the residual material strength at the 
cohesive zone, which depend on the COD intensity. The residual 
material strength decrease as the COD values grow. 

In this context, this study addresses the mechanical analysis of 
multi crack growth in concrete structures using a nonlinear Boundary 
Element Method (BEM) formulation and an efficient algorithm 
to solve the nonlinear system of equations based on the Tangent 
Operator (TO) scheme. The BEM is a robust numerical technique for 
modelling fracture and crack growth problems as only the boundary 
surfaces discretization is required [9]. Therefore, this numerical 
technique is well adapted to solve fracture mechanics problems, as 
the remeshing procedure becomes a less complex task. Moreover, the 
stresses singularities present at the crack tip are represented accurately 
due to the non-requirement of a domain mesh [10]. The numerical 
formulation applied in this study involves the sub-region BEM 
technique and the cohesive crack model. The first technique divides 
the entire domain into sub-regions over which, for elastic problems, 

compatibility of displacements and equilibrium of forces are enforced 
along its interfaces. In the cohesive crack problems, the displacement 
compatibility is no longer verified. Therefore, cohesive laws are 
required to relate the COD to the tractions values along the crack 
surfaces. Moreover, cracks are assumed to growth along the sub-region 
interfaces. One advantage of this approach concerns the possibility 
to analyse nonlinear fracture problems in nonhomogeneous systems, 
which is a challenge problem in structural engineering [11]. 

The nonlinear problem is solved using the TO approach. This 
procedure assures better convergence and accuracy than the classical 
Newton approach. Such a technique achieves the solution through 
initial and corrections steps that account the tangent direction of the 
global equilibrium trajectory. The tangent search is performed by 
incorporating the derivative set of cohesive laws into the algebraic BEM 
equations. This type of operator has been utilized successfully in the 
literature for dealing many different nonlinear engineering problems. 
For instance, Botta et al. [12], Oliveira et al. [13] and Leonel et al. [14] 
applied this operator on the modelling of localization phenomenon, 
fracture analyses, and contact problems, respectively. The TO is derived 
for the crack growth analysis in concrete materials, which is the main 
contribution of this study.

Two applications were performed with the developed nonlinear 
BEM formulation. The results obtained were compared to numerical 
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and experimental responses available in the literature to illustrate its 
robustness and accuracy. It was also verified that the TO provides 
faster convergence and lower computational time consuming for the 
nonlinear solution when compared to classical Newton method.

The Cohesive Crack Model
The cohesive crack model is an appropriate approach to represent 

the mechanical degradation processes in quasi-brittle materials, such 
as the concrete. In this model, the degradation phenomena occur 
along a fictitious crack positioned ahead the real crack tip. Thus, the 
material degradation zone is reduced by one dimension. The first 
studies in which the dissipation zone was reduced either to a curve for 
2D problems or to a surface for 3D problems [1-3].

In the present study, simple softening laws approximate the 
residual material strength along the fictitious crack. These laws relate 
the fictitious crack opening displacement, COD, to the cohesive 
stresses values. Several cohesive crack laws relating cohesive stresses to 
the COD have been proposed in the literature. Three of them are often 
adopted to handle the crack growth analyses in quasi-brittle materials. 
The simplest law is given by a linear function relating the cohesive 
stresses to the fictitious COD smaller than the threshold value, CODc. 
For fictitious crack openings larger than CODc, cohesive stresses are 
assumed as null. The relations that represent the linear cohesive law 
are the following:
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in which E is the Young’s modulus and ft the tensile material strength. 

Alternatively, the COD and cohesive stresses may be related 
through the composition of linear functions. Particularly, such law is 
defined by two linear functions, which is named bi-linear model. This 
cohesive model is defined by the following equations:

( )

( )

( )

"
"

"

" "
" "

" "

0

1

0

σ ε

σ

σ

σ

=

 −
= − ≤ ≤  

 
 

= + − ≤ ≤  − − 
= ≥

t t
cohesive t

t
cohesive t c

c c

cohesive c

E if elastic conditions

f fCOD f COD if COD COD
COD

f COD CODCOD f if COD COD COD
COD COD COD COD

COD if COD COD

     (2)

For the bi-linear model, the variables f"
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defined as follows:
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in which Gf represents the material fracture energy.

Finally, an exponential expression represents the third cohesive law 
utilized in this study. Equation (4) provides the analytical expressions 
for this cohesive model:

( ) 0

σ ε

σ

−

=

= >
t

f

f COD
G

cohesive t

E if elastic conditions

COD f e if COD
     (4) 

Boundary Integral Equations
The BEM has been widely applied to solve engineering problems 

such as contact, fatigue and crack propagation due to its high accuracy 
and robustness in modelling strong stress concentration. Considering a 
two-dimensional homogeneous elastic domain Ω with boundary Γ, the 
equilibrium equation, written in terms of displacements, is given by:

,
, 0

1 2ν µ
+ + =

−
j ji i

i jj
u bu  				                  (5)

Where μ is the shear modulus, v is the Poisson’s ratio, ui are the 
components of displacements and bi are the body forces. The singular 
integral representation, written in terms of displacements, is obtained 
applying the Betti’s theorem and the Eq.(5). This integral equation is 
written, disregarding body forces, as follows:

( ) ( ) ( ) ( ) ( ) ( )* *, , ,
Γ Γ

+ Γ = Γ∫ ∫ij j ij j ij jc s f u s P s f u f d U s f p f d                (6)

in which pi and ui are the tractions and displacements at the boundary, 
respectively. The free term cij is equal to δij/2 for smooth boundaries. 
δij is the Kroenecker operator and P*

ij and U*
ij are the fundamental 

solutions for tractions and displacements, respectively, written for the 
source point s and related to the field point f [15].

Equation (6) leads to another important integral equation, known 
in literature as the hyper singular integral representation. To obtain 
it, the Eq.(6) has to be differentiated with respect to the directions x 
and y. Then, the relation among displacements and strains is used in 
order to determine an integral equation written in terms of strains. 
Then, a constitutive relation, the generalized Hooke’s law for instance, 
is utilized to obtain an integral equation written in terms of stresses, for 
a boundary source point. Finally, the Cauchy formula is applied and 
the hyper singular integral equation is obtained, which is written in 
terms of tractions as follows:

( ) ( ) ( ) ( ) ( )* *1 , ,
2

η η
Γ Γ

+ Γ = Γ∫ ∫j k kij j k kij jp s S s f u f d D s f p f d     (7)

in which S*
kij and D*

kij contains the new kernels computed from P*
ij 

and U*
ij respectively [16,17] and ηk is the outward normal vector at the 

source point.

Equations (6) and (7) can be applied separately to construct the 
system of algebraic equations for two-dimensional non-cracked 
domains. However, the application of only one integral equation, either 
Eq.(6) or Eq.(7), for modelling cracked structures in a single domain 
leads to the singularities in the system of algebraic BEM equations. 
Such singularities appear due to the presence of coincident source 
points at the crack surfaces. Therefore, to analyse structures containing 
cracks, some special BEM formulations were proposed in the literature. 
Among them, it is worth mentioning the dual BEM [16,17], the multi-
region approach [10] and the dipole BEM formulation [13]. In the 
present work, the sub-region BEM technique is adopted, in which 
compatibility of displacements and equilibrium of forces are enforced 
along the interfaces of the sub-domains. The coupling procedure of 
sub-region formulation is presented in the next section.

To assemble the system of BEM equations, as usual, Eq.(6) and/
or Eq.(7) are transformed into algebraic relations by discretizing the 
boundaries and interfaces into elements over which displacements and 
tractions are approximated by polynomial functions. Besides that, one 
has to select a convenient number of collocation points to obtain the 
algebraic representations. The algebraic equations for boundary nodes 
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crack opening displacement (COD) and the crack sliding displacement 
(CSD). Then, these variables are defined as follows:

( ) ( ) ( ) ( ) ( ) ( )
η η− − = + =L k R k k L k R k k

t tu u COD and u u CSD   (12) 

Where COD(k) is the vector of Crack Opening Displacements 
whereas CSD(k) is the vector of Crack Sliding Displacements. Each 
component of these vectors is defined for each pair of coincident nodes 
of an interface k. 

Obviously, when COD(k)=CSD(k)=0, elastic condition is assumed 
for the interface. Otherwise, the cohesive crack model is incorporated. 
The cohesive crack propagation starts when at least one component 
of the vector pη

(k) overcomes the material tensile strength ft. In such a 
case, cohesive behaviour for these tractions follow the stresses values 
predicted by the cohesive law, which depends on the COD values. 
Therefore, the problem becomes nonlinear and the tractions at the 
cohesive regions of the interfaces must satisfy the following constrains:

( ) 0η = =C
tp p COD and p  		                 (13)

Equation (13) indicates that the normal tractions pη must represent 
the residual material resistance, which is governed by the cohesive 
tractions pc(COD(k)). On the other hand, the second constrain indicates 
brittle shear behaviour. When a component of the vector COD(k) 
overcomes the threshold value, CODc, the respective normal traction 
is assumed as null and the material has no longer a residual resistance 
to avoid the opening of the crack surfaces. Hence, to consider cohesive 
mechanical behaviour, the discontinuities defined in Eq. (12) and the 
constrains presented in Eq. (13) must be incorporated into the system 
of BEM equations, Eq.(11). Thus:
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Because the cohesive law was included, Eq.(14) becomes nonlinear 
due to the dependency of the variables pc and COD. 

Nonlinear solution technique using the Tangent Operator approach 

To solve the nonlinear problem provided by the cohesive crack 
model, Eq.(14) has to be rewritten as a function of its variables as 
follows:
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Where xB, uη
L(k), COD(k), ut

L(k), CSD(k) are the variables of the 
problem, i.e., v. 

An increment Δv must be obtained to solve the problem by the TO 
scheme. Such an increment has to lead to an equilibrium condition 
and the cohesive constraints have to be attended. Hence, one writes 
the function Y(v+Δv) as a linear Taylor expansion at the vicinity of a 
previous equilibrium configuration of the variables v as follows:

are calculated considering these boundary collocation points. 

After determining the displacement and traction fields at the 
boundaries, internal values for displacements, stresses and strains can 
be achieved. Internal displacements are determined using the integral 
Eq.(6) with the source point  located inner the boundary. In this case, 
the free term cij becomes δij. On the hand, the stress field at internal 
nodes is obtained through the integral stress representation [15]. 

Algebraic BEM Equations
One interesting approach to address crack growth problems 

through BEM is the sub-region BEM technique. In this approach, the 
entire domain is divided into sub-domains over which Eq.(6) and/
or Eq.(7) are applied. Then, the compatibility of displacements and 
equilibrium of forces are enforced along the sub-domain interfaces. As 
a result, the cracks are assumed to growth along such interfaces. 

The crack surfaces, i.e. the interfaces, are discretized by oppositely 
oriented boundary elements. To analyse the crack growth in concrete, 
the cohesive crack model is incorporated into the interface elements. 
Thus, the cohesive law governs the COD and stresses values along the 
cohesive crack and, consequently, the nonlinear mechanical behaviour 
is introduced.

The classical set of algebraic BEM equations is written for a given 
multi-region domain taking into account the location of the collocation 
points, i.e. the source points. These points may be located at the left (L) 
or right (R) opposite boundary elements of a given interface k, or even 
at the external boundary (B). Hence, for a domain composed by NI 
interfaces, the BEM algebraic equations is presented as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1= =

   + + = + +      ∑ ∑
NI NI

L k L k R k R k L k L k R k R kB B B B

k k

H u H u H u G p G p G p      (8) 

in which H and G matrices contain the values integrated from the 
kernels S*

kij, P
*
ij and D*

kij, U
*
kij, U

*
ij, respectively.

Afterwards, displacements and tractions must be rotated from the 
x,y global orientation to the normal η and tangent t directions of each 
crack side. Thus, one defines uη

s(k), ut
 s(k), pη

 s(k) and pt
 s(k) as the normal 

and tangent components of displacements and tractions at a given 
side S, either L or R, of an interface k, respectively. Over the algebraic 
equations presented in Eq.(8), one imposes the boundary conditions at 
the external boundary, as usual in BEM, which leads to the following:
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in which, Hη, Ht and Gη,Gt are the sub-matrices of H and G that multiply 
the normal and tangent displacements and tractions after the rotation, 
respectively. xB are the boundary unknown values, AB is composed 
by the columns from HB and GB, and FB contains the contribution 
of prescribed values at the boundary. To solve such problem, the 
equilibrium condition must be enforced along the interface boundary 
elements. Then, over such elements, the following conditions are 
imposed:

L R L R
t t tp p p and p p pη η η= − = = − =   (10)

Therefore, based on Eq.(10), one rewrites Eq.(9) as follows:
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The displacements calculated at the interfaces are used to define the 
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+ ∆ ≈ + ∆

∂
YY v v Y v v v
v

 			                 (16)

When the elastic condition is violated, the elastic prediction, i.e. 
COD(k)=CSD(k)=0, provides normal tractions higher than the tensile 
material strength, pn>ft=pc(COD=0). Therefore, the solution with null 
discontinuities is no longer acceptable. The difference between pη and 
pc(COD) is the normal traction exceeding vector Δpη

exc, which must be 
reapplied along the cohesive interface regions to satisfy the constrains 
in Eq. (13). However, after reapplying it, the equilibrium condition 
will be violated, i.e, Y(v)=ΔF≠0. The vector ΔF represents the non-
equilibrated force vector, which appears after the imposition of the 
cohesive constrains. 

The solution of the problem requires Y(v+Δv)=0. Therefore, from 

Eq. (16), ∂ ∆ ≈ −∆
∂
Y v F
v

, where ∂ ∆
∂
Y v
v

 is computed by the following 

differentiation:
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From Eq.(17), an approximated solution for the increment Δv, 
which leads to the solution of the problem, can be calculated as follows:
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In the system presented in Eq. (18), the matrix that multiplies 
{-ΔF} is the so called the Tangent Operator(TO). This matrix includes 
information about the derivative of the cohesive laws. Therefore, when 
incorporated into the BEM equations, it makes the search for the 
nonlinear solution along the tangent direction of the global equilibrium 
trajectory. 

When linear or partially cohesive laws are adopted, the term 
∂pc/∂COD(k) becomes constant. Consequently, the TO also becomes 
constant as well. Therefore, the solution Δv for a given load step can be 
obtained with only one iteration. On the other hand, when nonlinear 
cohesive laws are involved, such as an exponential one, the solution Δv 
must be obtained iteratively as the derivative terms ∂pC/∂COD depends 
on the actual openings COD(k). At the first iteration, the increment 
Δv(1) must be computed form Eq. (18). Therefore, the initial traction 
exceeding vector Δpη

exc(1) must be accounted in ΔF and the tangent 
terms ∂pC/∂COD are computed assuming COD=0. After the first 
increment, non-null COD are obtained. However, because the cohesive 
law is no longer linear, a new traction exceeding vector Δpη

exc(2) is 
observed and must be reapplied at the cohesive regions. Therefore, the 
second iterative increment Δv(2) is computed from Eq. (18) in which 
the tangent terms ∂pC/∂COD(k) were updated with the new values of 
COD. The stop criterion for such iterative procedure was based on the 
norm of the traction exceeding vector, which must be smaller than a 

prescribed tolerance for achieving the converged solution. 

As the boundary loads are prescribed incrementally, the TO 
procedure must be performed at each incremental step.

Applications
Two applications of fracture in concrete specimens are presented. 

The first concerns the three-point bended beam whereas the second 
addresses the four-point mixed mode multiple cohesive crack growth. 

Three-point bended-notched beam

The first application of this study concerns a mode I fracture test, 
which was analysed experimentally by Saleh [18] and numerically by 
Oliveira et al. [13]. The specimen consists of a three point bended 
concrete beam with an initial notch. To define the three cohesive laws, 
two parameters were considered: the tensile material strength ft=3 MPa 
and the material fracture energy Gt=75 N/m. Figure 1 illustrates the 
structure analysed, in which the geometric data and the material elastic 
proprieties are also presented. 

The structure was divided into two sub-regions, with a vertical 
interface, in which the main crack propagates in mode I. The boundary 
mesh adopted is composed by 55 cubic and 29 quadratic discontinuous 
boundary elements with 307 source points. The displacements 
prescribed were imposed into 100 load steps and the tolerance for 
convergence was assumed as 10-6 MPa. Figure 2 shows the initial 
and the final deformed structural configuration, with displacements 
magnified 100 times.

The displacements fields in the last load step are presented in 
Figure 3. It is worth mentioning the physical discontinuity introduced 
by the crack. 

During the numerical analysis, the interface tractions were 
monitored and its cohesive behaviour is illustrated in Figure 4 (left) 
for linear, bilinear and exponential cohesive laws. As illustrated 
in this figure, the cohesive crack becomes a real crack in the end of 
the incremental load process. The nonlinear structural behaviour 
was also monitored through the load-displacement curves. The load 
was calculated as the equivalent force at the upper beam surface. 

 

Figure 1: Three-point bended-notched beam.

 

Figure 2: Initial and final deformed mesh, with displacements 100 times 
magnified.
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The displacement values were determined by averaging the vertical 
displacements at the crack mouth. Such nonlinear responses are 
illustrated in Figure 4 (right), in which experimental and numerical 
curves obtained by previous references are also illustrated.

The developed BEM formulation was capable to represent 
accurately the nonlinear mechanical behaviour of the cracked specimen, 
as illustrated in Figure 4. Moreover, the BEM model with the three 
cohesive laws achieved the resistant structural load with considerable 
accuracy if compared to the experimental value. The softening part of 
the numerical curves reproduce quite well the experimental results. 

The convergence path obtained by the TO and the classical Newton 
approaches are presented in Figure 5. As presented in this figure, the 
TO approach makes the search for the equilibrium configuration by 
the tangent direction of the global equilibrium trajectory. Then, it is 
quite efficient in comparison with the classical approach.

To quantify the efficiency of the TO approch and the classical 
Newton scheme, the number of iteration required during the analyses 

were monitorated and presented in Table 1. The improvement in terms 
of the required iterations to achieve the convergence is remarkable with 
the TO. Such reduction reaches, for the best case, 92% and 77%, for the 
worst case. Then, the TO approach is recommended. 

Four-point mixed mode multiple crack growth

The second application addresses the mechanical analysis of 
a mixed mode multiple cohesive crack growth case in a concrete 
specimen. The specimen is subjected to a four-point shear beam test, 
which as analysed numerically by Carpinteri [19] with the Finite 
Element Method (FEM) and by Saleh et al. [6] with the BEM. Both 
authors adopted the linear cohesive law to describe the residual 
material strength along the cohesive crack. The crack paths determined 
in Saleh et al. and Carpinteri [6,19] were adopted as interfaces in the 
model proposed in this study. Therefore, the entire domain was split 
into three sub-regions as presented in Figure 6, which also shows 
geometric data and the material elastic properties considered. In the 
analyses performed by the proposed BEM model, the cohesive laws 
linear, bilinear and exponential were adopted. The tensile material 
strength was defined as ft=2 MPa and the material fracture energy was 
assumed equal to Gt=100 N/m.

The adopted boundary element mesh was composed by 72 cubic and 
30 quadratic discontinuous boundary elements with 378 source points. 
The displacements prescribed and the stop tolerance criterions were 
assumed as the same of the previous application. Figure 7 illustrates 
the initial and the final deformed configuration of the structure, with 
displacements magnified 500 times.

The displacements fields in the last load step are presented in Figure 
8. The colour scale graphs show the physical discontinuity introduced 
by the cracks.

The load was considered as the equivalent force at the beam upper 

 

Figure 3: Colour scale displacements fields, Dimensions in cm. 

 

Figure 4: Cohesive tractions at the interface (left) and nonlinear structural 
response (right).

 

Figure 5: Nonlinear solution search: Classical Newton-Raphson versus the 
Tangent Operator.

 

Figure 6: Four point shear beam test.

 

Figure 7: Initial and final deformed mesh, with displacements 500 times 
magnified.

Cohesive law Classical Scheme Tangent Operator Reduction
Linear 2150 180 ̴ 92%

Bilinear 2157 199 ̴ 91%
Exponential 2067 468 ̴ 77%

Table 1: Comparison of iterations 1.



Citation: Ferreira Cordeiro SG, Leonel ED (2015) Boundary Element Method and Tangent Operator Technique applied in the Multi Crack Propagation 
Modelling of Concrete Structures. J Appl Computat Math 4: 268. doi:10.4172/2168-9679.1000268

Page 6 of 6

Volume 4 • Issue 6 • 1000268
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

face. The displacements values were considered as the prescribed 
ones. Figure 9 (left) shows the cohesive traction responses and Figure 
9 (right)  shows the load-displacement curves. Good agreement is 
observed among the numerical results considered. The developed 
BEM formulation was capable to represent the nonlinear structural 
behaviour for this application. As authors Saleh et al. and Carpinteri 
[6,19] used the linear cohesive law, the results obtained with such a law 
presented the best agreement. However, the three cohesive laws applied 
given good accuracy in terms of maximum resistant load.

The numerical efficiency was compared between the TO approach 
and the classical Newton method. The efficiency in terms of the required 
amount of iterations is presented in Table 2. Strong improvement is 
achieved with the TO, 93% for the best case and 84% for the worst case.

Conclusions 
A BEM formulation has been presented for modelling the fracture 

of concrete structures using the cohesive crack model. For the 
considered applications, the results obtained showed strong agreement 
with numerical and experimental responses available in the literature. 
Furthermore, the TO scheme has demonstrated its efficiency as it 
required an amount of iterations considerable lesser than the classical 
Newton approach. Therefore, such an operator may lead to remarkable 
gains in terms of computational time consuming when applied in most 
complex engineering problems involving multi-fractured structures. 
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Figure 8: Color scale displacement field. Dimensions in cm.

Figure 9: Cohesive tractions at the interface (left) and nonlinear structural 
answer (right).

Cohesive law Classical Scheme Tangent Operator Reduction
Linear 1281 100 ̴ 92%

Bilinear 3346 220 ̴ 93%
Exponential 3527 579 ̴ 84%

Table 2: Comparison of iterations 2.
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