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Introduction
Programmed death ligand-1 (PDL1) is a major immunological 

checkpoint ligand molecule, and it is up-regulated in tumors and tumor 
microenvironments of different types of cancer [1-6]. Clinical trials 
report that the inhibition of PDL1 interaction with programmed cell 
death receptors (PD1), expressing on various types of immune cells 
(including antigen presenting cells, effector T cells, natural killer cells 
(NK), thymocytes, myeloid cells), leads to durable tumor control by the 
immune system and the suppression of different types of cancer [7-10]. 
At least twenty-seven clinical trials were initiated to evaluate PDL1/PD1 
inhibitors alone or in combination with other drugs for the treatment of 
brain tumors (including gliomas and GBM) during 2014-2017 period: 
NCT02550249 (2015), NCT02423343 (2015), NCT02017717 (2014), 
NCT02311920 (2015), NCT02337491 (2015), NCT023311582 (2015), 
NCT01952769 (2014), NCT02336165 (2015), NCT01375842 (2011), 
NCT02829931 (2016), NCT02313272 (2014), NCT02798406 (2016), 
NCT03058289 (2017), NCT02335918 (2015), NCT02852655 (2016), 
NCT02526017 (2015), NCT03233152 (2017), NCT02968940 (2016), 
NCT02327078 (2014), NCT02794883 (2016), NCT02311582 (2014), 
NCT02937844 (2016), NCT02866747 (2016), NCT02336165 (2015), 
NCT02337491 (2015), NCT03014804 (2017), NCT02550249 (2015). 
The preclinical data generated in the orthotopic glioma mice models 
suggests that combination treatment with PD1/PDL1 inhibitors and 

radiotherapy, natural killer cells, bevacizumab, and small-molecule 
inhibitors of apoptosis antagonists (SMCs) can successfully inhibit the 
tumors [11,12]. A blockage of PD1/PDL1 interaction restored anti-
glioma immunity and suppressed tumor growth in the Cl13 mouse 
glioma model with dysfunctional CD8 T cells due to chronic exposure 
to the tumor antigen and the high level of PD1 expression [13].

MLN4924, a pharmacological inhibitor of the NEDD8 E1 activation 
enzyme, is currently considered as a promising treatment for brain 
tumors [14-16]. MLN4924 can cross the blood-brain barrier and 
exhibits strong effectiveness towards tumors with an overactivated 
protein neddylation pathway, in vitro and in vivo [16,17]. The 
neddylation pathway is overactivated in gliomas and correlates with 
disease progression [17]. Treatment with MLN4924 results in tumor-

Abstract
Objective: MLN4924, a pharmacological inhibitor of cullin neddylation, resulted in glioma cell apoptosis, 

deregulation of the S-phase of DNA synthesis and thus, offers great potential for the treatment of brain tumours. 
However, targeting the neddylation pathway with an MLN4924 treatment stabilized the hypoxia-inducible factor 
1A (HIF1A), which is one of the main transcriptional enhancers of the immune checkpoint molecule PDL1 (pro-
grammid death ligand-1) in cancer cells. The influence of immune checkpoint molecules on glioma progression 
has recently been discovered; PDL1 overexpression in gliomas corresponds to a significant shortening of patient 
survival and a decrease of the anti-tumour immune response. We hypothesize that i) PDL1 is up-regulated in 
gliomas after treatment with MLN4924 and induces T-cell energy; ii) co-utilization of the PD1/PDL1 blockage 
with MLN4924 therapy may reduce T-cell energy and may engage MLN4924-induced tumour disruption with the 
immune response. 

Methods: PDL1 expression and its immunosuppressive role in gliomas, glioma microenvironments, and after 
treatments with MLN4924 were assessed by utilizing methods of immunohistochemistry, molecular biology, and 
biochemistry. 

Results: We confirmed PDL1 overexpression in clinical brain tumour samples, PDGx and established glioma 
cell lines, extracellular media from glioma cells, and CSF (cerebrospinal fluid) samples from tumour-bearing mice. 
Our primary T-cell based assays verified that the up-regulation of PDL1 in tumour cells protects gliomas from T-cell 
treatment and reduces T-cell activation. We found that a pharmacological inhibitor of cullin neddylation, MLN4924, 
exhibited strong cytotoxicity towards PDGx and established glioma cell lines, in vitro, with an IC50’s range from 0.2 
to 3 uM. However, we observed a significant increase of HIF1A and PDL1 in mRNA and protein levels in all glioma 
cell lines after treatment with MLN4924. The MLN4924-dependent induction of PDL1 in gliomas resulted in T-cell 
energy, which was blocked by a blockage of the PD1/PDL1 interaction. 

Conclusion: We conclude that i) PDL1 up-regulation in gliomas and the glioma microenvironment is an 
important chemotherapeutic target; ii) MLN4924 therapy, combined with a blockage of the PD1/PDL1 pathway, 
should be considered as a potential strategy for glioma treatment.
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specific cell cycle arrest, apoptosis and induction of the DNA damage 
response in the preclinical mouse glioma model [17,18].

The engagement of MLN4924 treatment with an anti-tumor 
immune axis is currently unexplored. Our work seeks to evaluate the 
impact of MLN4924 treatment on PDL1 expression on gliomas and on 
glioma cell immune evasion, in vitro. It was reported that treatment 
with MLN4924 is accompanied by a significant accumulation of the 
HIF1A transcriptional factor [19-22], which is a strong up-regulator 
of PDL1 expression. Potential HIF1A binding sites have been found 
in the PDL1 proximal promoter and the intron regions between the 
first and second, and the fourth and fifth exons of the PDL1 gene 
[23,24]. HIF1A-dependent PDL1 up-regulation was demonstrated in 
tumor-infiltrating myeloid-derived suppressor cells, in human breast 
and prostate cancer cells, in melanoma and mammary carcinoma 
cells, and in pulmonary pleomorphic and advanced oral squamous cell 
carcinomas [23-28].

In our manuscript, we confirm significant PDL1 overexpression 
in the clinical glioma samples, in the established and PDGx glioma 
cell lines, and in the CSF samples from tumor-bearing mice. By 
using several established glioma cell lines under a hypoxic condition 
mimicked by cell treatment with CoCl2, we verified HIF1A-dependent 
up-regulation of PDL1 in mRNA and protein levels. We evaluated 
two HIF1A binding domains in the intron region between the first 
and second exons of the PDL1 gene and confirmed accessibility and 
functionality of these domains in glioma cells by utilizing transcription 
initiation complexes guided by ghRNAs. We found that MLN4924 
exhibited strong cytotoxicity against established and PDGx glioma cell 
lines, in vitro, and therefore, is a promising candidate for the treatment 
of brain tumors. However, we also observed a significant increase of 
HIF1A and PDL1 levels in all cell lines after treatment with MLN4924, 
which may lead to suppression of the immune response development, 
in vivo. We found that PDL1 up-regulation in glioma cells after 
MLN4924 treatment induced T-cell energy, which could be blocked 
by a PD1/PDL1 blockage. We conclude that using inhibitors of PDL1/
PD1 interaction with MLN4924 may improve the effectiveness of 
MLN4924 treatment, in vivo, via the reduction of immune-cell energy. 
We consider blocking the PD1/PDL1 pathway together with MLN4924 
therapy as a potential strategy for glioma treatment; this strategy is 
in need of a detailed evaluation in preclinical orthotopic glioma mice 
models.

Materials and Methods
Cell culture and patient material

 The U251 cell line was purchased from Sigma (Sigma-Aldrich, 
St. Louis, MO). The U87 and LN229 cell lines were purchased from 
the American Type Culture Collection (ATCC, Manassas, VA, USA). 
Note that although we utilized a commercial source of U87 cell line, 
this cell line is currently considered to lack a relationship with the 
primary tumor type of origin. The XD459 and JX10 primary patient-
derived xenolines (PDGx) were previously established [29]. The 
GL261 cell line was a gift from Dr. King’s lab. The U251 cell lines with 
IDH-R132 mutations were developed and characterized in our recently 
published work [30]. The neuro spheres were formed and maintained 
in Neurobasal-A medium (Gibco, Carlsbad, CA, USA) supplemented 
with a B27 supplement without vitamin A (Gibco), N-2 supplement 
(Gibco), 2mM L-Glutamine (Media tech, Inc., Manassas, VA, USA), 
the basal growth factors (EGF, 20 ng/ml and bFGF, 20 ng/ml, were both 
purchased from Termo Fisher Scientifics (Grand Island, NY, USA)), 
and 100 U/ml Penicillin/Streptomycin (Media tech, Inc., Manassas, 

VA, USA). Whole blood samples were purchased from Hema Care 
(Hema Care Corporation, Van Nuys, CA, USA). PBMCs were separated 
by centrifugation in the Ficoll Hypaque density gradient. CD14 
monocytes were depleted of PBMCs cell culture by adherence. Human 
CD3/CD28 Diamagnetic beads (Thermo Fisher Scientifics) and Il2 
(Gibco) were used for stimulating primary T-cells. Before experiments, 
T-cells were loaded with cell-permeable green fluorescence dye, calcein 
AM, at 0.5-2 uM (Molecular Probes, Leiden, Netherlands) according to 
manufactory protocol for visualization.  

Immunohistochemistry

 Standard immunohistochemistry protocol for paraffin embedded 
tissue section staining was used for the immunostaining of brain tumor 
samples (WHO I-IV) and control brain tissue. Immunostaining was 
performed in the UAB core facility. The Universal buffer consisting 
of 1% BSA, 0.2% non-fat powdered skim milk, 0.3% Triton X-100 
and 1xPBS was utilized to prevent non-specific antibody binding. 
Immunostaining was performed overnight at 4°C with the Pdcd-1L1 
(H-130) antibody from Santa Cruz Biotechnology at 1:200 dilution. 
Signal Stain Boost IHC Detection Reagent (HRP, rabbit) was used at 
room temperature for 30 min for signal detection, and a peroxidase-
based substrate Kit (Vector Labs, Burlingame, CA, USA) was used for 
signal development. Harris hematoxylin solution (Fisher Scientific, 
Pittsburgh, PA, USA) was used for nuclear stains. VectaMount 
Mounting Medium (Vector Labs) was utilized for coverslip mounting. 
We define PDL1 immunostaining as strong if more than 50% of 
analyzed cells have a high PDL1 signal; medium, if 5% to 50% of 
analyzed cells have a high PDL1 signal; and low, if less than 5% of 
analyzed cells have a high PDL1 signal. 

Cloning

The pAC154-dual-dCas9VP160-sg expression plasmid was 
purchased from Addgene (Cambridge, Massachusetts, USA). 
The cloning of scrambled sgRNA and HIF1A sgRNA was 
performed with the following primers: Scramb-Bbs1-Forw 5’ 
CACCGGACGAGTCCTCTACAGCAC, Scramb- Bbs1-Ver 5’ 
AAACGTGCTGTAGAGGACTCGTCC, PDL1-HIF-Bbs1-A-Forw 
5’ CACCGTTCGTGTTTTCCATAATTA, PDL1-HIF-Bbs1-A-Rev 
5’AAACTAATTATGGAAAA CACGAAC, PDL1-HIF-Bbs1-B-Forw 
5’ CACCGCTCCTGTCTTATATATACGTG, PDL1-HIF-Bbs1-B-
Rev 5’ AAACCACGTATATATAAGACAGGAGC. The cloning was 
verified by sequencing in the UAB core facility. DNA transfection was 
performed by using a Lonza SE cell line 4D-Nucleofector X Kit (Lonza, 
Koln, Germany, USA). 

Viability assay
Presto Blue cell viability reagent (Thermo Fisher Scientific) was 

used for a viability assay as previously described [30]. MLN4924 was 
added to the wells by using a multichannel pipette (XL 3000ITM, 
Denville, USA); each drug concentration was at least triplicated in 
the plate.  mRNA collection and analysis by TaqMan technique. 
mRNA samples were collected and purified by using QIA shredder 
Kit (Qiagen, Germantown, MD, USA) and RNeasy Mini Kit (Qiagen). 
mRNA concentrations were evaluated by using the Nano Drop 1000 
instrument (Thermo Scientific). mRNA samples were converted to 
cDNA by using Super Script iv Reverse Transcriptase (Invitrogen) and 
random primers (Thermo Fisher). The following inventory TaqMan 
probes were used: Hs01125301_m1 CD274, Mm03048248_m1 CD274, 
Hs00266705_g1 GAPDH, Hs99999901_s1 18S. The TaqMan PCR 
was performed on the 7900HT Fast Real-Time PCR System (Applied 
Biosystems).
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significant, p=0.2. According to current data provided in the Human 
Pathology Atlas, PDL1 overexpression is associated with a significant 
shortening of patient survival. A Kaplan-Meier plot of glioma patient 
survival with high and low PDL1 levels is presented in Figure 1; the 
difference is significant, p=0.02. Next, we analyzed PDL1 expression 
on the protein level. Figure 1B illustrates PDL1 immunostaining in a 
brain tumor tissue array. We found PDL1 immunostaining strong in 
29%, medium in 36%, and weak in 35% of low-grade glioma samples 
(fourteen samples total). GBM samples exhibited strong PDL1 
immunostaining in 33%, medium in 50% (3 of 6), and weak in 17% 
of samples (six samples total). An analysis of PDL1 expression in the 
clinical samples by Western blot confirmed significant up-regulation 
of PDL1 expression in GBM compared to normal tissue (Figure 1C); 
the PDL1/Actin ratios for corresponding samples are presented in the 
graph in Figure 1-right (0.87 ± 0.32 (n=7) versus 0.19 ± 0.1 (n=7) for 
tumor and normal samples, respectively, p=0.003).

We detected substantial PDL1 protein expression in all evaluated 
PDGx and established glioma cell lines by Western blot (Figure 1D, 
left). Also, we were able to detect the PDL1 protein in extracellular 
media collected from corresponding PDGx and established glioma 
cell lines (Figure 1D, right) (see method). The analysis of CSF samples 
obtained from normal and tumor-bearing mice (immunocompetent 
glioma mice model with GL261 cells) by puncturing the cisterna magna 
revealed that PDL1 is present in normal samples at a concentration of 
around 1 ng/ml and increases to up to 2.8 ng/ml in mice with tumors 
(Figure 1D, graph) (see methods for technique of CSF collection 
and analysis). We anticipate that the up-regulation of PDL1 in 
gliomas may protect gliomas from T-cell based immunotherapy and 
contribute to induction of T cell hyperresponsiveness. We formed 
tumor neurospheres from PDGx and established glioma cell lines 
and confirmed interactions between allogenic T cells (loaded with 
cell-permeable, green fluorescence dye calcein, AM for visualization) 
and tumor neurospheres (Figure 1E(a)) for several cell lines. We 
formed neuro spheres from parental U251-IDH-R132H glioma clones 
characterized in our recent manuscript [30], with low and high PDL1 
expression levels (at least 10 folds difference in PDL1 expression levels) 
and evaluated the outcome of tumor neuro spheres’ encounters with 
primary T cells (depleted from CD14 monocytes and stimulated with 
CD3/CD28 Diamagnetic beads). We found that neuro spheres with 
high PDL levels keep their integrity after an encounter with T cells and, 
thus, stay resistant to T cell treatment (Figure 1E(b)). After 48 hours 
of interaction with T cells, an average of 89 ± 7% (n=4) neurospheres 
with high PDL1 levels keep their integrity versus 14 ± 5% (n=4) 
neuro spheres with low PDL1 levels (Figure 1E(b)); the difference is 
significant, P=0.0002. In the following experiment, we co-incubated 
primary T cells with media from XD456 and U251 glioma cell lines 
with and without blockage of PDL1/PD1 interaction by PDL1-
inhibitor-1 (4 uM). In agreement with other researchers, we confirmed 
that the blockage of PD1/PDL1 interaction shifted the steady-state 
profile of T cells to a more proliferative one (on 28 ± 12%, n=3 and 25 
± 8%, n=3 during 24 hours of co-incubation with media from XD456 
and U251 cell lines, respectively). Thus, our data confirmed that PDL1 
is up-regulated in gliomas and may protect tumors from T-cell based 
immunity.

HIF1A accumulation leads to PDL1 up-regulation in glioma cell 
lines. HIF1A/PDL1 axis plays a significant role in PDL1 up-regulation 
in different types of cancer. To evaluate HIF1A/PDL1 signaling axis 
in gliomas, we used U251 and U87 established glioma cell lines. The 
hypoxic HIF1A accumulation was mimicked by cell treatment with 
CoCl2, which blocks HIF1A degradation. We observed a significant 

Collection and analysis of extracellular media

Cells were plated at 2x106 per P10 plate. Fresh media (6 ml) was 
added to the cells and collected after 24 hours. Collected media was 
spun at 4°C, 5 min, 1200 rpm to remove any cells and cell debris. After 
debris removal, the protein content in the media was concentrated 6 to 
8-fold by using the 10K protein concentrator PES (Thermo Scientific) 
at 4°C. The protein concentrate was reconstituted in Cell Lysis Buffer 
(Cell Signaling Technology) and analyzed by Western blot. 

Antibodies, Reagents, and Drugs. HIF1A, Lamin A/C, hPDL1, anti-
biotin HRP-linked, and anti-rabbit IgG1 HRP-linked antibodies were 
purchased from Cell Signaling Technologies (Danvers, MA, USA); 
Actin, HuR 3A2, PDL1, donkey anti-goat IgG-HRP, goat anti-mouse 
IgG1-HRP antibodies were from Santa Cruz Biotechnology (Dallas, 
Texas, USA); the mPDL1/B7-H1 antibody was from B&D systems 
(Minneapolis, MN, USA); the alpha Tubulin antibody was from 
Sigma (Sigma-Aldrich). Mouse PDL1 ELISA Kit was purchased from 
Boster (Pleasanton, CA, USA). MLN4924 was purchased from Active 
Biochem (Kowloon Bay, Hong Kong); the PD1/PDL1-inhibitor-1 was 
purchased from Cayman Chemical (Ann Arbor, Michigan, USA). 

Intracranial glioma model and collection of CSF

The intracranial injection of GL261 tumor cells was performed as 
previously described [29] in compliance with UAB animal care policy. 
The procedure of CFS collection was reported [31] and performed 
according to UAB animal care policy. The PDL1 level in CSF samples 
was analyzed by using the Mouse PDL1 ELISA Kit (Boster, Pleasanton, 
CA, USA). Mice were euthanized by using an IP injection of ketamine 
(500 mg/150 uL) in combination with an alpha 2-adrenergic receptor 
agonist followed by bilateral thoracotomy. The euthanasia method is 
approved by UAB Animal Care policy and by the AVMA Panel on 
Euthanasia, 2013 Edition.

Statistical analysis

Statistical analysis and graphing were performed using Excel 
and Origin Pro software. Statistical significance was determined by 
Student’s t-test (to test for significant differences between two groups 
with equal or unequal variances) and was considered significant at p ≤ 
0.05. Values are expressed as mean ± S.D. Statistically significant data 
is labeled by an asterisk in the graphs.

Results
PDL1 expression in clinical brain tumor samples, glioma cell lines 

and CSF samples from the glioma mice model. PDL1 expression in 
clinical glioma samples has drawn huge attention in the last couple 
of years and is still controversial. First, we compared PDL1 mRNA 
expression in low and high-grade gliomas to PDL1 expression in 
melanomas by utilizing the cBioPortal portal for cancer genomics 
(http://www.cbioportal.org). We found that the average levels of PDL1 
mRNA in GBM and melanomas are similar (Figure 1); the average PDL1 
mRNA level in low-grade gliomas is three times lower than those in 
GBM and melanomas. Although low-grade gliomas exhibited an overall 
decrease of PDL1 expression, about 20-30% of low-grade gliomas (with 
verified IDH1-R132 single allele mutation) demonstrated PDL1 values 
exceeding the average PDL1 level in melanomas (Figure 1A). Our data 
from clinical glioma samples confirmed high heterogeneity of PDL1 
expression with a range from 0.3 to 4.2 for PDL1/GAPDH mRNA ratio. 
60% of analyzed samples showed PDL1/GAPDH mRNA ratios higher 
than the average control (0.58 ± 0.2, n=4), the difference between the 
average PDL1/GAPDH ratios of control and tumor samples was not 
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enhancement of PDL1 mRNA levels in both cell lines after treatment with 
CoCl2 (Figure 2A). The maximum PDL1 mRNA levels were detected 
after 2 and 4 hours of treatment with CoCl2 for U251 (1.68 ± 0.25, n=3 
increase) and U87 (3.1 ± 0.28, n=3 increase) cell lines, respectively. The 
PDL1 mRNA values were normalized to the corresponding GAPDH 

mRNA values in each experiment. The translation initiation complexes 
encoded by pAC154-dual-dCas9VP160 plasmids and guided by 
sgRNA to two HIF1A binding domains in the first intron of the PDL1 
gene (Figure 2B-top) enhanced PDL1 protein expression by 1.5 ± 0.3, 
n=3 and 3.5 ± 0.6, n=3 fold for sites A and B, respectively, compared 

Figure 1: PDL1 expression in clinical brain tumor samples, glioma cell lines and CSF samples from the immunocompetent glioma mice model. A) Graph (left) 
represents PDL1 mRNA expression in brain tumors and melanomas (cBioPortal (http://www.cbioportal.org)). Note that the average PDL1 mRNA level in GBM is similar 
to the average PDL1 mRNA level in melanomas. The PDL1 values in GBM and low-grade gliomas which exceed the average PDL1 mRNA level in melanomas are 
highlighted in the red box. Kaplan-Meier plot (right) illustrates survival rates of glioma patients with high and low PDL1 expression levels; 9% versus 24% of 2 year 
survival for high and low PDL1 expression; the difference is significant, P=0.02 (data has been obtained from the Human Pathology Atlas). B) Immunohistochemical 
detection of PDL1 in the tissue microarray of normal and brain tumor samples. The images were taken at 40x magnification. C) Western blot illustrates PDL1 and Actin 
protein levels in control and brain tumor clinical samples. Graph represents PDL1 to Actin ratios for corresponding protein samples; 0.87 ± 0.32 (n=7) versus 0.19 ± 0.1 
(n=7) for tumor and normal samples, respectively, the difference is significant, P=0.003. Two samples (marked by light grey color) of patients with hemorrhage have 
been excluded from the average. D) Western blots illustrate PDL1 protein levels in established and PDGx glioma cell lines (left) and in the extracellular media collected 
from these cell lines (right). The protein content of the collected media was concentrated six folds before an analysis (see method). The graph (right) provides PDL1 
concentrations in CSF samples from control and tumor-bearing mice (see method). The immunocompetent glioma mice model with GL261 cells was utilized for this 
experiment. E) Images illustrate interactions of tumor neuro spheres from XD456 (a) and from two parental U251-IDH1-R132H cell lines with different PDL1 expression 
levels (b) with primary T-cells. Note that tumor neuro spheres with high PDL1 levels keep their integrity after 48 hours of interaction with primary T-cells (illustrated in the 
insert). The graph represents the average percent of neuro spheres after 48 hours of interaction with T-cells, 89 ± 7% (n=4) and 14 ± 5% (n=4) for cell lines with high 
and low PDL1 levels, respectively. The difference is significant, P=0.0002. Primary T-cells were loaded with calcein, AM (green) before experiments for visualization.

http://www.cbioportal.org))
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to PDL1 expression after cell transfection with translation initiated 
complexes guided by scrambled sgRNA (as a control) (Figure 2B). 
The simultaneous stimulation of both HIF1A binding sites increased 
PDL1 expression by 1.6 ± 0.3, n=3 fold compared to the control 
(Figure 2B). Our data confirmed the HIF1A/PDL1 signaling axis in 
glioma cell lines and the accessibility and functionality of at least two 
HIF1A binding sites in the PDL1 gene. MLN4924 treatment induces 
PDL1overexpression in glioma cell lines. We predict that HIF1A/
PDL1 axis may be overactivated in glioma cells after treatment with 
MLN4924. Figure 3A illustrates MLN4924 inhibitory dose response 
curves for PDGx, established, and PDGx-stem human glioma cell lines, 
in vitro. The IC50s were 0.3 ± 0.2 uM (n=4), 2.7 ± 1 uM (n=6), 3 ± 2 
uM (n=3), 3 ± 1 uM (n=4), 2.9 ± 0.5 uM (n=4), 0.8 ± 0.2 uM (n=4), 
0.2 ± 0.1 uM (n=4) for LN221, U251, U87, XD451, JX10, XD45-stem, 
X14P-stem cell lines, respectively, after treatment with MLN4924 for 
5 days. Note a remarkable loss of cell viability after treatment with 
MLN4924; however, we also confirmed a significant enhancement of 
HIF1A protein levels in all evaluated PDGx and established glioma cell 
lines after treatment with MLN4924, 1 uM for 5 days (Figure 3B). As 
was expected, HIF1A accumulation was accompanied by a significant 
increase of PDL1 in mRNA and protein levels (Figures 3B and 3C). 
The average enhancements of PDL1/18S mRNA ratio after MLN4924 
treatment compared to untreated cells were 8 ± 3, 25 ± 5, 5 ± 1, 8 ± 3, 
4.5 ± 1 folds for U251, Ln229, U87, XD456, JX6 cell lines, respectively, 
based on three experiments (Figure 3C).

We predict that MLN4924-dependent PDL1 up-regulation in 
glioma cells may enhance T-cell energy during a T-cell encounter with 
glioma cells treated with MLN4924. To evaluate our hypothesis, we 
performed a comparison of the interaction of allogenic T-cells pre-
activated by CD3/CD28 beads with: 

a) Glioma cells (U251 and XD456 cell lines) alone, 

b) Glioma cells plus a PD1/PDL1 blockage, 

c) Glioma cells treated with MLN4924, 

d) Glioma cells treated with MLN4924 plus a PD1/PDL1 blockage. 

After MLN4924 treatment (1 uM, four days), glioma cells were 
washed and placed in the media with/and without an inhibitor of PD1/
PDL1 interaction (4 uM). T-cell proliferation was analyzed 48 hours 
after co-incubation with glioma cells. The results of these experiments 
are summarized in Figure 4. The glioma cells after MLN4924 treatment 
have stronger potential to induce T-cell anergy compared to untreated 
glioma cells (the average decreases in T-cell proliferation were stronger 
by 24 ± 3% (n=4, P=0.0005) and 32 ± 3% (n=4, P=0.0003) after encounters 
with MLN4924 treated U251 and XD456 glioma cells, respectively, 
compared to T-cell proliferation after an encounter with untreated 
U251 and XD456 cells). Importantly, the enhancement of T-cell anergy 
induced by glioma cells treated with MLN4924 was inhibited in the 
presence of PD1/PDL1 inhibitor-#1 (Figure 4), suggesting that PD1/
PDL1 interaction is the main signaling path involved in T-cell anergy 
after glioma cell treatment with MLN4924. We conclude that the co-
utilization of a PD1/PDL1 blockage with MLN4924 treatment reduces 
PD1/PDL1-dependent immune-cell energy associated with MLN4924-
dependent PDL1 up-regulation. Thus, we recommend using inhibitors 
of PDL1/PD1 interaction with MLN4924 treatment to improve anti-
tumor immunity and to reduce glioma progression.

Discussion
The brain tumor is the most devastating and incurable disease of 

the 21st century; it is characterized by high tissue heterogeneity and 
undergoing a fast transformation from low-grade I-II to high- grade 
III-IV malignancy. According to the analysis and projection of the 
national cost of cancer care for 2010-2020, brain cancer is the most 

Figure 2: HIF1A accumulation evokes PDL1 up-regulation in glioma cell lines. A) HIF1A accumulations induced by CoCl2 treatment of U251 and U87 cell lines evoke 
PDL1 up-regulation in protein and mRNA levels. Western blot illustrates HIF1A and PDL1 levels in nuclear and cytoplasmic fractions, respectively, in control and after 
treatment with CoCl2 (85uM). Lamin A/C and alpha Tubulin were utilized to verify nuclear and cytoplasmic fractions, respectively. Graphs illustrate normalized PDL1/ 
GAPDH mRNA ratios after cell treatment with CoCl2 (85uM) at different time points. In each experiment, data has been normalized to the corresponding ratios in 
untreated cells, results are presented as mean ± S.D. B) Transcription initiation complexes encoded by pAC154-dual-dCas9VP160 plasmids, guided by sgRNAs to 
the HIF1A binding domains in the first intron of the PDL1 gene, evoke PDL1 overexpression. Western blot illustrates PDL1 and Actin protein levels in U251 cells after 
transfection with plasmids encoding control (scrambled sequence) sgRNA or HIF1A sgRNAs. Note that transcription initiation complexes guided by sgRNAs to the 
HIF1A binding domains (A), (B), and (A) with (B) simultaneously increased PDL1 expression by 1.5, 3.9 and 1.8 folds, respectively, compared to the control (PDL1 
expression in the presence of transcription initiation complexes guided by scrambled sgRNA). In each experiment, PDL1 expression was normalized to the Actin 
expression.
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expensive in terms of the annual net cost of care per patient and is 
ranked third for lost productivity due to cancer deaths among all adults 
with cancer [32]. 90% of patients with high-grade gliomas experience 
tumor recurrence despite maximum surgical tumor resections, radio, 
and chemotherapies [33,34]. The overall median of patient survival is 

15-18 months, and only about 10% of patients stay alive after five years. 
We believe that a new multimodality therapy, synergistically targeting 
the intrinsic axis of tumor cell survival and promoting anti-tumor 
immunity for long-term treatment, may significantly improve glioma 
patient survival.

Figure 3: MLN4924 treatment induces up-regulation of HIF1A and PDL1 in glioma cell lines. A) The inhibitory dose- response curves for MLN4924 in established, PDGx 
and PDGX-stem glioma cell lines. The IC50s are 0.3 ± 0.2 uM (n=4), 2.7 ± 1 uM (n=6), 3 ± 2 uM (n=3), 3 ± 1 uM (n=4), 2.9 ± 0.5 uM (n=4), 0.8 ± 0.2 uM (n =4), 0.2 ± 
0.1uM (n=4) for LN221, U251, U87, XD456, JX10, XD456-stem, X14P-stem cell lines, respectively, after treatment with MLN4924 for 5 days. B) Western blots illustrate 
HIF1A and PDL1 protein levels in nuclear and cytoplasmic fractions in the control and after treatment with MLN4924 (1 uM, 5 days). LaminA/C and alpha Tubulin were 
utilized to verify nuclear and cytoplasmic fractions, respectively. C) The graph illustrates normalized PDL1/18S mRNA ratios after treatment with MLN4924 (1uM, 5 
days) for different cell lines. Note the significant enhancement of the PDL1/18 mRNA ratio for all cell lines after MLN4924 treatment: 8 ± 3, 25 ± 5, 5 ± 1, 8 ± 3, 4.5 ± fold 
increase compared to the corresponding control values for U251, Ln229, U87, XD456, JX6 cell lines, respectively, P<0.05, n=3.
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Our manuscript emphasizes that MLN4924, in combination with 
the blockage of PD1/PD1 interaction, may be a potential strategy for 
glioma treatment. First, MLN4924 exhibits strong cytotoxicity towards 
glioma cell lines and crosses the blood-brain barrier. Second, MLN4924 
has a minimal impact on the intrinsic axis of immune cell growth 
compared to most of anti-cancer chemotherapeutics, which completely 
wipe out all types of proliferating cells, including immune cells. The 
reported effects of MLN4924 on the immune system consist of: 

a) An increase of CD4-induced epitope exposure in cells infected 
with HIV-1 viruses, however, without significant alteration of host-
initiated antibody-dependent cellular cytotoxicity [35], 

b) A partial suppression of graft-versus-host disease immune-
pathologies [36,37], 

c) A partial decrease of airway inflammatory responses [38]. In 
our manuscript, we demonstrate significant up-regulation of the 
key immunosuppressive checkpoint molecule, PDL1, in glioma cells 
after treatment with MLN4924, and thus, PDL1-dependent T-cell 
energy after an encounter with glioma cells. In agreement with our 
observation, the capacity of a PD1/PDL1-pathway blockage to enhance 
CD4 and CD8 T-cell responses and moreover, to improve anti-BTLA 
or anti-TIM3 therapy during allogeneic T and DC cell interactions 
have been recently confirmed [39]. 

Conclusion
This study extended our knowledge of PDL1 regulation in gliomas, 

the microenvironment of gliomas, and after glioma treatment with 
MLN4924. Therefore, we suggest that a blockage of PD1/PDL1 
interaction during/or after MLN4924 treatment may significantly 
improve the efficiency of MLN4924 therapy via the reduction of PD1/
PDL- dependent immune cell energy and the promotion of anti-tumor 

immunity. Our data justifies that PDL1 up-regulation in gliomas and 
the glioma microenvironment is an important chemotherapeutic target 
and is in agreement with other manuscripts [40-44].  

Acknowledgements

Study limitations

This work has the following limitations: 

i) Although we consider HIF1A a major factor involved in PDL1 up-regulation 
after MLN4924 treatment, we don’t exclude that other pathways/co-factors may 
play a role in the alteration of PDL1 level after MLN4924 treatment,

ii) Further in vivo evaluation of glioma treatment with MLN4924 in combination 
with PD1/PDL1 inhibitors is necessary for the justification of the proposed concept.

Funding

This work was supported in a part by University of Alabama Comprehensive 
Cancer Center Neuro-Oncology Research Acceleration Fund and in a part by 
National Institutes of Health Grant R01 CA200624 (LB Nabors).

Conflict of Interest

The authors declare no conflict of interest.

References
1. Gibbons Johnson R, Dong H (2017) Functional expression of programmed 

death-ligand 1 (B7-H1) by immune cells and tumor cells. Front Immunol 8: 961.

2. Zhou J, Mahoney K, Giobbie-Hurder A, Zhao F, Lee S, et al. (2017) Soluble PD-
L1 as a biomarker in malignant melanoma treated with checkpoint blockade. 
Cancer Immunol Res 5: 480-492. 

3. Cheng S, Zheng J, Zhu J, Xie C, Zhang X, et al. (2015) PD-L1 gene polymorphism 
and high level of plasma soluble Pd-L1 protein may be associated with non-
small cell lung cancer. Int J Biol Markers 30: 364-368.

4. Finkelmeier F, Canli Ö, Tal A, Pleli T, Trojan J, et al. (2016) High levels of the 
soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma 
patients with a poor prognosis. Eur J Cancer 59: 152-159. 

Figure 4: Glioma cells treated with MLN4924 decrease T-cell proliferation via utilization of PD1/PDL1 signaling pathway. A) The graph illustrates an inhibition of T-cell 
proliferation after T-cell encounter with U251 cells (1); with U251 cells in the presence of an inhibitor of PD1/PDL1 interaction (2); with U251 cells treated with MLN4924 
(1uM, for 4 days) (3); with U251 cells treated with MLN4924 (1uM, for 4 days) and in the presence of an inhibitor of PD1/PDL1 interaction (4). After MLN4924 treatment, 
glioma cells were washed and placed in the media with/and without an inhibitor of PD1/PDL1 interaction (4 uM).  Note, that glioma cells treated with MLN4924 induce 
a stronger decrease of T-cell proliferation compared to untreated cells (55 ± 8% (n=4) versus 30 ± 8% (n=4), respectively, the difference is significant with P=0.0005). 
The reduction of T-cell proliferation induced by glioma cells treated with MLN4924 is inhibited in the presence of an inhibitor of PD1/PDL1 interaction (P=0.0009, n=4). 
B) The graph illustrates an inhibition of T-cell proliferation after T-cell encounter with XD456 cells (1); with UXD456 cells in the presence of an inhibitor of PD1/PDL1 
interaction (2); with XD456 cells treated with MLN4924 (1uM, for 4 days) (3); with XD456 cells treated with MLN4924 (1uM, for 4 days) and in the presence of an inhibitor 
of PD1/PDL1 interaction (4). After MLN4924 treatment, glioma cells were washed and placed in media with/and without an inhibitor of PD1/PDL1 interaction.  Note, that 
glioma cells treated with MLN4924 induce a stronger decrease of T-cell proliferation compared to untreated cells (74 ± 8% (n=4) versus 41 ± 7% (n=4), respectively, 
the difference is significant with P=0.0003). The reduction of T-cell proliferation induced by glioma cells treated with MLN4924 is inhibited in the presence of an inhibitor 
of PD1/PDL1 interaction (P=0.007, n=4).



Citation: Filippova N, Yang X, An Z, Nabors LB, Pereboeva L (2018) Blocking PD1/PDL1 Interactions Together with MLN4924 Therapy is a Potential 
Strategy for Glioma Treatment. J Cancer Sci Ther 10: 190-197. doi: 10.4172/1948-5956.1000543

J Cancer Sci Ther, an open access journal 
ISSN: 1948-5956 Volume 10(8) 190-197 (2018) - 197 

5. Rossille D, Gressier M, Damotte D, Maucort-Boulch D, Pangault C, et al. (2014) 
High level of soluble programmed cell death ligand 1 in blood impacts overall 
survival in aggressive diffuse large B-Cell lymphoma: Results from a French 
multicenter clinical trial. Leukemia 28: 2367-2375.

6. Frigola X, Inman B, Lohse C, Krco C, Cheville J, et al. (2011) Identification 
of a soluble form of B7-H1 that retains immunosuppressive activity and is 
associated with aggressive renal cell carcinoma. Clin Cancer Res 17: 1915-
1923.

7. Chen L, Han X (2015) Anti–PD-1/PD-L1 therapy of human cancer: Past, 
present, and future. J Clin Invest 125: 3384-3391.

8. Antonios J, Soto H, Everson R, Moughon D, Wang A, et al. (2017) Detection of 
immune responses after immunotherapy in glioblastoma using PET and MRI. 
Proc Natl Acad Sci USA 114: 10220-10225.

9. Lussier D, O’Neill L, Nieves L, McAfee M, Holechek S, et al. (2015) Enhanced 
T-Cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 
interactions. J Immunother 38: 96-106.

10.  D’Angelo S, Tap W, Schwartz G, Carvajal R (2015) Corrigendum to Sarcoma 
immunotherapy: Past approaches and future directions. Sarcoma  p: 1.

11. Xue S, Hu M, Iyer V, Yu J (2017) Blocking the PD-1/PD-L1 pathway in glioma: 
A potential new treatment strategy. J Hematol Oncol 10: 81.

12. Beug S, Beauregard C, Healy C, Sanda T, St-Jean M, et al. (2017) Smac 
mimetics synergize with immune checkpoint inhibitors to promote tumour 
immunity against glioblastoma. Nat Commun 8: 14278.

13. Nakashima H, Alayo Q, Penaloza-MacMaster P, Freeman G, Kuchroo V, et al. 
(2018) Modeling tumor immunity of mouse glioblastoma by exhausted CD8 T 
cells. Scientific Reports 8: 208.

14. Soucy T, Smith P, Milhollen M, Berger A, Gavin J, et al. (2009) An inhibitor 
of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458: 
732-736.

15. Bhatia S, Pavlick A, Boasberg P, Thomson J, Mulligan G, et al. (2016) A phase 
I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat 
(TAK-924/MLN4924) in patients with metastatic melanoma. Invest New Drugs 
34: 439-449.

16. Smith M, Maris J, Gorlick R, Kolb E, Lock R, et al. (2011) Initial testing of the 
investigational NEDD8-activating enzyme inhibitor MLN4924 by the pediatric 
preclinical testing program. Pediatr Blood Cancer 59: 246-253.

17. Hua W, Li C, Yang Z, Li L, Jiang Y, et al. (2015) Suppression of glioblastoma 
by targeting the overactivated protein neddylation pathway. Neuro Oncol 17: 
1333-1343.

18. Mansouri S, Zadeh G (2015) Neddylation in glioblastomas. Neuro Oncol 17: 
1305-1306.

19. Zhao Y, Xiong X, Jia L, Sun Y (2012) Targeting Cullin-RING ligases by MLN4924 
induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR 
axis. Cell Death Dis 3: e386.

20. Zhou X, Tan M, Nyati M, Zhao Y, Wang G, et al. (2016) Blockage of 
neddylation modification stimulates tumor sphere formation in vitro and stem 
cell differentiation and wound healing in vivo. Proc Natl Acad Sci USA 113: 
E2935-E2944.

21. Ryu J, Li S, Park H, Park J, Lee B, et al. (2010) Hypoxia-inducible factor α 
subunit stabilization by NEDD8 conjugation is reactive oxygen species-
dependent. J Biol Chem 286: 6963-6970.

22. Curtis V, Ehrentraut S, Campbell E, Glover L, Bayless V, et al. (2015) 
Stabilization of HIF through inhibition of Cullin-2 neddylation is protective in 
mucosal inflammatory responses. FASEB J 29: 208-543.

23. Noman M, Desantis G, Janji B, Hasmim M, Karray S, et al. (2014) PD-L1 is a 
novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-
mediated T cell activation. J Exp Med 211: 781-790.

24. Barsoum I, Smallwood C, Siemens D, Graham C (2013) A mechanism of 
hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res 
74: 665-674.

25. Palazón A, Aragonés J, Morales-Kastresana A, Landazuri M, Melero I, et al. 
(2011) Molecular pathways: Hypoxia response in immune cells fighting or 
promoting cancer. Clin Cancer Res 18: 1207-1213.

26. Ruf M, Moch H, Schraml P (2016) PD-L1 expression is regulated by hypoxia 
inducible factor in clear cell renal cell carcinoma. Int J Cancer 139: 396-403.

27. Chang Y, Yang C, Lin M, Wu C, Yang P, et al. (2016) High co-expression of 
PD-L1 and HIF-1α correlates with tumour necrosis in pulmonary pleomorphic 
carcinoma. Eur J Cancer 60: 125-135.

28. Chen T, Wu C, Wang C, Hsu W, Yang T, et al. (2015) Associations among 
pretreatment tumor necrosis and the expression of HIF-1α and PD-L1 in 
advanced oral squamous cell carcinoma and the prognostic impact thereof. 
Oral Oncol 51: 1004-1010.

29. Filippova N, Yang X, Wang Y, Gillespie G, Langford C, et al. (2011) The RNA-
Binding protein HuR promotes glioma growth and treatment resistance. Mol 
Cancer Res 9: 648-659.

30. Filippova N, Yang X, Ananthan S, Sorochinsky A, Hackney J, et al. (2017) Hu 
antigen R (HuR) multimerization contributes to glioma disease progression. J 
Biol Chem 292: 16999-17010.

31. Liu L, Duff K (2008) A technique for serial collection of cerebrospinal fluid from 
the cisterna magna in mouse. J Vis Exp 21: 960. 

32.  Mariotto A, Yabroff K, Shao Y, Feuer E, Brown M, et al. (2011) Projections 
of the cost of cancer care in the United States: 2010-2020. J Natl Cancer Inst 
103: 117-128.

33. Scorsetti M, Navarria P, Pessina F, Ascolese A, D’Agostino G, et al. (2015) 
Multimodality therapy approaches, local and systemic treatment, compared 
with chemotherapy alone in recurrent glioblastoma. BMC Cancer 15: 486.

34. Taunk N, Moraes F, Escorcia F, Mendez L, Beal K, et al. (2016) External beam 
re-irradiation, combination chemoradiotherapy, and particle therapy for the 
treatment of recurrent glioblastoma. Expert Rev Anticancer Ther 16: 347-358.

35. Tokarev A, Stoneham C, Lewinski M, Mukim A, Deshmukh S, et al. (2015) 
Pharmacologic inhibition of NEDD8 activation enzyme exposes CD4-Induced 
epitopes within Env on cells expressing HIV-1. J Virol 90: 2486-2502.

36. Pai C, Khuat L, Chen M, Murphy W, Abedi M (2017) Therapeutic effects of a 
NEDD8-activating enzyme inhibitor, pevonedistat, on sclerodermatous graft-
versus-host disease in mice. Biol Blood Marrow Transplant 23: 30-37.

37. Mathewson N, Fujiwara H, Wu S, Toubai T, Oravecz-Wilson K, et al. (2016) 
SAG/Rbx2-dependent neddylation regulates T-Cell responses. Am J Pathol 
186: 2679-2691.

38. Jin H, Liao L, Park Y, Liu Y (2012) Neddylation pathway regulates T-cell 
function by targeting an adaptor protein Shc and a protein kinase Erk signaling. 
Proc Natl Acad Sci USA 110: 624-629.

39. Stecher C, Battin C, Leitner J, Zettl M, Grabmeier-Pfistershammer K, et al. 
(2017) PD-1 Blockade promotes emerging checkpoint inhibitors in enhancing T 
Cell responses to allogeneic dendritic cells. Front Immunol 8: 572. 

40. Heiland D, Haaker G, Delev D, Mercas B, Masalha W, et al. (2017) 
Comprehensive analysis of PD-L1 expression in glioblastoma multiforme. 
Oncotarget 8: 42214-42225.

41. Polivka J, Polivka J, Holubec L, Kubikova T, Priban V, et al. (2017) Advances 
in experimental targeted therapy and immunotherapy for patients with 
glioblastoma multiforme. Anticancer Res 37: 21-33.

42. Zeng J, Zhang X, Chen H, Zhong Z, Wu Q, et al. (2016) Expression of 
programmed cell death-ligand 1 and its correlation with clinical outcomes in 
gliomas. Oncotarget 7: 8944-8955.

43. Berghoff A, Kiesel B, Widhalm G, Rajky O, Ricken G, et al. (2014) Programmed 
death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. 
Neuro Oncol 17: 1064-1075. 

44. Jacobs J, Idema A, Bol K, Nierkens S, Grauer O, et al. (2009) Regulatory T 
cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant 
human brain tumors. Neuro Oncol 11: 394-402.


	Title
	Corresponding author
	Abstract
	Figure 1
	Figure 2
	Figure 3
	Figure 4

