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Abstract
The climatology provides, for a given location or region, the time series of drought strength, the number, the 

mean duration, and the maximum duration of droughts of a given intensity. Similarly to most hydrological phenomena, 
droughts are characterized by a number of features such as their severity, duration and magnitude. Multivariate 
drought characterization has not been carried out in the various regions of the African continent despite the disastrous 
environmental, economic and social impacts of droughts. In the present paper, drought characteristics are modeled 
jointly in a multivariate frequency analysis (FA) framework for a data set from the Medjerda River, the principal 
watercourse in Tunisia. To identify drought events, the adopted threshold levels are estimated using the Flow Duration 
Curve (FDC) method. A sensitivity analysis to the threshold level is conducted. Results indicate that the drought 
features are significantly dependent and should be considered simultaneously for effective and rational modeling. 
Frank copula is shown to be the most appropriate copula model to represent drought features for the considered data 
set. The joint probabilities and bivariate return periods, based on the developed two dimensional copula models, are 
estimated in order to evaluate the contribution and advantages of bivariate modeling of droughts. These results are of 
practical relevance to hydrologists and water resources managers in Tunisia for applications in drought risk analysis 
and drought management, and in general for the optimal planning and management of water resources systems.
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Introduction
Drought is a recurrent feature of the North African climate. Due 

to its arid and semi-arid climate and to the uneven temporal and 
spatial distribution of rainfall in space and time, Tunisia is frequently 
affected by extreme hydro-climatic events such as floods and droughts. 
Generally, a drought event, followed by relatively severe floods, occurs 
in Tunisia once every 10 years [1]. These natural disasters have caused 
major drawbacks to the economic, social, environmental and ecological 
development in Tunisia throughout history. Recent severe and prolonged 
droughts have highlighted Tunisian’s vulnerability to this natural hazard 
and alerted the public, the government, and operational agencies to the 
many socio-economic problems accompanying water shortage and to 
the need for drought mitigation measures. The impacts of these events 
are being aggravated by the ever increasing water demand. A number 
of strategies relative to water resources planning and management were 
developed by the Tunisian government over the last three decades. 
Despite these efforts, these extreme climate events continue to cause 
serious damages to the Tunisian economy. These challenges warn of 
the critical need for improved scientific investigations to meet current 
and future water requirements in Tunisia. Drought studies have been 
suffering from the lack of consistent methods for drought analysis. The 
first step in a drought analysis would be to define the drought event. 
The scientific community has only agreed on general definitions of a 
drought event. A drought is generally defined as a sustained period of 
significantly lower rainfall events, low flows and soil moisture levels 
relative to usual levels. Tallaksen and Van Lanen [2] defined droughts 
as “a sustained and regionally extensive occurrence of below average 
natural water availability”. During drought periods, water supply can 
be inadequate to meet water demand. A large number of economic 
and environmental activities can also be seriously affected by this lack 
of water availability. A multivariate approach for the analysis of the 
frequency of such events is presented in the present paper. In this work, 
droughts are related to streamflow deficits. The volume, duration and 
magnitude of low flows are treated as random variables. Expanding 

populations, increasing land and water use, lack of rainfall, high 
temperatures and high evaporation and evapotranspiration rates are 
the major factors and causes of droughts in Tunisia [3]. Severe drought 
events have been occurring frequently in Tunisia with considerable 
impacts. The last three drought events that occurred during 1987-1989, 
1993-1995 and 2000-2002 were very severe and resulted in significant 
negative economic and social impacts. In general, governmental 
support to drought-related studies, mitigation and adaptation in Tunisia 
remains insufficient and needs to be increased. More efforts need to 
be devoted to statistical modeling of historical drought data in Tunisia 
in order to acquire a better understanding of drought characteristics, 
dynamics and evolution in the region. Since droughts are stochastic in 
nature, the proper way to explore droughts is by using probabilistic-
based approaches. Following Yevjevich, who introduced the theory of 
runs to analyze droughts, a large number of researchers investigated 
the probabilistic properties of droughts [3-14]. Frequency estimation 
in hydrology is commonly used for the analysis of extreme hydrological 
events. The Principal aim of frequency analysis (FA) is identifying a 
relationship between the magnitude or the severity of extreme events 
and their probability of occurrence. This relationship can be obtained 
using the experimental probabilities and distribution functions [15]. 
Ouarda et al. [13] provided a review of statistical models commonly 
used in the estimation of low flows. A number of research efforts on 
drought FA in arid and semi-arid regions were conducted during the 
last two decades. For instance, Eltahir [16] used available rainfall series 
in central and western Sudan to analyse drought frequency in the 
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region. Hallack and Watkins [17] investigated how drought intensity-
duration-frequency estimates and seasonal drought forecasts can be 
useful for farmers and other water managers in northern Mexico. Kim 
et al. [10] proposed a non-parametric approach for estimating return 
periods of droughts in arid regions. Note that the effectiveness of FA 
techniques was limited by the quality and length of available data series. 
Most of the previous studies focused separately on one or more of the 
drought characteristics in a univarite analysis framework. It has been 
extensively shown in the literature that extreme hydrologic events, 
such as droughts, are multivariate events [4,14,18-26]. Yoo et al. [27] 
developed a practical drought frequency analysis method based on a 
bivariate distribution by incorporating regional drought attributes that 
are associated with drought frequency (e.g., duration and severity). 
These events are characterized by a number of random variables which 
are mutually correlated. These variables are often selected to be the 
volume Vd or severity S representing the water deficit below a selected 
threshold Tr, the duration D of the event and the magnitude M defined 
as the ratio of S over D [11,22,28-31]. Therefore a better approach for 
describing drought events is to derive the joint distribution of these 
variables. The remainder of the paper is organized as follows. The 
multivariate drought characterization approach is presented in section 
2. In this section, the definitions of a drought threshold level, drought-
related variables and return period in drought analysis are presented. In 
section 3, the case study and the data base are presented. The univariate 
and multivariate FA procedures are presented in section 4. Multivariate 
drought characterisation using copulas and results are provides and 
discussed in section 5. Finally, a number of conclusions are presented 
and promising other research directions in drought modelling is 
suggested.

Methodology
Multivariate drought: characterisation and modelling

Using the multivariate approach to deal with extreme hydrological 
events, such as floods and droughts, instead of the univariate analysis 
was justified by several investigators. In recent years, a number of 
research and review papers have addressed multivariate modeling of 
extreme events in hydrology. It was also shown in the literature that 
univariate hydrological FA provides a limited assessment of an extreme 
event probability of occurrence. In addition, the univariate analysis 

of event characteristics does not take into account their dependence 
structure and this reduces the risk estimation accuracy. The univariate 
approach could be justified when only one variable is significant or when 
variables are independent. A drought is, however, a multivariate event 
characterized by the variables mentioned earlier in the introduction 
and presented in Figure 1 (volume Vd or severity S, duration D and 
magnitude M). Shiau and Shen [32] suggested that a better approach 
for describing drought characteristics is to derive the joint distribution 
of D and S. A bivariate distribution is thus appropriate to describe these 
correlated hydrologic variables. De Michele et al. [33] defined a drought 
event as extreme expressions of the river flow dynamics and episodes 
during which the streamflow is below a given threshold. They described 
droughts as multivariate events characterized by two variables: D and S. 
In their work, a new concept of dynamic return period was introduced 
and formulated using the theory of Copulas and calculated via a 
Survival Kendall’s approach.

Definition of a drought threshold

In this study, a drought is defined, using the threshold level 
method [33], as an event during which the streamflow is continuously 
below a certain threshold level Tr as shown in Figure 1. The threshold 
level method has already been evaluated for its applicability to daily 
discharge series for streams in different climate zones and with 
different hydrological regimes. Shiau [12] used the Standardized 
Precipitation Index (SPI) method to define a drought event where the 
threshold corresponds to the median. They used the SPI to quantify the 
precipitation deficit in terms of the probability for multiple time scales. 
Positive or negative values of SPI indicate respectively that the observed 
precipitation is higher or lower than the associated median. The wet and 
dry conditions are, however, classified according to this median which 
represents a threshold level. Chung and Salas [7] converted the original 
flows into a sequence of zeros and ones based on a threshold flow equal 
to the sample mean. The value 0 denotes the dry state and 1 the wet 
state, depending on whether flows are smaller or greater than the mean. 
One of the most fundamental hydrological characteristics is the Mean 
Annual Runoff (MAR). It is the mean value of available annual flow 
totals time series. When dividing the MAR by time we obtain the long-
term mean daily discharge called the Mean Daily Flow (MDF). Various 
streamflow drought indices may be expressed as a percentage of either 
MAR or MDF. The Median Flow (MF), which is the middle value in a 

Figure 1: Definition sketch of drought events: This figure illustrates how drought events are defined. We extract all the events during which the streamflow is 
continuously below a certain threshold level Tr. Each drought event is characterized by its volume Vd (or severity S) representing the water deficit below a selected 
threshold Tr, the duration D of the event and the magnitude M defined as the ratio of S over D.

Figure 1: Definition sketch of drought events: This figure illustrates how drought events are defined. We extract all the events during which the streamflow is continuously below a certain threshold level Tr. Each drought event is characterized by its volume Vd (or severity S) representing the water deficit below a selected 
threshold Tr, the duration D of the event and the magnitude M defined as the ratio of S over D.
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ranked flow time series, can also represent a conservative upper bound 
for low flows that can be considered as a threshold level. For instance, 
Smakhtin [8] argued about the suitability of the MAR and the MF to 
distinguish between droughts and low flows. Various other streamflow 
drought indices may be estimated from the Flow Duration Curve 
(FDC) which is one of the most informative methods of displaying 
all discharge values including droughts and floods. FDC can be 
constructed using different time scales (e.g. daily, monthly and annual). 
It was shown in the literature that FDC based on daily flow time series 
provides the most reliable way of analysing event characteristics (e.g. 
Searcy [34]; Tallaksen et al., [2]; Smakhtin, [8]). A brief presentation 
of FDC is given below and a detailed description of FDC construction 
and interpretation can be available in a number of references (e.g. 
Searcy [34]; Vogel and Fennessey [35]; Smakhtin et al., [8]). FDC plots 
the empirical frequency of streamflow as a function of the percentage 
of time that the streamflow is equalled or exceeded. To construct the 
curve, data are ranked in a decreasing order, and for each value the 
probability of exceedance is computed using a probability plotting 
position formula. Many of the positions commonly recommended are 
of the form (1-α)/(n-2α+1) for the ith observation within a sample of 
size n and the value of the constant α refers to specific formulas such 
as α= 0.5 (Hazen), α = 0.375 (Blom), and for normal probability plots; 
α = 0 (Weibull and Gumbel) (see e.g. Rao and Hamed, [36]). Other 
rules (Gringorten, Cunnane) are tested in the present study. The 
corresponding results (not presented here due to space limitations) 
show clearly that the value of the constant α does not have a notable 
effect on flow duration curves. The threshold level is considered as 
the boundary between usually and unusually low streamflows and it 
is chosen based on the characteristics of the streamflow regime. In the 
case of perennial and intermittent streams, indices such as percentiles 
from the FDC, are frequently applied. For perennial streams, the more 
commonly used low flow indices that can be easily obtained from a 
FDC are between the 90 and 70 percentiles respectively denoted Q90 
and Q70 [2,8,10,37,38]. 

Drought severity, duration and magnitude

For a given threshold level, drought events are illustrated by the shaded 
sets in Figure 1. As mentioned in section 2 of the present paper, each 
drought event is composed of a drought duration D, severity S (or drought 
volume Vd ) and magnitude M. In the literature Vd is also called deficit on 
the negative run sum. For the ith drought event, Vd is defined as:

ei

bi

t
i i

d r t t r
t

V D Q dt Q T= Τ − <∫                                                                 (1)

Where tbi and tei are respectively the starting and ending times of 
the ith drought event and Qt is the discharge at the time t. From the 
selected threshold level and the available record of daily discharges and 
after computing all deficits and drought event durations, some of the 
identified droughts could be very close to each other. These represent 
minor drought events (events 1 and 2 in Figure 1 for instance), and 
therefore could be mutually dependent. This situation could occur for 
instance for short time scales and this is often the case for arid and 
semi-arid regions. Note that the presence of a considerable amount of 
minor events could have a negative impact on the analysis. To overcome 
this difficulty, two assumptions are made [39]. First, we consider only 
events where S is larger than a given minimum value, Vmin which can 
be fixed according to the case study. The second assumption is related 
to deficits larger than the so-called very minor ones. It can happen 
that during a drought event the discharge exceeds the threshold level 
for a very short period (Figure 1) and thus splits a practically single 
streamflow drought into two events (events 1 and 2 in Figure 1). In this 
case, it can be considered that these events represent only one deficit.

Multivariate drought characterisation using copulas

When the observed S and D are highly correlated (which is the 
case in the present study), the construction of the joint distribution 
of drought-related variables becomes necessary. Multivariate drought 
characterisation and copulas used in constructing the joint distribution 
are discussed in the present section. To overcome the limitations 
of classical dependence measures, copulas have recently received 
increasing attention in a number of fields (see for instance Nelsen [40]). 
A copula is a description and a model of the dependence structure 
between random variables, independently of the marginal laws. A 
general description of copulas theory can be found, for instance, in 
Nelsen (2006).

A copula is a function C: I X I→I(I=[0,1]) such that:

For all u, v ∈ I: C(u,0)=0, C(u,1)=u, C(0,v)=0, C(1,v)=v

For all u1, u2, v1, v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2:

C (u2,v2)-C(u2,v1)-C(u1,v2)+C(u1,v1) ≥ 0      		                   (2)

The link between copulas and bivariate distribution functions is 
provided by the Sklar’s theorem [41] which states that the most general 
marginal-free description of the dependence structure of multivariate 
distributions is through its copula. We consider herein the situation 
with two marginal distribution functions F1 and F2 of the random 
variables X(1) and X(2) respectively. Let F1,2 denote the joint distribution 
function with marginal distributions F1 and F2. Then, there exists a 
copula C such that, for all real x1 and x2:

F1,2(x1,x2)=C(F1(x1),F2(x2))              			                (3)

Furthermore, if F1 and F2 are continuous, then C is unique. 
Archimedean and Extreme Value (EV) copulas represent classes of 
particular interest. A copula C is an EV copula if and only if there exists 
a real-valued convex function A on the interval [0,1] such that:

log(u, v) exp (log u log v) A
log log

uC
u v

   = +  +                                

(4)

Where 0<u, v<1 and max {t, 1-t} ≤ A(t) ≤ 1. The case A ≡1 
corresponds to independence, and A(t)=max{t,1-t} Corresponds to the 
copula C(u,v) = min(u,v). Statistical inference on Pickand’s function A 
can summarize the inference on its bivariate EV copula C. A bivariate 
Archimedean copula is characterized by a generator ѱ(.) that is a 
convex decreasing function satisfying Ѱ(1)=0 where:

( ),  ( (u) (v)), 0 u, v 1C u v = ψ ψ +ψ < <                                    (5)

Copulas that belong to this class are symmetric and associative. The 
Frank, Clayton and Gumbel logistic models are the simplest and most 
popular copulas. For instance, Frank copula corresponds to:

exp( t) 1(t) ln ( , ) / 0
exp( ) 1

 −θ −
ψ = − θ∈ −∞ ∞ −θ −                                                (6)

The Frank copula function is defined as:

1 (e 1)(e 1)(u, v;0) ln 1 , 0
e 1

v v

C
−θ −θ

−θ

 − −
= + θ ≠ θ −                                     (7)

Note that the Gumbel copula is the only one which is simultaneously 
Archimedean and EV copula.

Multivariate return periods for droughts

The notion of return period is commonly used by hydrologists and 
civil engineers and represents an important variable for the design of 
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water resource systems and infrastructures. The risk related to droughts 
is the probability that one or more droughts with a certain D, S or Md 
occur during the life time of the project [42]. One can define the return 
period in drought analysis in different ways for different applications. 
When applied to drought-related variables, the concept of return 
period indicates the average time between the occurrences of critical 
events [9,43]. Douglas defined the return period in drought estimation 
and analysis as the average number of trials required to the first 
occurrence of a critical event. An alternative definition of return period 
is the average time between the occurrence of events with a certain S or 
less [44]. The return periods TS and TD corresponding to S and D are 
respectively expressed as:

1 1(S )
{S s} 1

1 1(D )
{D } 1

S
S

D
D

T T s
P F

T T d
P d F

 = ≥ = = ≥ −

 = ≥ = =
 ≥ −            

                                 (8)

Where FS and FD are the univariate distributions of S and D.

The concept of return period of drought-related variables was 
introduced recently for the multivariate context [32,45]. For instance, 
Shiau [32] proposed a methodology that categorizes the return periods 
of multivariate hydrologic events as joint and conditional return 
periods. We can define the joint S and D return periods in two ways: (i): 

(S s )SDT T and D d= ≥ ≥ and (ii) * (S s )SDT T or D d= ≥ ≥

{S , }

{S }

SD

SD

P s D d

P s or D d


 ≥ ≥


 ≥ ≥

                                                                           (9)

The definition for the copulas-based drought events is as follows:
1 1

1 1 ( ,F )SD
S D SD S D S D

T
F F F F F C F

= =
− − + − − +                                        (10)

where SD F denotes the two dimensional distribution function 

with univariate distributions FS for S and FD for D. It is important 
to notice that various S and D combinations can result in the same 
value of the return period. Copulas dependence parameters can be 
obtained employing the method of moments based on the inversion of 
Spearman’s ρ and Kendall’s τ. It was shown in the literature that such 
approach may lead to inconsistencies [46]. More reliable results can be 
obtained using the maximum pseudo-likelihood (MPL) approach [47]. 
It is based on the information contained in the moments of the first 
and second order of the endogenous variables. This approach consists 
in maximizing the log pseudo-likelihood and it can provide greater 
flexibility than the likelihood approach in the representation of real 
data. The Cramér-von Mises goodness-of-fit test and the associated 
p-value of the estimate, for the same threshold level, are also used in 
the present study. In addition, the Akaike criterion (AIC) is used to 
discriminate between copulas. This last criterion maximises the log-
likelihood over the obtained parameter and is given by:

2ln(ML) 2AIC = − +      				                      (11)

Where ML denotes the maximum likelihood for the model. The 
model that possesses the minimum value of AIC should be selected.

Case Study: Basin and Data
Tunisia is the country with the smallest area in North Africa. 

Tunisia occupies a privileged geographic position at the crossroads of 
the Eastern and Western basins of the Mediterranean, between Europe 
and Africa (Figure 2). It is located at the north-eastern tip of Africa and 
is bordered by the Mediterranean to the North and the East, by Libya 
to the South, and by Algeria to the West. Tunisia is characterised by a 
Mediterranean climate with hot dry summers and cool moist winters. 
Precipitation is very irregular and the rainfall varies considerably 
from the North to South. The rainy season extends from September 
to May, with relatively intense precipitations in the autumn. Tunisia 
is divided into four large geographical units, namely the Northern, 
Eastern, Central and Southern regions. Most of the land is either in a 
semi-arid or arid zone. There are five bioclimatic zones in going from 

Figure 2: Location of the study region (Medjerda River basin in Tunisia) and station (Jendouba). It can be seen from this figure that Tunisia is located at the north-
eastern tip of Africa and is bordered by the Mediterranean to the North and the East and by Algeria to the West. The Medjerda River originates in the Atlas Mountains 
of eastern Algeria and then flows eastwards to Tunisia to finally enter the reach the Mediterranean Sea. The entire Medjerda catchment covers approximately 24,000 
km2, of which 16,300 km2 (32%) are located in Tunisia.

Figure 2: Location of the study region (Medjerda River basin in Tunisia) and station (Jendouba). It can be seen from this figure that Tunisia is located at the north-eastern tip of Africa and is bordered by the Mediterranean to the North and the East and by Algeria to the West. The 
Medjerda River originates in the Atlas Mountains of eastern Algeria and then flows eastwards to Tunisia to finally enter the reach the Mediterranean Sea. The entire Medjerda catchment covers approximately 24,000 km2, of which 16,300 km2 (32%) are located in Tunisia.
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the most arid to the most humid based on rainfall [48]. Rainfall and 
temperature (especially the winter temperature) are the most important 
bioclimatic determinants. These are not only governed by altitude but 
by the degree of continentally. Inland regions have hotter summers 
and colder winters than coastal areas which benefit from the buffering 
effects of the sea. Bio climatically, therefore, the country is also divided 
into areas of warm, cool and cold winters. Every few years, the country 
experiences a large-scale drought. During the last few decades, Tunisia 
has experienced more than three severe drought events, which may be 
considered as extreme. Rainfall deficits were observed in Tunisia during 
1987–1989, whereas more severe droughts were recorded during the 
1981–1983, 1991–1995 and 1999–2002 periods. According to Touchan 
et al. [49,50], the most recent drought of 1999–2002 appears to be the 
worst since at least the middle of the 15th century. More than 20 years 
presented water deficit on a total of 32 years of survey (between 1972 
and 2003). The area under study is a sub-basin of the Medjerda river 
basin and is defined as the area draining into the gauging station of 
Jendouba (Figure 2). The drainage area of the Medjerda River basin at 
this location is 2420 km2.

The Medjerda River basin

The Medjerda River (also known as Oued Medjerda) is the longest 
(with a length of 450 km) and most important river in Tunisia. It 
originates in the semi-arid Atlas Mountains of eastern Algeria, and 

then flows eastwards to Tunisia (Figure 2), to finally enter the Gulf of 
Utica in the Mediterranean Sea. The entire Medjerda catchment covers 
approximately 24,000 km2, of which 16,300 km2 (32%) are located in 
Tunisia. The Medjerda River is Tunisia’s principal watercourse and 
constitutes the water supply source for more than half of the Tunisian 
population (more than 5 million inhabitants out of 10 millions). It is 
also the major supplier of water to the country’s wheat crops [51]. The 
food security of the entire country relies on the Medjerda River inflows. 
On average, the water resources of the Medjerda River represent 1 
billion m3/year or 37% of the surface water in Tunisia and 22% of the 
country’s renewable water resources [51]. Agriculture is the primary 
economic activity in the interior of the basin with more than 100,000 ha 
irrigated with water from the Medjerda River. The River is also used for 
domestic water supply to several regions in the country.

Data

Daily streamflow data for the Jendouba station for the period 1966–
2008 are utilized in the present study. The discharge data were provided 
by the General Direction of Water Resources (DGRE, Direction 
Générale des Ressources en Eau). Streamflow data from the Jendouba 
station was used by several investigators [51-54]. On the basis of these 
daily streamflow, and using a selected threshold, drought events are 
identified and the corresponding features are derived. More details are 
given in the following section. The empirical FDC for the Medjerda 
River with the Hazen rule is shown in Figure 3 and corresponding low 
flow indices are presented in Table 1. When a threshold level of Tr = 
0.387 m3/s is used (which represents the 90% low flow from the daily 
FDC) a total of 32 drought events are detected during the period of 
1966-2008. The total deficit for the same threshold level is 1.665106 m3/s. 
The number of events and the total deficit corresponding to a number 
of threshold levels are also shown in Table 1. D, S and M are extracted 
from the observed drought events. M was ranked in a descending order 
to extract the largest observed droughts for each threshold level. Table 2 
summarizes these drought-related variables for the 15 largest droughts 
using three threshold levels (the Medjerda River at Jendouba 1966-

Figure 3: Flow Duration Curve FDC of the Medjerda River (Jendouba) in 
Tunisia. This figure shows the empirical FDC for the Medjerda River with the 
Hazen rule.

Figure 3: Flow Duration Curve FDC of the Medjerda River (Jendouba) in Tunisia. This figure shows the empirical FDC for the Medjerda River with the Hazen rule.

104

102

100

0                0.2               0.4               0.6               0.8                 1

St
re

am
flo

w
 (m

3/
s)

Probability of non exceedance

Threshold level (m3/s) Number of 
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Correlation 
coefficient 

R(D,S)
Q90 0.387 32 1.665 0.88
Q85 0.466 48 2.943 0.87
Q80 0.542 57 4.653 0.9

Table 1: Threshold levels and corresponding streamflow drought characteristics.

Date M (m3/s) S(106) (m3) D(days) Date M (m3/s) S(106)  (m3) D  (days) M(m3/s) S(106)(m3) D  (days)
2003 0.257 1.222 55 2003 0.328 1.618 57 2003 0.398 58
1996 0.225 1.342 69 1996 0.296 1.819 71 1996 0.344 78
1995 0.216 1.7 91 1990 0.27 2.166 93 1990 0.338 95
1994 0.21 1.722 95 1995 0.259 2.375 106 1987 0.326 111
1990 0.202 1.55 89 1994 0.255 2.425 110 1981 0.269 101
1987 0.175 1.659 110 1987 0.251 2.408 111 1980 0.254 80
1980 0.147 0.789 62 1980 0.199 1.253 73 1995 0.253 149
1981 0.131 1.041 92 1981 0.198 1.697 99 1991 0.245 105
2001 0.121 0.313 30 1991 0.177 1.544 101 2009 0.233 92
1991 0.112 0.893 92 2009 0.169 1.271 87 1998 0.225 114
2009 0.108 0.712 76 2002 0.155 0.886 66 2002 0.214 72
1984 0.103 0.634 71 1998 0.153 1.472 111 1984 0.201 122
2002 0.094 0.469 58 1993 0.143 0.839 68 1992 0.199 87
1998 0.093 0.766 95 1984 0.136 1.335 114 1993 0.193 82
1993 0.081 0.413 59 1992 0.131 0.937 83 1989 0.182 50

Table 2: Streamflow M, S and D for the 15 magnitude-based largest droughts using three threshold levels (Medjerda River at Jendouba 1966-2008).
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2008). It is shown from these Tables that since 1966 the three worst 
drought events, with regards to magnitude and for the Q90 threshold 
level, have occurred in the Medjerda River basin in 2003, 1996 and 1995 
respectively. The results of Table 2 confirm the testimonies of a large 
number of farmers who experienced these drought events (Hamdi, 
2009). It was also shown in other references [55,56] that events that took 
place in 2003, 1994-1996 and 1990 were the worst to occur in Tunisia 
over the last century. The drought events which occurred during the 
years 1987 and 2002 were pointed out by many investigators [1,56-58]. 
The importance of the other events presented in Table 2 was noted by 
other investigators [49,56,59,60]. Figure 4 shows a histogram of drought 
characteristics (S and D) for the Medjerda River basin considering the 
Q90 threshold level only. Other statistical characteristics of S and D of 
the Medjerda River basin considering the threshold levels Q90, Q85 
and Q80 are given in Table 3.

Case Study: Results
In this section, we present the results of the application of the 

methods developed in the methodology section to the case study 
dataset.

Fitting drought severity and duration margins

The main objective of a FA is to relate the magnitude of the events of 
interest to their frequencies of occurrence through the use of probability 
distributions. For each selected threshold level, the number of drought 
events is listed in Table 1. The values of D and S corresponding to three 
threshold levels are extracted from observed drought events and are 
presented in the previous section. Univariate FA explores separately 
each variable in a data set. The following distributions have been 
commonly used for drought-related frequency analysis: Exponential 
distribution [61], Generalized Pareto [62], Gamma distribution [63], 
Lognormal II and Lognormal III distribution [64] and Log-Pearson 
(LP3) distribution [65]. These distributions are therefore considered in 
the present study for fitting S and D, and the appropriate choice for each 
variable is determined based on goodness-of-fit tests and statistical 
criteria. More precisely, the Khi-squared χ2 goodness-of-fit test and the 
Akaike Information Criterion (AIC) are performed. Parameters of the 
univariate distributions are estimated using the method of moments 
(MOM), maximum likelihood method (MLM) and Probability 
Weighted moments (PWM). Results of the test and criteria mentioned 
above are summarized in Table 4. The χ2 test p-values show that the 
Exponential (MLM), The Generalized Pareto (MOM and PWM), the 
Gamma (MLM) and the LP3 (MOM) can be selected as potential 
candidates (p-value<5%) to model D. Among these distributions, 
the LP3 (MOM) gave the smallest value of AIC (306.738). The LP3 
distribution is therefore selected to model drought duration for the 
Medjerda River basin. Similarly, we can deduce that the LP3 (MOM) 

presented an appropriate fit for drought severity (p-value = 9.16% and 
AIC = 903.763). Figure 5 shows the observed D and S and obtained 
distribution functions for the LP3 (MOM) distribution. The closeness 
between the observed data and fitted distribution for both figures (S 
in the top panel and D in the bottom panel) indicates that the three 
parameters LP3 distribution fitted with MOM is appropriate to model 
both S and D but with different parameter values. The probability 
density function of the LP3 distribution with its parameters α, λ and m 
is given by the following equation:

1(x) (ln(x) m) exp( (ln(x) m))
( )

f
x

λ
λ−∝

= − −α −
Γ λ                                   (12)

The LP3 distribution parameters, for S and D, are given in Table 5.

Copulas for drought severity and duration

In this study, a copula-based distribution representing the bivariate 
behaviour of droughts (severity-duration) in the Medjerda River basin 
is derived. Several types of copulas are tested to identify the most 
appropriate one. The candidate copulas are: the Gumbel, Clayton, 
Frank, Galambos, Normal, Husler-Reiss and Plackett. As indicated 
earlier in this paper, the significant correlations observed between S 
and D (correlation = 0.88, Kendall’s τ = 0.71 and Spearman’s ρ = 0.89) 
suggest that drought-related variables should be modelled jointly. 

Figure 4: Drought-related variables in the Medjerda River basin with threshold level Q90. This figure shows a histogram of drought characteristics (duration at the left 
and severity at the right) for the Medjerda River basin considering the Q90 threshold level only.
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characteristics (duration at the left and severity at the right) for the Medjerda River basin considering the Q90 threshold level only. 
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Q90 Q85 Q80

S (m3) D (days) S (m3) D (days) S (m3) D (days)

Minimum 1.13E+04 5 1.52E+04 6 4.80E+03 6
Maximum 1.72E+06 110 2.42E+06 114 3.86E+06 166

Mean 5.22E+05 46.83 6.13E+05 47.5 8.16E+05 50.8
Median 2.78E+05 45.5 1.87E+05 39.5 3.32E+05 47

Standard 
Deviation 5.79E+05 63.64 7.53E+05 36.2 9.90E+05 40.3

Kurtosis 2.47 1.63 3.06 1.75 3.74 2.87
Skewness 0.92 0.29 1.17 0.47 1.31 0.8

Table 3: Statistical characteristics of S and D for different threshold levels.

AIC χ2 p - value
S D S D S D

Exp. (MLM) 911.275 309.004 22.5 9 0.0004 0.1091
G. Pareto (MOM) Nd 307.433 24 9.5 0.0002 0.0907
G. Pareto (PWM) Nd 308.048 17 10.5 0.0045 0.0622
Gamma (MOM) 906.336 311.729 13.5 14 0.0191 0.0156
Gamma (MLM) 904.297 310.787 9.5 7 0.3579 0.2206
LN2 (MLM) 906.295 313.607 11 16 0.0514 0.0068
The bold character indicates the accepted distribution.

Table 4: Univariate frequency analysis results for S and D for threshold level Q90.
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Copulas which consider only situations with relatively weak correlations 
(between -0.3 and 0.3), such as the Farlie-Gumbel-Morgensterm copula 
[66], are not considered in the present paper. Results of the MPL method 
(for Q90 threshold level) are reported in Table 6. They indicate that 
relatively minor differences exist in the joint probabilities of the 7 tested 
copulas (with Q90 threshold level). The value of the log-likelihood 
function of the Frank copula is equal to 23.31 and this value is larger 
than those of other copulas. The minimum value of the AIC (-44.62) 
corresponds to the Frank copula as well. This copula is then selected as 
the potential candidate to model droughts in the Medjerda River basin. 
The comparison between the obtained copula and observed droughts 
is presented in Figure 6. Although comparison with observed droughts 
is difficult to illustrate, we can still see in Figure 6 that observed data 
are well represented by the Frank copula. A number of authors have 
underlined in the literature the adequacy of Frank copula to represent 
drought data [67]. Figure 7 illustrates the contours of the Frank copula 
with the Q90 threshold level. According to the LP3 distribution 
function (Eq. 12) and the corresponding estimated parameters given in 
Table 5, S and D quantiles corresponding to return periods of T = 2, 5, 
10, 20, 50 and 100 years, and to threshold levels of Q90, Q85 and Q80, 
are summarized in Table 7. Figure 8 is an illustration of contours of 
joint return periods of S and D defined by Eq. 3. Figure 8 can be used by 
practitioners to obtain results such as: In the case of the Medjerda River 
basin, for a given threshold level (for example Q90) and depending 
on the drought-related exercise, one can conclude, for instance, the 
following:

•	 The 100-year drought severity varies between V115,100 = 1,85.106 
m3 and V110,100 = 1,9.106 m3.

•	 The 50-year drought severity varies between V115,50 = 1,8.106 m3 
and V108,50 =1,9.106 m3.

•	 The 10-year drought severity varies between V115,10 = 1,49.106 
m3 and V95,10 = 1,9.106 m3.

Similarly, for future severe streamflow droughts in the Medjerda 
River, one can use Figure 8 to determine the return periods corresponding 
to the values of the severity and duration. Finally, it can be concluded that 
in terms of return values estimates the bivariate estimation procedure 
performs comparably to the univariate procedure. For instance, the 10, 
50 and 100-year severity estimates (1, 49.106 m3; 1, 83.106 m3 and 1, 
86.106 m3) obtained when using the univariate FA (Table 7), belong to 
the ranges estimated by the Multivariate analysis [1,49 - 1,9].106; [1,25 

Figure 5: Observed probabilities with fitted LP3 distribution for severity S and 
duration D. It shows the empirical probabilities for D and S and the fitting with the 
LP3 distribution functions (using the method of moments MOM for parameters 
estimation). The closeness between the observed data and fitted distribution 
for both figures indicates that the three parameters LP3 distribution fitted with 
MOM is appropriate to model both S and D but with different parameter values.

Figure 5: Observed probabilities with fitted LP3 distribution for severity S and duration D. It shows the empirical probabilities for D and S and the fitting with the LP3 distribution functions (using the method of moments MOM for parameters estimation). The closeness between the observed data and 
fitted distribution for both figures indicates that the three parameters LP3 distribution fitted with MOM is appropriate to model both S and D but with different parameter values.
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Q90 QQ85 QQ80
 S D  S D  S D

a -0.688363 -1.746922 -0.635839 -1.837829 -0.944104 -2.790086
l 0.872408 1.037528 0.952772 1.217317 1.278521 2.102812

m 6.274639 2.049483 6.420921 2.106088 6.597664 2.255147

Table 5: LP3 distribution parameters.

Gumbel Clayton Frank Galambos Normal Husler-Reiss Plackett

GOF test p-value 0.0135 0.0015 0.1173 0.0095 0.0245 0.0135 0.0145
Parameter  (MPL) 2.89 2.73 11.88 2.19 0.89 2.88 28.58
Log-likelihood 19.9 17.5 23.31 20.08 22.92 20.53 21.18
AIC -37.79 -33.07 -44.62 -38.16 -43.84 -39.06 -40.36
The bold character indicates the selected copula corresponding to the smallest AIC value.

Table 6: Copulas parameter estimation with the MPL method (threshold Q90).

Return period Q90 QQ85 Q80
(years) S (m3) D (days) S (m3) D (days) S (m3) D (days)

2 2.79E+05 43 2.53E+05 41 3.77E+05 41
5 1.09E+06 81 1.28E+06 83 1.60E+06 86

10 1.49E+06 96 1.89E+06 102 2.41E+06 111
20 1.71E+06 104 2.26E+06 113 3.00E+06 129
50 1.83E+06 109 2.50E+06 121 3.49E+06 147

100 1.86E+06 111 2.58E+06 124 3.71E+06 156

Table 7: Return periods of S and D separately.
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- 1,9].106 and [1,8 - 1,9].106 m3 respectively. However, in addition to the 
fact that the univariate estimation does not consider the variation in 
the dependence structure of the phenomenon, it gives us single severity 
values regardless of events durations. It means that two drought events 
with the same severity and two different durations (20 days and 100 
days for instance) will have the same probability of occurrence. This 
illustrates the major limitation of the univariate framework and how 
the information it provides is practically erroneous.

Figure 6: Joint probability of observed droughts and various copulas (with Q90 threshold level). Although comparison with observed droughts is difficult to illustrate, we 
can still see here that observed data are well represented by the Frank copula.

Figure 6: Joint probability of observed droughts and various copulas (with Q90 threshold level). Although comparison with observed droughts is difficult to illustrate, we can still see here that observed data are well represented by the Frank copula.
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Figure 7: Contours of joint probabilities of severity S and duration D for the Frank copula (with Q90 threshold level).

1 . 0       

     0.9

0 . 8

    0.8
      

  7.0    

0 . 6

    0.6 
      

     0.5 

0 . 4

    0.4 
      

     0.3 

0 . 2

    0.2 
      

     0.1 

0 . 0       

0.0 0.2 0.4 0.6 0.8 1.0
Figure 7: Contours of joint probabilities of severity S and duration D for the Frank copula  
(with Q90 threshold level).

Concluding Remarks
A bivariate drought frequency analysis study in the Medjerda River 

basin, Tunisia, is presented. A statistical model based on copulas is 
developed in this study to compute the joint drought severity S and 
drought duration D probability. Drought severity and duration are 
important characteristics and are often used as design variables for 
water management infrastructures. However, S and D are usually 
analyzed separately. Since the literature has shown that droughts 
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cannot be modeled with separate univariate characteristics, bivariate 
probabilistic proprieties are derived in this study. Droughts in the 
Medjerda River basin in Tunisia are used as case study. The basic 
data is obtained from specific threshold levels which are considered 
as boundaries between usually and unusually low streamflow values. 
Streamflow drought indices and threshold levels are estimated 
employing the Flow Duration Curve. A very significant relationship 
exists between the observed D and S with a correlation coefficient 
greater than 85%. The construction of a joint distribution for these 
drought-related variables has therefore become necessary. The three-
parameter Log-Pearson (LP3) distribution function using the method 
of moments (MOM) gave the best fit to both D and S. Copulas are 
employed to construct the dependence structure for D and S. Several 
types of copulas are tested to select the most appropriate one. The 
method of moment-type and the maximum pseudo-likelihood 
approach are employed to estimate the copula parameters. The 
Cramér-von Mises goodness-of-fit test, the K-function graphical 
test and the Akaike criterion (AIC) are used to discriminate between 
copulas. It was found that the Frank copula provides the best fit in 
comparison to other copulas, for the observed drought data of the 
Medjerda River basin. The contours of the Frank copula and the joint 
probabilities are also investigated and presented. It was demonstrated 
in this paper that copulas can be easily applied to construct the 
dependence structure of multivariate high correlated drought-related 
variables. The advantages of using the multivariate approach to model 
drought characteristics are also discussed.
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