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Abstract
A novel two-photon fluorescence probe for Hg2+ derived from bis(styryl)terephthalonitrile as a two-photon 

fluorophore and bis [2-(2-hydroxyethyl sulfanyl) ethyl] amino group (ionophore) as a novel Hg2+ ligand was 
developed. The probe possesses small molecule size, large two-photon absorption cross-section (1067 GM) in 
H2O, noncytotoxic effect, long-wavelength emission at 588 nm, large Stokes shift (121 nm), excellent photostability, 
high water-solubility, good cell-permeability, and pH-insensitivity in the biologically relevant range. The probe 
can selectively detect Hg2+ ions in live cells and living tissues without interference from other metal ions and the 
membrane-bound probes, and its quenching constant (Ksv

TP) is 8.73 × 105 M-1.

Keywords: Bis(styryl)terephthalonitrile; Mercury; Cell-imaging; 
Two-photon fluorescence probe

Introduction
An insight of selective staining/imaging of specific cellular ions is of 

paramount importance for a deeper understanding of the character of 
each ion in a cellular system and their complex biological functions and 
processes [1-3]. Two-Photon (TP) excitation fluorescence microscopy 
(TPM), which uses two photons of lower energy as the excitation 
source, has rapidly evolved into a widely used tool in biological and 
biomedical research and is popular.

Ion-targeting two-photon excited fluorescence (TPEF) probes have 
increasingly drawn attention because of the laser light excitation of 
these probes, which offers number of advantages including deep tissue 
imaging, minimal photodamage to biological samples and bleaching 
to the probes, and low interference from the auto-fluorescence of a 
cell [4-6]. Various TPEF probes have been successfully designed and 
synthesized for lead ion [7], zinc ion [8-10], silver ion [11,12], glucose 
[13], cysteine/homocysteine [14], and thiols [15] in the past few years.

Mercury and its derivatives are widely used in industry, which 
causes adverse environment and health problems [16,17]. Concerns 
over toxic exposure to mercury provide motivation to explore new 
methods for monitoring aqueous Hg2+ in living cells. Either in plants 
or in animals, sensing of Hg2+ has been conducted by means of atomic 
absorption spectroscopy [18], X-ray microanalysis [19], or 203Hg2+ 
detection which usually needs expensive apparatus and/or sample 
preparation and pays the price of damaging the living organisms [20]. 
However, fluorescent chemodosimeters provide a promising way for 
simple and rapid tracking of Hg2+ in biological systems. But, only a 
few of these fluorescent probes have been utilized successfully in living 
cells [21], as fluorescent chemodosimeters for Hg2+ detection are often 
limited by nonspecific interference from Cu2+ and other competing 
metal ions [22,23], or are incompatible with aqueous media and living 
cells [24], and/or delay Hg2+ response [25].

Although many one-photon sensors for mercury ion have been 
developed [26-29], only a few two-photon fluorescence chemodosimeter 
for mercury ion were reported [30-32]. But, one among these three 
probes is used just for bioimaging and has a considerably small δ value. 
Thus it can be seen that the development of two-photon fluorescence 

sensors for mercury ion is not only indispensable to biological 
chemistry but also really challenging.

Recently, we reported a mercury TPEF probe for Hg2+ derived from 
4-methyl-2,5-dicyano-4'-amino stilbene (DCS) as a TP fluorophore and 
bis[2-(2-hydroxyethyl sulfanyl)ethyl]amino group (HSA) as a novel 
Hg2+ ligand [33]. Although this probe exhibited excellent selectivity for 
Hg2+, it was not applied to live cell and living Tissues imaging.

Herein, we extend our earlier work [33] and report a new TPEF 
probe for Hg2+ derived from bis(styryl) terephthalonitrile as a two-
photon fluorophore and bis[2-(2-hydroxyethyl sulfanyl) ethyl]amino 
group (ionophore) as a novel Hg2+ ligand, which contains two sulfur 
atoms known as “soft base” capable of chelating so called “soft acid” 
heavy metal cations, and exhibits a good affinity to Hg2+. We report 
that BHg (Figure 1) is capable of imaging Hg2+ ions in live cells without 
mistargeting and photobleaching problems.

Experimental
Materials and Methods

NMR spectra were recorded on a VARIAN INOVA 400 MHz 
NMR spectrometer. Mass spectral determinations were made on a 
ESI-Q-TOF mass spectrometry (Micromass, UK). High resolution 
mass spectra measurements were performed on a GC-TOF mass 
spectrometry (Micromass, UK). Fluorescence measurements were 
performed on a PTI-C-700 felix and time-master system. Fluorescence 
quantum yields were measured using standard methods [34] on air-
equilibrated samples at room temperature. Quinine bisulfate in 0.05 
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mol L-1 H2SO4 (Φ=0.546) was used as a reference [34]. TPEF (two-
photon-excited fluorescence) action cross-section spectra were 
measured according to the experimental protocol established by Xu 
and Webb [35], using a mode-locked Ti/sapphire laser that delivers ~80 
fs pulses at 76 MHz. Fluorescein (10-4 mol L-1 in 0.1 mol L-1 NaOH), 
whose TPEF action cross-sections are well-known [35], served as the 
reference. The quadratic dependence of the fluorescence intensity on 
the excitation intensity was verified for each data point, indicating 
that the measurements were carried out in intensity regimes in which 
saturation or photodegradation does not occur. The measurements were 
performed at room temperature on air-equilibrated solutions (10-5 mol 
L-1). The experimental uncertainty on the absolute action cross-sections 
determined by this method has been estimated to be ± 20% [35]. 
Absorption spectra were measured on a HP-8453 spectrophotometer. 
Solvents were generally dried and distilled prior to use. Reactions were 
monitored by thin-layer chromatography on Merck silica gel 60 F254 pre-
coated aluminum sheets. Column chromatography: Merck silica gel Si 
60 (40 µm to 63 µm, 230-400 mesh). The pH-dependent fluorescence 
studies were performed according to the literature [36].

Synthesis

2,5-bis((E)-4-(bis(2-chloroethyl) amino) styryl) terephthalonitrile 
(8): Aldehyde 2 (560 mg, 2.28 mmol), and NaH (55 mg, 2.28 mmol) 
were dissolved in 3 mL of tetrahydrofuran (THF), and the solution was 
cooled to 0°C under N2. To this solution, phosphonate 7 (488 mg,1.14 
mmol) in 9 mL of THF was added dropwise. The reaction mixture was 
stirred for 1 h at 0°C, and then for 12 h at room temperature, followed 
by the removal of THF under reduced pressure. Water was added to the 
reaction mixture, and the product was extracted with dichloromethane 
(4 × 10 mL). The organic layer was dried with dry Na2SO4 followed by 
evaporation of the solvent. The crude product was separated by column 
chromatography with a gradient of hexane in dichloromethane (20% to 
0%) and ethyl acetate in dichloromethane (0% to 20%). The resulting 
solid was recrystallized from acetone to give compound 8 (453 mg, 65%) 
as a yellow powder.

IR (KBr) cm-1: 2223 (C≡N) and 1594~1348 (C=C). 

HRMS (EI) m/z: 610.1225 (calcd for C32H30Cl4N4: 610.1225).
1H NMR (DMSO-d6, 400 MHz) ppm: 8.446 (s, 2H, Ph), 7.620 (d, 

2H, J=16.4 Hz, CH=CH), 7.498 (d, 4H, J=8.4 Hz, Ph), 7.054 (d, 2H, 
J=16.4 Hz, CH=CH), 6.844 (d, 4H, J=8.8 Hz, Ph), 3.772 (t, 8H, J1=J2=4.4 
Hz, NCH2), 3.712 (t, 8H, J1=J2=2 Hz, CH2Cl)

Elemental analysis: calculated for C32H30Cl4N4 (MW 612.42) C 
62.76, H 4.94, Cl 23.16, N 9.15%; Found C 62.80, H, 4.98, Cl 23.13, N 
9.10%.

2,5-bis((E)-4-(bis(2-(2-hydroxyethylthio) ethyl) amino) 
styryl) terephthalonitrile (BHg): Compound 8 (306 mg, 0.5 mmol), 
2-mercaptoethanol (172 mg, 2.2 mmol), and anhydrous K2CO3 (414 
mg, 3 mmol) were dissolved in acetone (25 mL), then the mixture was 
refluxed for 24 h with stirring under N2. The resulting mixture was 
filtered, and the filtrate was concentrated by evaporating the solvent 
to get a viscous liquid. The crude product was purified by column 
chromatography using acetone/dichloromethane to afford compound 
BHg (335 mg, 86%) as a red solid. Further purification could be 
achieved by recrystallization from methanol to give needle solid.

 IR (KBr) cm-1: 3422 (OH), 2922 (CH), 2220 (C≡N) and 1631~1349 
(C=C). 

 HRMS (EI) m/z: 778.2715 (calcd for C40H50N4O4S4: 778.2715).

1H NMR (CHCl3-d, 400 MHz) ppm: 8.442 (s, 2H, Ph), 7.620 (d, 2H, 
J=16.0 Hz, CH=CH), 7.513 (d, 4H, J=8.8 Hz, Ph), 7.055 (d, 2H, J=16.0 
Hz, CH=CH), 6.789 (d, 4H, J=8.4 Hz, Ph), 4.918 (t, 8H, J=4.8 Hz, 4 × 
OCH2), 3.633 (t, 8H, J1=J2=6.0 Hz, 4 × NCH2), 2.791 (t, 8H, J1=6.8 Hz, 
J2=7.6 Hz, 4 × SCH2), 2.728 (t, 8H, J1=6.8 Hz, J2=6.4 Hz, 4 × SCH2), 
2.564 (s, 4H, 4 × OH). 13C NMR (CHCl3-d, 100 MHz) ppm: 147.68, 
138.02, 134.96, 129.36, 128.88, 123.48, 117.03, 116.12, 113.15, 111.64, 
61.23, 50.69, 34.11, 28.69. 

Elemental analysis: calculated for C40H50N4O4S4 (MW 779.11) C 
61.66, H 6.47, N 7.19, O 8.21, S 16.46%; Found C 61.71, H 6.54, N 7.16, 
O 8.17, S 16.42%.

Results and discussion
Design and synthesis of 2,5-bis((E)-4-(bis(2-(2-hydroxyethylthio) 
ethyl) amino) story) terephthalonitrile (BHg)

2,5-dibromo-p-xylene (4) [37], 2,5-dimethyl-terephtha-
lonitrile (5) [37], 2,5-bis(bromomethyl)terephthalonitrile (6) 
[37],1,4-Bis(diethylphosphorylmethyl)-2,5-dicyanob-benzene (7) [38] 
and 4-[Bis(2-chloro-ethyl) amino] benzaldehyde (2) [39] were synthe-
sized according to literature procedures. The nucleophilic substitution of 
8 and 2-mercaptoethanol gave BHg in high yield (86%) (Scheme 1). In 
the reaction of 8 and 2-mercaptoethanol, the substitution of no hydroxy 
group but mercapto group for chloro group was observed, because the 
nucleophilic strength of mercapto group is superior to that of hydroxy 
group.

Selectivities of Sensor BHg for Metal Ions

The solubility of BHg in water was 576 µM, which is sufficient to 
stain the cells (Supplementary Figure S1), Supporting Information 
(SI)). To obtain insight into the binding properties of BHg toward metal 
ions, the fluorescent spectrum changes were investigated upon addition 
of various metal ions (Ag+, Ca2+, Cd2+, Cr3+, Fe3+, Co2+, Ni2+, Fe2+, Na+, 
Cu2+, Zn2+, Mn2+, Mg2+, Hg2+, Pb2+, K+, and Ba2+) to 30 mM MOPS 
buffer (100 mM KCl, 10 mM EGTA, pH 7.2. EGTA=ethylene glycol 
bis(2-aminoethyl ether) N,N,N',N'-tetraacetic acid, and MOPS=3-
(morpholino) propanesulfonic acid) of BHg (Figure 2), respectively. 
The experimental results suggest that BHg shows a notable selectivity 
to Hg2+. As depicted in Figure 2, BHg displays scarcely any response to 
other metal ions and weak complexation with Ag+, Pb2+ and Cu2+. The 
highly selective recognition of BHg for mercury ion can be attributed 
to two factors. On the one hand, a sulfur atom and Hg2+ are typical “soft 
base” and “soft acid”, respectively; and the very strong affinity between 
them is quite natural. On the other hand, the nitrogen atom properties 
and the numbers of sulfur atoms in open chain monoazadithiacrown 
ether may play an important role in the affinities of nitrogen and sulfur 
atoms to heavy-metal-ion.

Sensitivity of sensor BHg to Hg2+ in UV-Vis, one- and two-
photon excited fluorescence spectra

Notably, upon complexation with Hg2+, two characteristic strong 
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Figure 1: Molecular structure of probe BHg.
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absorption bands of BHg transferred from 467 and 269 nm to 426 
and 284 nm, respectively, a hypochromatic shift of 41 nm and a 
bathochromic shift of 15 nm occurred with the cation-binding event, 

and the absorption band centered at 467 nm and the absorption band 
centered at 269 nm declined and enhanced gradually, respectively 
(Figure 3). The quenching constant (KsvAb) of BHg for mercury ion 
was determined from the absorption-titration curves to be 8.24 × 105 
M-1 and 4.36 × 104 M-1 at 20°C in 30 mM MOPS buffer (Supplementary 
Figures S1 and S2).

BHg exhibits a very strong sensitivity to Hg2+ in the OP and TP 
processes (Figures 4 and 5), and the emission band of BHg centered at 
587 nm progressively decreased upon the addition of Hg2+ to the solution. 
The quenching of BHg shows a downward non-linear curvature in the 
Stern-Volmer plot (I587 vs [Hg2+]) in a broader Hg2+ concentration (0 
µM to 40 µM) (Supplementary Figures S3-S5) range. The quenching 
constants (KsvOP and KsvTP) for BHg calculated from the OP and TP 
fluorescence titration curves (Figures 4 and 5) are 5.25 × 105 M-1 (2.76 
× 104 M-1) and 6.94 × 105 M-1 (2.24 × 104 M-1) (Supplementary Figures 
S1,S3 and S5), respectively; the detection limit of the probe is in the 
micromolar range. However, in a narrower concentration (0.10 µM to 
10 µM) range, two linear Stern-Volmer plots are obtained with Stern-
Volmer constants of KsvOP=8.59 × 105 M-1 and KsvTP = 8.73 × 105 M-1 
(Supplementary Figures S1, S4 and S6). BHg is strongly fluorescent in 
CH2Cl2 (Ф=0.83) and H2O (Ф=0.62). This means that BHg can serve as 
a good sensor for mercury ion applied to OPF and TPF detection.

Job’s plot for BHg-Hg2+ complex

For the complexation ratio between the ligand and the metal ion, 
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Figure 3: The absorption spectra of BHg (10 µM) in 30 mM MOPS buffer (100 
mM KCl, 10 mM EGTA, pH 7.2) after addition of Hg2+ (0 µM to 40 µM). 
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mM KCl, 10 mM EGTA, pH 7.2) after addition of Hg2+ (0 µM to 40 µM).
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a Job plot experiment was conducted by varying the concentration of 
both BHg and Hg2+. Solutions of BHg and Hg2+ in 30 mM MOPS buffer 
in different mole fractions were prepared by mixing BHg and Hg2+ in 
H2O in appropriate ratios while maintaining the total concentration to 
1.0 μmol L-1. The absorbance of each solution at 467 nm was measured. 
The concentration of BHg-Hg2+ complex for each solution was 
calculated by using the UV absorption data and the quenching constant 
(Supplementary Figure S4). The plot of (complex) vs the mole fraction 
of Hg2+ shows a maximum when the mole fraction is 0.67, indicating 
that BHg is coordinated with Hg2+ with 1:2 stoichiometry in water 
solution (Supplementary Figure S7-S13).

Two-photon absorption cross section of BHg versus two-
photon excited wavelength

δ of BHg was determined by using the two-photon-induced 
fluorescence measurement technique [35]. As expected, δ of BHg 
decreased 2.7-fold from 1067 to 294 GM upon the addition of 20 µM 
Hg2+ to the solution (Figure 6). TP excitation of BHg produced similar 
emission spectra compared to OP excitation. Likewise, its two-photon 
excitation spectra are analogous to the OP absorption spectra, and 
it had a TP excitation maximum at 810 nm. When excess Hg2+ was 
added, δ decreased even further, probably because the electron-
donating ability of the aromatic amino moiety is attenuated upon 
complexation.

One-Photon Fluorescence Spectra of Sensor BHg versus pH

The fluorescence of BHg was also slightly weakened by protonation 
of the tertiary amine in the bis(styryl)terephthalonitrile skeleton 
upon pH <4.5 or so, and remained unchanged at pH 4.5-13 (Figure 
7). The enhancement of the fluorescence at high pH and quenching by 
H+ and Hg2+ are consistent with a ICT mechanism from the aromatic 
amines. Therefore, BHg is pH-insensitive in the biologically relevant 
pH range.

Two-photon Scanning Microscopy Imaging

For two-photon in vitro imaging, cells were imaged in the tissue 
culture chamber (5% CO2, 37°C) using a Zeiss 510 LSM (upright 
configuration) confocal microscope equipped with a femtosecond-
pulsed Ti:sapphire laser (Mira 900-F, Coherent). The excitation beam 
produced by the femtosecond laser, which was tunable from 700 
nm to 1100 nm (λex=810 nm, ~1.5 W), passed through an LSM 510 
microscope with HFT 650 dichroic (Carl Zeiss, Inc.) and focused onto 
the coverslip-adherent cells using a 63× oil immersion objective (NA 

1.4). The NLO META scan head allowed data collection in 10.7 nm 
windows at 610 nm, and a bypass filter of 550 nm to 650 nm was used 
for collection of the emission light.

Details of the preparation of the mouse fibroblast culture are given 
in the SI. The TPM images of mouse fibroblast labeled with BHg showed 
very strong TPF at 550 nm to 650 nm (Figure 8a), and the high contrast 
and good resolution were observed, indicating BHg has a considerably 
desired cell-imaging effect and good cell-permeability. After addition of 
20 μM Hg2+ to the imaging solution and the incubation at 37°C under 
5% CO2 for 15 min, the TPF intensity decreased rapidly, and the TPM 
image became shaded and obscure (Figure 8b). Without interference 
from the membrane-bound probes (due to no fluorescence at 360 
nm to 460 nm) in this visual window, therefore, BHg can detect Hg2+ 
concentrations in live cells and has noncytotoxic effect.

To further investigate the utility of this probe in deep tissue imaging, 
TPM images were obtained from a part of a mouse brain tissue slice 
incubated with 10.0 µM BHg for 30 min at 37°C. Two TPM images were 
obtained in the same plane at a depth of about 120 µm. Without the 
addition of Hg2+, the TPM image was bright (Figure 9a), while, after the 
addition of Hg2+, the emission was clearly diminished (Figure 9b). This 
result demonstrate that BHg is capable of detecting intracellular Hg2+ 
ions at a depth of 120 µm in living tissues by using TPM.
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Figure 5: TP emission spectra of BHg (1.0 µM) in 30 mM MOPS buffer (100 
mM KCl, 10 mM EGTA, pH 7.2) after addition of Hg2+ (0 µM to 40 µM).
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Building a calibration curve for a Hg2+-BHg complex

All reagents were of the highest purity available and at least of 
analytical reagent grade. The standard stock solution of lead (Ⅱ) was 
prepared by dissolving the appropriate amount of mercury nitrate and 
a small amount of HNO3 in double distilled water. A series of standard 
solutions of Hg2+ may be prepared with different concentrations by 
appropriate dilution of the stock solution with water, and are calibrated 
by volumetric analysis. As seen in (Figure S6) (SI), the TPF intensities 
of BHg (1.0 µM) show a linear correlation of Hg2+ concentrations from 
1.0 × 10-7 to 1.6 × 10-5 mol L-1. The TPF intensities are plotted versus the 
solution standard concentrations, and the points should form a straight 
line. This line, called a calibration curve, shows how changes in TPF 
intensity with the concentration of a solution.

A calibration curve of the TPF intensities for BHg (1.0 µM) versus 
the Hg2+ concentrations from 1.0 × 10-7 to 1.6 × 10-5 mol L-1 was obtained 
by fitting a linear equation to the data in Table 1. The calibration 
curve is equivalent to the equation 1 (Figure 10). In Figure 10, the 
correlation coefficient (r) and the population correlation coefficient (ρ) 
are r = -0.99888 and p<0.0001, respectively. This indicates that there 
is a good linear correlation between the TPF intensities and the Hg2+ 
concentrations from 1.0 × 10-7 to 1.6 × 10-5 mol L-1.

Y = -2407.07 - 13536.52 × log [Hg2+]                                                        (1)

Conclusion
In conclusion, we have developed a TPF probe BHg with 

small molecule size, large TP absorption cross-section (1067 GM), 
noncytotoxic effect, long-wavelength emission at 587 nm (adjacent to 
the ideal imaging visual window 650 nm to 900 nm), large Stokes shift 
(120 nm), excellent photostability, moderate water-solubility and good 
cell-permeability. BHg is pH-insensitive in the biologically relevant 
range, and its quenching constant (KsvTP) is 8.73 × 105 M-1. This novel 
probe can selectively detect Hg2+ ions in live cells and living tissues at 
a depth of 120 µm without interference from other metal ions and the 
membrane-bound probes.
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Figure 9: TPM images of a mouse brain tissue slice stained with 10.0 μM 
BHg at a depth of ca. 120 µm with magnification 100×. Before (a) and after 
(b) addition of 20.0 µM Hg2+ to the imaging solution. The two-photon excitation 
fluorescence (TPEF) images were collected at 550 nm to 650 nm upon 
excitation at 810 nm with a femtosecond pulse. Cells shown are representative 
images from replicate experiments (n=5).
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Figure 10: The calibration curve of the TPF intensities for BHg (1.0 µM) at 587 
nm versus the Hg2+ concentrations from 1.0 × 10-7 to 1.6 × 10-5 mol L-1.

Serial number X a Y b

1 1.00E-07 720
2 1.50E-07 680.32
3 2.00E-07 635.12
4 3.00E-07 601.89
5 4.00E-07 550.38
6 6.00E-07 511.45
7 7.00E-07 496.51
8 1.00E-06 438.21
9 1.50E-06 386.54
10 2.00E-06 340.09
11 2.50E-06 298.47
12 3.50E-06 257.78
13 4.50E-06 217.28
14 5.50E-06 185.98
15 7.50E-06 155.46
16 1.00E-05  125.75
17 1.25 E-05 100.00
18 1.40 E-05 70.00
19 1.60 E-05 40.00

a (Hg2+) / mol L-1 ; b Relative TPF Intensity

Table 1: Relative TPF intensities of BHg (1.0 µM) at 587 nm under different Hg2+ 
concentrations.
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