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Abstract

Objective: To obtain an equation for the prediction of radiofrequency induced ablation volumes.

Summary of Background Data: Radiofrequency ablation of tumor masses is an established procedure and is
increasingly used as pain therapy of unresectable spine tumors. The bipolar radiofrequency ablation potentially
minimizes the risk of injury to adjacent structures. Predictability of the extent of the induced ablation zosne has been
hown on an ex-vivo model. There has been no investigation examining the parameters of radiofrequency ablation in
an in-vivo model.

Methods: 38 lesions of the spine in 36 patients were treated using bipolar radiofrequency ablation. Extent of
ablated tissue, amount of administered energy, average power and total duration of ablation were recorded.

Results: Induced Volume of Necrosis (VN) correlates with Average Power (AP) following the equation
VN=-3.579+0.998*AP.

Conclusion: Average power can be used as the most predictive parameter for calculation of the induced
necrosis volume in an in-vivo model too.

Keywords: Bipolar radiofrequency ablation; Spine; Neoplasms;
Prediction

Introduction
Bone metastases are often the source for tumor-associated pain

causing reduction of the patient´s quality of life. After lung and liver
metastases, bones are the third most common localization for
metastases [1]. Patients in an advanced tumor stage, who develop
symptoms of paraplegia or massive local pain due to a local spinal
process, often cannot be treated surgically due to their impaired
general condition and considering the grim prognosis of the
underlying disease. In these cases a local, minimally-invasive therapy
as a palliative approach may be a useful option for reducing patient
symptoms and preserving mobility. Radiofrequency Ablation (RFA) of
tumor masses is an established procedure proven in numerous studies
to be an effective therapeutical option for neoplasms of the liver,
kidney, lung and bone [2-7]. It is also increasingly used as pain therapy
for unresectable spine tumors either alone or in combination with
vertebroplasty [6,8,9]. A potential complication of this pain therapy is
the accidental injury of nerves adjacent to tumorous masses due to the
inability to visualize the exact spreading of heat generation before and
during the treatment. Stopping the ablation when the patient mentions
pain during the therapy, it still often is too late to avoid nerve damage,
especially if the tumor has already invaded the dorsal rim of the
vertebral body and the spinal canal [8]. In many studies analgesic

therapy was performed using monopolar electrodes [8,10-14]. Often
the result of the necrosis induced by monopolar electrodes deviated a
lot from the preinterventionally planned and are shown in plenty
experiments on liver tissue [15-17] because current flow is
incalculable. The bipolar technique was used in the therapy of liver
tumors in 2003 [18,19] and was first described as a therapeutic method
for vertebral tumors in three cases by Xavier Buy in 2005 [20]. During
bipolar RFA two electrodes are inserted into the tumor. After
activation of the system current flows are controlled between the pins.
The pins can be integrated either in a singular or between multiple
pins, so that heating of unwanted regions can be reduced. A Korean
publication on animal livers showed that hypertonic saline-enhanced
bipolar RFA more efficiently created larger areas of thermal ablation
and higher tissue temperatures than monopolar RFA [19]. In contrast
to the more commonly used monopolar approach in which current
flows from the electrode in the target zone and the grounding pads
placed on the body surface, the bipolar technique utilizes current
flowing solely in the area the two pins are placed [21,22]. This fact
gives concern for additional precaution for patients with pacemakers
or surgical clips as pacemaker dysfunction may occur, especially if the
pacemaker is located between the probe and grounding pad [23]. Skin
burn secondary to inadequate ground pad positioning was observed
during monopolar radiofrequency ablation [24]; this should not occur
in the bipolar or multipolar approach as grounding pads are not
necessary in the closed electrical circuit inside the target tissue.
Comparisons between bipolar and monopolar RF systems have shown
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that bipolar systems achieve greater energy efficiency with
considerably larger zones of coagulation and higher tissue
temperatures [19,25].

The aim of this observation is to determine if perinterventionally
obtained parameters can predict the extent of the emerging zone of
induced necrosis.

Materials and Methods

Subjects
After obtaining written informed consent, 36 patients (23 men, 13

women; age range, 34-84 years; mean age 65.8 years) with primary or
secondary tumor involvement of the spine were treated on overall 38
lesions at our institution between February 2006 and May 2009.

This retrospective analysis included patients with disease
progression despite previous surgery, maximal chemotherapy,
maximal radiation and hormone therapy; lack of highly-invasive

surgical option; severe local tumor pain insufficiently responsive to
opiates and other analgesics; intervertebral tumor spread; risk of
paraplegia or fracture in case of tumor progression; locomotor
disability due to a local tumor process; and osteolytic and mixed
metastases with mostly palliative intention (in one case an osteoid-
osteoma was treated with curative intention).

Patients were excluded in cases of intradural and intramedullary
tumors; risk of bleeding (acetylsalicylic acid, anticoagulants); acute,
general infection; local infection in the target zone; or allergy against
one of the peri-interventionally applied drugs.

Synopsis of Tumor entities can be seen in Table 1 along with tumor
location Table 2. Involvement of the dorsal rim or the pedicles of the
vertebral body indicate the lesion to be adjacent to vulnerable
structures and underlie a higher therapy-risk. In overall 30 lesions
(78.95%) the dorsal rim; in 25 lesions (65.79%) the pedicles and in 23
(60.53%) the dorsal rim and the pedicles were both infiltrated by the
tumor. In 6 cases (15.79%) none of these structures were involved by
the tumor spread.

Tumor entity Number of patients Number of treated lesions % of total patients

Renal cell carcinoma 9 11 25

Breast carcinoma 8 8 22,23

Prostate carcinoma 5 5 13,89

Colon carcinoma 3 3 8,34

Bronchial carcinoma 3 3 8,34

Urothelium carcinoma 2 2 5,56

Esophageal carcinoma 1 1 2,78

Gall bladder carcinoma 1 1 2,78

Hypopharyngeal carcinoma 1 1 2,78

Larynx carcinoma 1 1 2,78

Osteoid-Osteoma 1 1 2,78

Pancreas carcinoma 1 1 2,78

Table 1: Entities of primary tumors

Spine level quantity

Lumbar spine 23

Thoracic spine 12

Sacrum 1

Cervical spine 2

Table 2: Level of tumor manifestation

Pre- and post-interventional Imaging
MR-Imaging with 1.5 T MRI was performed pre-interventionally

(on Magnetom Vision; Siemens HealthCare, Erlangen, Germany or
Intera; Philips HealthCare, Eindhoven, Netherlands). The lesions were
illustrated in transverse and sagittal slices in T1- and T2-weighted
images before and after application of contrast media (0.1 mL/Kg body
weight of Gadovist; Bayer Schering HealthCare, Berlin, Germany). On
the first or second post-interventional day, follow-up MRI with the
same parameters was performed to measure the extent of necrosis
(Figure 1).
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Figure: 1. Pre- (a, b) and post-interventional (c, d) contrast enhanced T1- weighted imaging of spinal tumorous lesion.

For calculation of the elliptoid volumes half-axis of the necrosis
zones was obtained from the contrast enhanced sequences and
inserted into the formula for the calculation of an elliptoid volume
(4/3 π abc). In case of irregular boundaries definition of the extent of
the induced necrosis was not distinct. For this reason the maximal
possible extent of each axis was chosen in every case so that
comparable data could be acquired.

Radiofrequency ablation
Impedance-controlled radiofrequency ablation was performed by

three experienced neuroradiologists. The radiofrequency power was
limited to 50 W. All ablations were perfomed using a power generator
and cooling pump (CelonLab Power and Celon Aquaflow III; Celon
AG medical instruments, Teltow, Germany) that can supply up to
three liquid-cooled RFA probes. Peri-interventional prophylactic
antibiotics (2,0 g Spizef; Grünenthal, Wien, Austria) was administered.
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The lesion was treated controlled fluoroscopically and via DynaCT
using a posterior approach with the patient prone under general
anesthesia utilizing up to two bipolar RFA probes with active tips of 20
or 30 mm measuring 1.8 mm in diameter (Celon ProSurge 250-T20 or
Celon ProSurge 250-T30; Celon AG medical instruments Teltow,
Germany) (Figures 2a and b).

Figure 2: Periinterventional fluoroscopic and Dyna CT-imaging
and assessment of probe position.

Average power in Watts, energy in kJ, duration of energy
application in min and resistance in ohms were transferred to a
personal computer connected to the RF generator and were recorded
by using a software program (Celon Power Monitor, Version 2.8;
Celon Medical instruments, Teltow, Germany).

Statistical methods
The model equations describing the relationship between the

volume of coagulation, duration of energy application, amount of
applied energy and average power will be described in the context of
the results to be reported. The linear regressions were performed with
the statistical Package SPSS version 15.

Results
No procedural-related complications were observed. The induced

necrosis volumes varied between 0.5 and 50.9 cm³ (mean 19.7 cm³).
Average power of 6.8 to 36.6 W (mean 21.6 W), energy of 1.5 to 85 kJ
(mean 31.2 kJ) was needed. Duration of the ablation varied between
3.7 and 43 min (mean 19.7 min). The relationship between the factors
“volume of necrosis” (VN), “average power” (AP), “energy” (E) and
“time” (t) an equation can be established: VN= -22.474-0.553*E
+1.565*AP+1.051*t. The residual error amounts 11.2 cm³. This
equation is most influenced by AP (p=0.003) and only tendentially by t
(p=0.077). The Influence of E is not significant (p=0.167). Deleting E
from the equation following formula can be obtained:
VN=-8.614+0.944*AP+0.29*t. Here the Influence of AP is even higher
(p<0.001) and the influence of t lower (p=0.175). Residual error
amounts 11.4 cm³. Deleting t from the equation following formula
emerges: VN=-3.579+0.998*AP (Graph 1). Residual error amounts
11.6 cm³.

Graph 1: Graph showing induced tumor volume and average power

Discussion
Radiofrequency ablation of primary or secondary therapy-

refractory, unresectable spine lesions is described in several
publications since 2000 [6,26-28]. The main aim of the radiofrequency
ablation is complete coverage of the lesion with an adequate security
margin [29]. Often spinal tumors are adjacent to vulnerable structures
that have to be saved during ablation. For instance, Nakatsuka et al.
observed damage of neuronal structures in 4 of 17 cases (~24%) after
spinal tumor ablation. This count particularly in cases tumorous
masses invades the dorsal rim or the pedicles of the vertebra [8]. In a
subsequent publication Nakatsuka et al. report that such damage may
be avoided by placing a thermocouple in the spinal canal in the
subarachnoid or the epidural space with ablation ceased when spinal
canal temperature reached 45°C. Temperature rose to 48°C in one case
(10%) and despite immediate discontinuation of ablation therapy,
transient neural damage occurred [13]. These examples show that an
exact planning of the extent of induced necrosis is inevitable for a safe
performance of radiofrequency ablation of the spine.

In the monopolar approach the heat produced spreads in all
directions from the probes in contrast to bipolar radiofrequency
ablation in which one electrode is thermally shielded by the second
electrode [19,25]. This advantage can be utilized in cases where tumor
tissue is neighboring vulnerable structures whose safety is mandatory
as shown in some case reports [20,30]. Another method to avoid
unwanted damage is the real-time visualization of ablation zones
during the procedure utilizing sonographic or MR-tomographic
methods. Nouso K et al. showed in 2005 in a study on ablation of
tumors of the liver sonographical visualization of microbubbles that
emerge during thermoablation. The extent of this sonographically
observed region correlated with the extent of the ablation zone as
confirmed by MR-imaging [31]. Methodically such a monitoring
during the intervention on the spine is not possible. There is no
literature about observation of the ablation zone using MR-
thermometry to date. This might be a new approach in thermoablative
therapy of spinal lesions.

There are limitations of this approach. In case, the tumor mass
shows contact to vulnerable structures a security margin of vivid
tumor has to be left. In these cases the aim of the treatment is
reduction of tumor mass. Additionally this treatment cannot be
performed if there is an infection in the target zone.
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Predictable zones of coagulation and a precise control of energy
application are requirements for a safe and effective therapy. To
improve radiofrequency ablation several techniques have been tested
on liver tissue including internally cooled electrodes [32], perfusion
electrodes [33], multiprobe arrays such as cluster [34] or multitined
expandable electrodes [15] and modification in algorithm of energy
deposition [35] or additional reduction of blood flow [36] or
pharmacological influence [37,38].

In our study a bipolar RF system using internally cooled electrodes
was investigated in respect of ablation parameters and their influence
on the emerging extent of ablation volume. Even though it was not
aim of this study different tumor entities had an influence on the
collected technical data. Hypervascular tumors like renal cell
carcinoma seem to need more energy to be completely ablated
probably due to cooling effects of the vascularisation. Future studies
could focus on the influence of the different entities. We were able to
show a correlation between administered average power and the
volume of the ablated area. Clasen et al. also determined in an ex-vivo-
investigation of necrosis areas after bipolar radiofrequency ablation of
bovine livers a correlation between appliqued power and emerging
volume of necrosis. His equation was VN=0.9*AP [39]. Studies with
monopolar RFA-probes have shown that bigger volumes of necrosis
can be achieved in ex-vivo livers than in in-vivo livers [32].
Additionally Bitsch et al. was able to show that despite higher effort of
Energy and time smaller volumes of ablation were achieved in
perfused livers than in non-perfused livers [40].

Conclusion
Our calculations indicate that average power was the most

influencing factor for the volume of the necrosis. The restrictions
mentioned in Clasen et al’s experimental results on ex-vivo bovine
livers in respect to in-vivo spinal tumors may account for the slight
variation between our equations. On the other hand, our findings
implicate that the conclusions of Clasen et al. are largely applicable to
in vivo models.
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