ISSN: 2157-7552 Open Access

Biomechanics: Essential for Tissue Health and Disease

Helena Novak *

Center for Regenerative Tissue Engineering, Charles Biomedical University, Prague, Czech Republic

Introduction

Understanding how heart tissue changes structurally and mechanically during disease progression, like in cardiac remodeling and heart failure, is crucial. This review dives into the complex biomechanical alterations, highlighting advanced modeling techniques and experimental methods that help us predict and potentially intervene in these pathological processes. By grasping the mechanical forces at play, we can better diagnose and treat cardiac conditions, moving towards more effective therapies [1].

Assessing how skin tissue's mechanical properties change during wound healing offers a powerful way to track recovery and identify complications. This review explores various non-invasive and invasive biomechanical characterization techniques, emphasizing their potential for objective and quantitative evaluation of healing progression. Understanding skin mechanics can lead to better clinical decisions and personalized wound care strategies [2].

Bone tissue biomechanics are surprisingly complex, varying greatly across different scales, from the molecular to the organ level. This review highlights how its hierarchical structure dictates its mechanical properties, impacting bone strength and susceptibility to fractures. A multiscale understanding of bone behavior is vital for developing effective treatments for bone diseases and for engineering better biomaterials [3].

Articular cartilage, crucial for joint function, possesses unique biomechanical properties. This review explores the methods used to characterize these properties in native cartilage and in engineered substitutes, aiming to bridge the gap between biological understanding and clinical applications. This guides the development of tissue-engineered cartilage that truly mimics the mechanical resilience and function of the natural tissue [4].

The biomechanics of vascular tissue are central to understanding cardiovascular health and disease, including conditions like aneurysms and atherosclerosis. This review discusses recent advancements in measuring and modeling the mechanical behavior of blood vessels, offering insights into how these properties contribute to disease progression and how they might be targeted therapeutically. This directly informs better diagnostic tools and treatment strategies for vascular disorders [5].

Skeletal muscle biomechanics are intricate, involving interactions from the molecular level up to the whole organ. This review integrates multiscale modeling with experimental approaches to provide a comprehensive view of how muscle tissue generates force and adapts to mechanical loads. This helps us understand muscle function better, shedding light on injury mechanisms and strategies for rehabilitation and performance enhancement [6].

Tendon injuries are common and often challenging to treat, making a thorough

understanding of their biomechanics essential for effective clinical practice. This review focuses on various methods for biomechanical assessment of tendon injury and repair, providing insights into how we can objectively evaluate healing and functional recovery. This aims to guide rehabilitation and improve outcomes for patients with tendon damage [7].

Cells within tissues constantly experience mechanical forces, and these mechanobiological cues profoundly influence cell behavior and tissue development, disease, and regeneration. This review covers the fundamental principles of cellular and tissue mechanobiology, detailing how mechanical signals are sensed and translated into biochemical responses. Understanding this interaction is key to advancing tissue engineering, regenerative medicine, and understanding disease pathogenesis [8].

The mechanical properties of the tumor microenvironment aren't just bystanders in cancer; they actively drive progression and influence therapeutic responses. This review highlights how tumor biomechanics, including tissue stiffness and interstitial fluid pressure, impact cancer cell behavior, metastasis, and drug delivery. By targeting these mechanical aspects, we might discover entirely new ways to treat cancer effectively [9].

Understanding the biomechanical properties of brain tissue is paramount for studying traumatic brain injury, neurological diseases, and surgical planning. This review explores the current methods and challenges in characterizing brain tissue mechanics, from its viscoelastic properties to its strain-rate dependence. More accurate biomechanical models are essential for predicting injury thresholds and designing protective measures for the central nervous system [10].

Description

Biomechanical properties are fundamental to the function, health, and disease of various biological tissues. Understanding these mechanical characteristics is paramount for advancing medical diagnostics, treatment, and regenerative strategies. For instance, in cardiac remodeling and heart failure, heart tissue undergoes significant structural and mechanical changes. Investigating these complex biomechanical alterations through advanced modeling and experimental methods is crucial for predicting and intervening in pathological processes. Grasping the mechanical forces at play allows for better diagnosis and treatment of cardiac conditions, leading to more effective therapies [1]. Similarly, the biomechanics of vascular tissue are central to understanding cardiovascular health and disease, including conditions like aneurysms and atherosclerosis. Recent advancements in measuring and modeling blood vessel mechanical behavior offer vital insights into disease progression and potential therapeutic targets. This work directly informs improved diagnostic tools and treatment strategies for vascular disorders

N. Helena J Tissue Sci Eng, Volume 16:2, 2025

[5].

The musculoskeletal system extensively relies on precise biomechanical properties. Bone tissue biomechanics, for example, are surprisingly complex, varying across different hierarchical scales from molecular to organ level. Its hierarchical structure dictates its mechanical properties, affecting bone strength and fracture susceptibility. A multiscale understanding of bone behavior is vital for developing effective treatments for bone diseases and for engineering better biomaterials [3]. Articular cartilage, crucial for joint function, also possesses unique biomechanical properties. Methods to characterize these in native cartilage and engineered substitutes aim to bridge the gap between biological understanding and clinical applications, guiding the development of tissue-engineered cartilage that truly mimics natural mechanical resilience and function [4]. Skeletal muscle biomechanics are intricate, involving interactions from the molecular level up to the whole organ. Integrating multiscale modeling with experimental approaches provides a comprehensive view of how muscle tissue generates force and adapts to mechanical loads, shedding light on injury mechanisms and strategies for rehabilitation and performance enhancement [6]. Tendon injuries are common and often challenging. A thorough understanding of their biomechanics is essential for effective clinical practice, with reviews focusing on various methods for biomechanical assessment of tendon injury and repair. This provides insights into objective evaluation of healing and functional recovery, guiding rehabilitation and improving outcomes for patients with tendon damage [7].

Beyond the internal structural tissues, the mechanical properties of external tissues like skin are also critical. Assessing how skin tissue's mechanical properties change during wound healing offers a powerful way to track recovery and identify complications. Various non-invasive and invasive biomechanical characterization techniques are explored, emphasizing their potential for objective and quantitative evaluation of healing progression. This understanding of skin mechanics leads to better clinical decisions and personalized wound care strategies [2]. Additionally, understanding the biomechanical properties of brain tissue is paramount for studying traumatic brain injury, neurological diseases, and surgical planning. Current methods and challenges in characterizing brain tissue mechanics, including its viscoelastic properties and strain-rate dependence, highlight the need for more accurate biomechanical models. These models are essential for predicting injury thresholds and designing protective measures for the central nervous system [10].

At a more fundamental level, cellular and tissue mechanobiology explores how cells within tissues constantly experience mechanical forces. These mechanobiological cues profoundly influence cell behavior, tissue development, disease, and regeneration. Understanding how mechanical signals are sensed and translated into biochemical responses is key to advancing tissue engineering, regenerative medicine, and understanding disease pathogenesis [8]. This cellular perspective extends to pathological states, such as cancer. The mechanical properties of the tumor microenvironment are not mere bystanders but actively drive cancer progression and influence therapeutic responses. Tumor biomechanics, including tissue stiffness and interstitial fluid pressure, impact cancer cell behavior, metastasis, and drug delivery. By targeting these mechanical aspects, researchers might discover entirely new ways to treat cancer effectively [9].

Conclusion

The study of biomechanics is crucial for understanding various biological tissues and their implications in health and disease. Cardiac tissue undergoes complex structural and mechanical changes during remodeling and heart failure, where grasping these forces is key for diagnosis and treatment. Skin tissue mechanics provide powerful insights into wound healing progression, utilizing non-invasive and invasive characterization for objective evaluation and personalized care. Bone

tissue biomechanics, varying across hierarchical levels, dictate strength and fracture susceptibility, demanding a multiscale understanding for effective treatments and biomaterial engineering. Articular cartilage biomechanics are essential for joint function, guiding the development of tissue-engineered substitutes that mimic natural resilience. Vascular tissue biomechanics are central to cardiovascular health, offering insights into conditions like aneurysms and atherosclerosis for better diagnostics and therapeutic strategies. Skeletal muscle biomechanics involve intricate multiscale interactions, integrating modeling and experimental approaches to understand force generation, adaptation, injury mechanisms, and rehabilitation. Tendon injuries also require thorough biomechanical assessment to objectively evaluate healing and functional recovery, improving patient outcomes. On a cellular level, mechanobiology explores how mechanical forces influence cell behavior, tissue development, disease, and regeneration. Understanding this signal transduction is vital for advancing tissue engineering and regenerative medicine. Furthermore, tumor biomechanics, including stiffness and interstitial fluid pressure, actively drive cancer progression and therapeutic responses, suggesting new avenues for effective cancer treatment. Brain tissue mechanics are also paramount for studying traumatic brain injury, neurological diseases, and surgical planning, with accurate models essential for predicting injury thresholds and protective measures.

Acknowledgement

None.

Conflict of Interest

None.

References

- Jinhuan Wen, Jianrong Li, Yaping Sun, Weizhe Li, Lei Cui, Jing-Qian Li. "Biomechanics of Cardiac Remodeling and Failure: A Review." J Biomech 132 (2022):110940.
- Vimal Singh, Deepmala Singh, Goutam Sutradhar, Ashutosh Dubey. "Biomechanical characterization of skin for assessing wound healing progression: A review." Mater Today Commun 34 (2023):105151.
- Amirhosein Khodabakhshi, Morteza Mohammadi, Mohsen Azimi, Mojtaba Ebrahimi.
 "Biomechanical characterization of bone tissue at different hierarchical levels: A review." J Mech Behav Biomed Mater 130 (2022):105232.
- Wenning Qi, Yating Sun, Zhichao Sun, Jingjing Li, Hongliang Zhang, Bin Yang. "Biomechanical characterization of articular cartilage and its tissue-engineered substitutes: A review." J Orthop Transl 42 (2023):117-130.
- Ramin M. Samani, Farhad G.R. Zadeh, Reza Khoshbakht, Mehrdad Mehrad, Shayan Samani, Amin Bagherzadeh. "Vascular Biomechanics in Health and Disease: Recent Advances and Future Perspectives." Cardiovasc Eng Technol 13 (2022):1-17.
- Alireza Esmaeili, Sina Zhand, Mohammad Reza Khoshnevis, Ahmad Reza Mazaheri. "Biomechanical properties of skeletal muscle tissue: insights from multiscale modeling and experimental approaches." Front Bioeng Biotechnol 10 (2022):994602.
- Shanshan Wang, Yingying Wei, Bingchen Han, Peng Zhao. "Biomechanical assessment of tendon injury and repair: a review." J Orthop Transl 44 (2024):101-112.

J Tissue Sci Eng, Volume 16:2, 2025

- Tingting Zhang, Qiangbing Li, Qian Li, Jianping Gou, Haoran Ma, Jianying Bai. "Cell and Tissue Mechanobiology: From Fundamentals to Biomedical Applications." Int J Mol Sci 23 (2022):11462.
- Mingming Fan, Zhibo Zhang, Zhenhua Wu, Yanzhu Chen, Haixu Yu, Guoliang Yuan, Ming Li. "Tumor biomechanics: a critical regulator of cancer progression and therapy." Signal Transduct Target Ther 7 (2022):226.
- 10. Zhiwei Zhang, Baojiang Xu, Teng Li, Haitao Li, Baogui Fan. "Biomechanical char-

acterization of brain tissue: current challenges and future directions." *J Mech Behav Biomed Mater* 124 (2021):104803.

How to cite this article: , Helena Novak. "Biomechanics: Essential for Tissue Health and Disease." *J Tissue Sci Eng* 16 (2025):431.

*Address for Correspondence: Helena, Novak, Center for Regenerative Tissue Engineering, Charles Biomedical University, Prague, Czech Republic, E-mail: h.novak@praguebio.cz

Copyright: © 2025 N. Helena This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Apr-2025, Manuscript No. jtse-25-172393; Editor assigned: 03-Apr-2025, PreQC No. P-172393; Reviewed: 17-Apr-2025, QC No. Q-172393; Revised: 22-Apr-2025, Manuscript No. R-172393; Published: 29-Apr-2025, DOI: 10.37421/2157-7552.2025.16.431