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Abstract 
Background: Glucocorticoid-induced diabetes mellitus (GIDM) is a serious side effect of glucocorticoid (GC) treatment that is associated with 
both increased mortality and morbidity, but not all patients develop GIDM when treated with GC. The reason is not known, and clinical risk factors 
predictive of type 2 diabetes do not predict GIDM. Previous metabolomics studies have found specific metabolic disturbances prior to clinical type 
2 diabetes. This could also be true for GIDM. The primary aim of this study was to investigate whether distinct metabolic patterns in patients treated 
with high dose GC can predict development of GIDM. 

Material and methods: Serum from 116 patients about to be treated with or in the first days of treatment with high-dose GC (>100 mg prednisolone 
Sequivalent) was analyzed with liquid chromatography-mass spectrometry (LC-MS) based nontargeted metabolomics. Clinical data were 
collected at baseline and through a 3-week follow-up period. 52 patients developed GIDM and 64 did not (control group). A logistic regression model 
and a predictive model was build and differences in the metabolome due to treatment with GC was tested in serum from patients without GC 
treatment (n=6) and patients with GC treatment (n=107). 

Results and discussion: At univariate analysis three metabolites were associated with the development of GIDM. These metabolites could not 
be annotated to specific metabolites. A multi-metabolite approach could not predict GIDM, and this is different from previous findings in T2DM. 
This supports the hypothesis that the etiology of T2DM and GIDM is different. The biological significance of our finding remains unknown, but with 
the rapid development in the field of metabolomics and databases with increasing numbers of characterized metabolites, these metabolites may 
be identified. 

Conclusion: Our data indicate that the typical metabolic shifts in T2DM are not the same in GIDM. This supports the hypothesis that GIDM may 
have a pathophysiology different from T2DM. Furthermore, our data suggest that there is potential for identifying patients at risk of GIDM before 
clinical manifestation. 
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Research Ethics • QC: Quality Control • T2DM: Type 2 Diabetes Mellitus • TSH: Thyrotropin • UPLC: Ultra Performance Liquid Chromatography • 
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Introduction 
Glucocorticoid-induced diabetes mellitus (GIDM) is a well-known and 
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potentially fatal side effect of glucocorticoid (GC) treatment that is associated 
with both increased mortality and morbidity [1]. In the Danish population, 
three per cent receive oral steroids at any given time [2]. GCs affect glucose 
metabolism in several ways including induction of insulin resistance. Numerous 
mechanisms contribute (to an unknown extent) to this, e.g. down-regulation 
of the glucose transporting proteins, increased gluconeogenesis in the liver, 
and inhibition of beta cell insulin secretion [3]. Early identification of people 
at risk of GIDM is important to prevent hyperglycemic symptoms and reduce 
morbidity and mortality, especially because efficient insulin-based treatment 
of GIDM exists [4,5]. The risk of developing GIDM is affected by the dose, 
duration, and the accumulated dose of GC treatment [6]. However, recent 
studies have been conflicting in relation to identification of clinical risk factors 
for developing GIDM (4). Patients with GIDM weigh less and have less family 
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history of diabetes than patients with type 2 diabetes mellitus (T2DM) and does 
not develop retinopathy in the same speed as T2DM albeit the same diabetes 
duration and HbA1c - this could indicate that the etiology for GIDM is different 
from that of T2DM [7]. 

Metabolomics is an advancing field in the characterization (identification 
and quantification) of metabolites in biological systems and represents a real- 
time functional “fingerprint” of the biological system that is investigated [8]. 
Metabolomics has emerged as a powerful tool to detect early disease states 
before clinical manifestation and one study has shown significant changes in 
the metabolome during GC treatment within a very short time period [9]. The 
use of metabolomics has already led to many findings including metabolome 
shifts several years before the diagnosis of diabetes [10,11]. Differences in 
metabolites such as branched-chain and aromatic amino acids, fatty acids 
and lipoprotein lipids have been associated with increased risk of developing 
diabetes [12]. In a cohort of 5,271 Finnish 31-year-old men and women, a multi- 
metabolite score was associated with a future ten-fold increased diabetes risk 
[13]. It is unknown whether this association between specific metabolites and 
incident type 2 diabetes can be transferred to GIDM. 

The aim of the project was to identify novel biomarkers for developing 
GIDM during GC therapy by a post hoc metabolomics analysis of a prospective 
observational study of cancer patients commencing high-dose GC therapy 
(equivalent of ≥100 mg prednisolone pr. day) [4]. 

left at -20°C for 30 min before centrifugation at 16,000 g for 20 min at 4°C. 
Supernatants (750 µl) were transferred to new tubes and lyophilized. The 
lyophilized samples were resuspended in 20 µl 1% formic acid (FA). 

Metabolomics analysis and data processing: 5 µl were injected using 
a Vanquish Horizon UPLC (Thermo Fisher Scientific, Germering, Germany) 
and compounds separated on a Zorbax Eclipse Plus C18 guard (2.1 × 50 mm 
and 1.8 µm particle size, Agilent Technologies, Santa Clara, CA, USA) and an 
analytical column (2.1 × 150 mm and 1.8 µm particle size, Agilent Technologies, 
Santa Clara, CA, USA)) kept at 40°C. The analytes were eluted using a flow 
rate of 400 µL/min and the following composition of eluent A (0.1% formic acid) 
and eluent B (0.1% formic acid, acetonitrile) solvents: 3% B from 0 to 1.5 min, 
3-40% B from 1.5 to 4.5 min, 40‐95% B from 4.5 to 7.5 min, 95% B from 7.5 
to 10.1 min and 95 to 3% B from 10.1 to 10.5 min before equilibration for 3.5 
min with the initial conditions. Using a 6-port valve and a secondary pump, the 
guard wash backflushed from 9-10 min with a flow of 1 ml/min with 95% B. 
The flow from the UPLC was coupled to a Q Exactive HF mass spectrometer 
(Thermo Fisher Scientific, Bremen, Germany) for mass spectrometric analysis 
in both positive and negative ion mode using the following general settings 
for MS1 mode: resolution: 120.000, AGC target: 3e6, maximum injection time: 
200 ms, scan range 65-975 m/z and lock mass: 391.28429/112.98563 (pos/ 
neg mode). For compound fragmentation MS1/ddMS2 mode was used with 
the following general settings: resolution: 60.000/15.000, AGC target: 1e6/1e5, 
maximum injection time: 50/100 ms, scan range 65-975 m/z, loop count: 

   5, isolation with: 2 m/z and normalized collision energy: 35/38 (pos/neg). A 

Materials and Methods 
Objectives 

The primary objective was to investigate the combined potential of all 
metabolic biomarkers to predict development of GIDM as well as to identify 
individual metabolites associated with a higher risk for GIDM. Furthermore, we 
examined if there is a significant difference in metabolomic markers between 
GC-exposed and non-exposed individuals. 

Population 
In our prospective observational study, the most important inclusion criteria 

were a diagnosis of cancer (solid tumors, myeloma or malignant lymphoma) 
verified histologically and high dose GC treatment with oral prednisolone ≥ 100 
mg/day or injection of methylprednisolone ≥ 80 mg/day. The most important 
exclusion criteria was known type 1 or 2 diabetes (for full description, see 
[4]). Data were collected on demographics, family history of diabetes, medical 
history, vital signs, laboratory tests, and information about GC treatment. 
Biobank specimen collection was optional [4]. 

For inclusion in the present post hoc metabolomics analysis, serum in the 
biobank and data on GIDM status were needed. One patient was excluded due 
to a prior diagnosis of GIDM (based on baseline HbA1c measurement). Of the 
140 patients, 116 met all inclusion criteria and none of the exclusion criteria 
and were included in the final analysis. Of the 116 patients, 52 developed 
GIDM (45%). 

Ethical considerations and informed consent 
The project was approved by The Danish National Committee on Health 

Research Ethics with Journal-nr.:H-19002730 and by The Danish Data 
Monitoring Board with Journal No. VD- 2018-250, with I-Suite no. 6491 and 
transfer of data from the prospective observational study and biobank with 
journal no. NOH-2015-022, with I-Suite no. 03811. The Biofluids were collected 
according to current rules (The Danish Health Act Chapter 5 and 7: consent 
and the right to self-determination over biological material). 

Metabolite extraction from serum for LC-MS 
Serum was analyzed with nontargeted metabolomics by liquid 

chromatography-mass spectrometry (LC-MS) profiling. 

Sample preparation: 200 µl serum was thawed on ice before addition 
of 800 µl extraction solvent (100% methanol). Four empty samples (blanks) 
were prepared the same way. The samples were vortexed for 30 sec and 

pooled sample was generated and used for quality control (QC) and compound 
fragmentation. The sequence was constructed with analysis of the blanks first 
followed by system equilibrations runs using QC sample, MS1/ddMS2 runs for 
compound fragmentation on QC sample, another QC run and, finally, analysis 
of the samples in randomized order in MS1 mode with a QC sample injected 
every third run. A MS2 inclusion list was generated from the blanks and the last 
equilibration runs using Compound Discover v. 3.0 (Thermo Fisher Scientific) 
to ensure fragmentation of the later extracted relevant features. The features 
found in the blank were removed from the inclusion list if they were not > 5 x 
more abundant in the QC samples. 

Raw data was processed with MzMine (v 2.42) [14]. In brief, the following 
modules were used: Mass detection, ADAP chromatogram builder, ADAP 
deconvolution, Join aligner, Isotopic peak grouper, Gap filling (same RT and 
m/z range) and Identification in local spectra database search; all with 5 ppm 
mass tolerance and 0.25 RT tolerance when possible. Final peak list included 
features found in at least 75% of the samples, which had at least 2 peaks in 
an isotope pattern. Compounds were annotated at Metabolomics Standards 
Initiative (MSI) level 3 using local MS/MS spectra databases of National 
Institute of Standards and Technology 17 (NIST17) and Mass Bank of North 
America (MoNA) [15]. MSI level 4 annotations where achieved by searching 
the molecular formula in Human Metabolite Database [16]. After compound 
annotation, the datasets were corrected for signal drift using statTarget [17]. 
Finally, the signal was normalized using the QC sample, auto-scaled and log2 
transformed in Metaboanalyst [18]. 

Statistical methods 
For the primary objective our analyses rely on logistic regression 

modelling with development of GIDM as outcome. A patient was classified 
as having GIDM if diabetes (defined in our prospective observational study in 
cancer patients as two random plasma glucose measurements ≥11.1 mmol/L) 
developed during GC therapy [4]. We used age, gender, body mass index 
(BMI) and baseline HbA1c as covariates in all analyses. The logistic model 
including only these demographic and clinical covariates (no metabolites) 
is referred to the basic logistic model. Before including metabolites into the 
analysis, we tested the fit of this basic logistic model using Stukel’s goodness 
of fit test [19]. For the analysis of differences in metabolomic markers between 
GC-exposed and non-exposed individuals linear modelling was applied. 

There were 5 missing values for BMI and 4 missing values for baseline 
HbA1c, whereas the rest of the clinical covariates were complete. The 
missing values were imputed using k-nearest neighbor with 5 nearest 
neighbors. In total, there were 2,214 different metabolites requiring no further 
preparation as there were no missing values for all metabolites for all patients. 



Klarskov CK, et al. J Mol Genet Med, Volume 14:4, 2020 

Page 3 of 7 

 

 

 

Univariate association analysis 
For each metabolite, the basic logistic model was extended by the 

metabolite and the p-value for each metabolite was stored. These p-values 
were corrected using Benjamini-Hochberg’s correction for multiple testing, and 
a metabolite was considered associated with GIDM if it had a significance level 
of the false discovery rate (FDR) ≤ 5% [20]. Pearson correlations between the 
10 metabolites with the lowest FDR’s were obtained and plotted (Figure 1). The 
FDR is a method of conceptualizing the rate of type I errors in null hypothesis 
testing when conduction multiple comparisons. 

Predictive modeling 
To elucidate which metabolites in combination can be used to predict the 

development of GIDM, we extended the basic logistic model by simultaneously 
including all metabolites. We used LASSO logistic regression together with 
stability selection as described in Meinshausen et al. and the improved 
sampling approach as described in Shah et al. [21,22]. 

The procedure applies LASSO logistic regression to n random 
subsamples of the whole data, such that on average q predictors are selected. 
Overall selection probabilities are estimated for each predictor and the final 
predictors were chosen as those with a selection probability larger than 0.6. 
This approach allows to control the expected number of predictors with low 
selection probabilities (ENSP), i.e., the number of false discoveries. Into this 
stability selection we have forced inclusion of the clinical variables described 
above. The parameters q=60 and θ=0.6 were used on n=100 subsamples, 
implying that the final model consisted of the metabolites that were present 
in at least 60% of the subsamples. To assess the prediction performance of 
the final model we calculated the area under the ROC curve (AUC) using the 
whole dataset [23]. 

Association between GC exposure and metabolites 
To find metabolomic markers that systematically differ between GC- 

exposed and non-exposed individuals, the cohort was divided into two groups 
based on whether they had their blood sample taken before (n=6) or after 
(n=107) their first GC treatment. Patients that had received GC the same day 
as blood sampling (n=3) were left out due to the unknown relationship in time 
between GC intake and blood sampling, which could have been just minutes 
apart and thus in reality still unexposed to GCs. Before this subdivision, 
exclusion of individuals with missing data and no information on when GC 
treatment was commenced in relation to the time blood was drawn, was also 
excluded. For each metabolite separately, we regressed metabolite levels 
against sex, age, BMI, baseline HbA1c, and whether or not the blood sample 
was taken before the first GC treatment. Prior to this analysis metabolite 
levels were log-transformed to improve normality assumptions underlying 
the regression-based testing. The p-value and standard error for the before/ 
after-effect were extracted and stored together with the coefficient. Benjamini- 
Hochberg’s correction for multiple testing was applied, and effects considered 
significant if FDR ≤ 5% [20]. 

All computations were made in R version 3.6.1. Imputation of missing 
values was done with the function kNN from the package VIM. Stukel’s 
goodness of fit test was made using gof from the package LogisticDx. The 
correlation plot was made with the function chart. Correlation from the package 
Performance Analytics. The predictive modelling used the function stabsel 
from the package stabs, K-fold cross validation was made using the caret- 
package and AUC for the model on the test data was made with the package 
pROC [24-30]. 

 

Results 
Univariate association analysis 

The basic logistic model with the covariates as described above and 
no interactions or quadratic effects was tested using Stukel’s goodness of 

 
 

 
 

Figure 1. Pairwise scatterplots of the 10 topmost significant associated metabolites as well as Pearson correlation coefficients to illustrate the degree of linear dependencies between 
the metabolites. 



Klarskov CK, et al. J Mol Genet Med, Volume 14:4, 2020 

Page 4 of 7 

 

 

 

fit test, which showed no significant p-value, indicating a reasonable fit. The 
main results (top 10 metabolite candidates) from the univariate association 
analysis are presented in Tables 1 and 2. Two of the top ten metabolites 
were identified from metabolomic databases (β-hydroxy-palmitic acid and 
dibenzothiophene), but had a FDR >5% and were therefore not significantly 
associated with the development of GIDM. Three metabolites (X-288, X-233 

Changes in the metabolome due to GCs 
We found a high number of metabolites associated with GC exposure. 

Totally, 22 metabolites had FDR ≤ 5% (Table 4). Ten of them were identifiable 
and 12 were not. Among the identifiable metabolites were for example drug 
metabolites such as beta-hydroxy prednisolone. 

and X-384) were associated with development of GIDM with the odds ratios    
1.004, 1.004, and 1.004 respectively and an FDR of 2.9%. That is, an increase 
in one unit of just one of these metabolites was associated with 0.4% increased 
odds of developing GIDM. Figure 1 contains pairwise scatterplots of the 10 
topmost metabolites as well as Pearson correlation coefficients to illustrate the 
degree of linear dependencies between the metabolites. Especially, the three 
associated metabolites (top left corner) show high correlations (Ρ ≥ 0.63), with 
X-288 and X-233 being almost perfectly correlated (Ρ=0.95). 

Predictive modeling 
In Figure 2, the metabolites showing the highest selection frequencies are 

displayed. The frequencies indicate how often a metabolite was selected into 
the prediction model during the stability selection procedure. No metabolites 
exceeded the desired selection probability of 0.6, hence no metabolites 
contributed consistently to predicting the development of GIDM. 

Table 3 shows the final prediction model including the four clinical 
covariates (age, gender, BMI and baseline HbA1c). The model yielded 
an AUC of 0.713 indicating moderate prediction performance. The 
model showed that for every mmol/mol increase in HbA1c, the odds 
of developing GIDM increased by 16% (95% CI: 6.9 – 128), P=0.001. 

Discussion 
Univariate association analysis 

Two metabolites from the top-ten candidates were identified in the 
metabolomic databases (Table 2). These metabolites (β-hydroxy-palmitic 
acid, a long chain fatty acid and dibenzothiophene, which can derive from 
several sources, including being a keratolytic drug derivative) were however 
not significantly associated with the risk of developing GIDM. 3 metabolites, 
which were significantly associated with the development of GIDM (X-288, X-
233 and X-384) could not be identified in metabolomics databases and were 
therefore not components of well-described metabolic pathways. The lack 
of associations between well-known metabolites and GIDM was surprising 
since some metabolites have been demonstrated to be associated with the 
risk of developing T2DM: Guasch-Ferré et al. conducted a systematic review 
of metabolite studies in prediabetes and T2DM with metabolomics data from 
more than 8,000 individuals and concluded that several blood amino acids are 
consistently associated with the risk of developing T2DM [8]. Since all amino 
acids are identifiable in the metabolome databases as well as metabolites from 
well-known metabolic pathways, our 3 unidentified metabolites significantly 

 

Table 1. Baseline characteristics of participants. 
 

Variables No diabetes (n=64) Diabetes per definition (n=39) Treatment-requiring diabetes (n=13) Total (n=116) 
Males (%) 36 (56.2) 22 (56.4) 10 (76.9) 68 (58.6) 

Age (Mean (SD)) 69.45 (10.81) 66.87 (8.32) 68.62 (11.13) 68.49 (10.06) 
BMI (Mean (SD)) 25.39 (5.54) 24.08 (4.68) 23.82 (3.86) 24.79 (5.12) 

Performance status (%) 
0 4 (6.2) 1 (2.6) 0 (0.0) 5 (4.3) 
1 31 (48.4) 13 (33.3) 2 (15.4) 46 (39.7) 
2 16 (25.0) 17 (43.6) 5 (38.5) 38 (32.8) 
3 13 (20.3) 8 (20.5) 6 (46.2) 27 (23.3) 

Primary tumor (%) 
Lung cancer 18 (28.1) 11 (28.2) 3 (23.1) 32 (27.6) 

Breast cancer 15 (23.4) 7 (17.9) 0 (0.0) 22 (19.0) 
Prostate cancer 13 (20.3) 11 (28.2) 5 (38.5) 29 (25.0) 
Other cancers 18 (28.1) 10 (25.6) 5 (38.5) 33 (28.4) 

Lung metastases (%) 33 (51.6) 27 (69.2) 11 (84.6) 71 (61.2) 
Brain metastases (%) 62 (96.9) 39 (100.0) 12 (92.3) 113 (97.4) 
Liver metastases (%) 52 (81.2) 31 (79.5) 10 (76.9) 93 (80.2) 
Bone metastases (%) 1 (1.6) 1 (2.6) 0 (0.0) 2 (1.7) 

Pancreatic metastases (%) 64 (100.0) 39 (100.0) 13 (100.0) 116 (100.0) 
Bone marrow metastases (%) 62 (96.9) 38 (97.4) 13 (100.0) 113 (97.4) 
Lymph node metastases (%) 45 (70.3) 28 (71.8) 7 (53.8) 80 (69.0) 

Alcohol abuse now or earlier (%) 11 (17.7) 9 (23.1) 2 (15.4) 22 (19.3) 
Smoking now or earlier (%) 44 (68.8) 27 (69.2) 8 (61.5) 79 (68.1) 

Atherosclerosis (%) 6 (9.4) 4 (10.3) 2 (15.4) 12 (10.3) 
Hypertension (%) 25 (39.1) 16 (41.0) 4 (30.8) 45 (38.8) 
Liver disease (%) 2 (3.1) 1 (2.6) 0 (0.0) 3 (2.6) 

Pancreatic disease (%) 1 (1.6) 1 (2.6) 0 (0.0) 2 (1.7) 
Hospitalization (%) 

Outpatient 32 (50.0) 15 (38.5) 0 (0.0) 47 (40.5) 
Inpatient 20 (31.2) 18 (46.2) 10 (76.9) 48 (41.4) 

Alternating 12 (18.8) 6 (15.4) 3 (23.1) 21 (18.1) 
Prednisolone start dose (mg) (mean (SD)) 238 (84) 302 (369) 269 (60) 263 (224) 

Cumulated dose of prednisolone (mg) (mean 
(SD)) 3832 (1032) 3714 (1344) 3975 (811) 3806 (1122) 

Previous diabetes 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 
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Table 2. Top 10 metabolites in the univariate association analysis ordered after lowest FDR and p-value. 3 metabolites had significant FDR’s and thus increase the odds of developing 
GIDM. 

 

S. No Metabolite Coefficient Standard error OR p value FDR ID 
1 X-288 0.004 0.001 1.004 3.30E-05 2.90E-02  

2 X-233 0.004 0.001 1.004 3.70E-05 2.90E-02  

3 X-384 0.004 0.001 1.004 3.90E-05 2.90E-02  

4 X-551 0.005 0.001 1.005 1.80E-04 1.00E-01  

5 X-2373 -0.002 0.001 0.998 1.60E-03 3.70E-01  

6 β-hydroxy-palmitic acida -0.002 0 0.998 2.10E-03 3.70E-01 LCFA 
7 Dibenzothiopheneb 0.003 0.001 1.003 2.10E-03 3.70E-01 Ketolytic drug 
8 X-348 0.002 0.001 1.002 2.50E-03 3.70E-01  

9 X-358 -0.002 0.001 0.998 2.70E-03 3.70E-01  

10 X-385 -0.002 0.001 0.998 2.80E-03 3.70E-01  

Note: aAnnotated at metabolomics standard initative (MSI) level 3 
bAnnotated at metabolomics standard initative (MSI) level 4 
Metabolites with X-(numbers) are unidentified. LCFA=long chain fatty acid. 

 

Figure 2. The 10 metabolites with the highest selection frequencies for the multivariable prediction. The frequencies indicate how often a metabolite was selected into the prediction 
model during the stability selection procedure. As visualized, the cut-off at 0.6 was not achieved. 

 
 

 Table 3. Prediction model for the development of GIDM.  

Predictors OR Standard error 95%-CI P value 
Intercept 0.088 2.413 0.001 – 9.125 0.314 

Age 0.968 0.021 0.928 – 1.007 0.111 
Gender 1.076 0.420 0.471 – 2.463 0.862 

BMI 0.938 0.042 0.861 – 1.016 0.128 
HbA1c 1.163 0.046 1.069 – 1.282 0.001 

Note: Observations 116. AUC for whole dataset: 71.3 % (61.9 % - 80.6 %) 

 
Table 4. 22 metabolites significantly associated with treatment with high dose glucocorticoid. 107 patients had bloods samples taken after the initiation of glucocorticoids (exposed) and 
6 patients had blood samples taken before the initiation of glucocortoids (non-exposed). 

 

S. No Metabolite Coefficient exp(coefficient) Standard error P value FDR ID 
1 Cascarillin 1b 1.85 6.38 0.30 1.30E-8 2.60E-5 Phytochemical 
2 X-776 -3.03 0.0486 0.50 2.40E-8 2.60E-5  

3 Cascarillin 2b -2.63 0.0719 0.50 3.00E-7 2.20E-4 Phytochemical 
4 β-Hydroxyprednisoloneb -2.41  0.0899 0.48 1.80E-6 1.00E-3 Drug-derivative 
5 X-167 -2. 18 0.113  0.46 5.60E-6 2.50E-3  

6 Glu-Phe (Glutamic acid-phenylalanine dipeptide)a. -0.615 0.541 0.13 7.40E-6 2.70E-3 Dipeptide 
7 X-1133 -2.02 0.132 0.44 1.10E-5 3.50E-3  

8 Isomontanolideb -2.57 0.0767 0.58 2.60E-5 7.30E-3 Phytochemical 
9 Lysylglycine (Lycine-glycine dipeptide)a. 1.47          0.232 0.35 5.30E-5 1.30E-2 Dipeptide 

10 X-2964 -2.14 0.118 0.52 7.40E-5 1.60E-2  

11 X-4005 -1.956 7.08 0.48 8.00E-5 1.60E-2  

12 X-287 -2.44 0.0874 0.60 8.70E-5 1.60E-2  
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13 X-792 -2.11 0.121 0.52  9.40E-5 1.60E-2 
14 Nigakilactoneb -2.14 0.118 0.54 1.40E-4 2.20E-2 Phytochemical 
15 X-851 1.47        4.36 0.38      2.00E-4 2.90E-2 
16 X-4641 -1.96 0.141 0.52 2.80E-4 3.70E-2 

 
17 

 
Cortisolsulfateb 

 
-2.32 

 
0.0979 

 
0.62 

 
2.90E-4 

Organic 
3.70E-2 compound – 

sulfated steroid 
18 X-1199 -0.885 0.413 0.24 4.30E-4 4.70E-2 

19 Dehydrocorticosteroneb -1.41 0.245 0.39 4.40E-4 4.70E-2 Inactive form of 
corticosterone 

 
20 

 
Dimethylprostaglandina 

 
0.358 

 
1.43 

 
0.099 

 
4.60E-4 

Synthetic 
4.70E-2 prostaglandin 

analogue 
21 X-3388 -0.788 0.455 0.22 4.60E-4 4.70E-2 
22 X-1857 1.493 4.45 0.41 4.70E-4 4.70E-2 

Note: aAnnotated at metabolomics standard initative (MSI) level 3 
bAnnotated at metabolomics standard initative (MSI) level 4 
Metabolites with X-(number) are unidentified 

 

 

associated with development of GIDM cannot be amino acids or other well- 
known metabolites, which may suggest that GIDM and T2DM/prediabetes 
have important pathophysiological differences. New studies comparing the 
metabolome of patients with GIDM and patients with T2DM are needed to 
explore this. Metabolomics databases are in rapid development and new 
information are being added daily, however, it is only a minor percentage of 
metabolites from untargeted metabolomics that are identifiable - as in our 
study [31]. 

As visualized by the scatter plots in Figure 1, there are very strong 
correlations between the 3 metabolites X-288, X-233 and X-384 that were 
shown to be associated with GIDM in the univariate analysis. An explanation 
could be that the metabolites are very close in the underlying metabolic 
network. However, it has been shown that metabolite correlations do not 
necessarily correspond to proximity in the biochemical network as non- 
neighboring metabolites can also be highly correlated. Camacho et al. found 
by simulations that strong correlations are likely due to chemical equilibrium 
and may be due to stronger mutual control of a single enzyme or a variation of 
a single enzyme level much above others [32]. 

Predictive modeling 
Multi-metabolite profiles have been shown to predict development of 

various diseases including diabetes [10,13,33]. During our model selection 
procedure, we allowed up to 60 factors (metabolites and 4 clinical covariates) 
to be simultaneously selected into the prediction model for developing GIDM. 
No metabolites were found to consistently contribute to predicting GIDM. This is 
different from T2DM where multi-metabolite risk scores have been developed. 
Comprehensive metabolic profiling of patients who develop GIDM may help 
to better understand the pathophysiology behind GIDM and subsequently 
possibly target preventive interventions for individuals at risk of developing 
GIDM and target treatment for patients who have already developed GIDM. 

Changes in the metabolome due to GCs 

males without evident clinical manifestations [9]. A total of 150 out of 214 
metabolites had changed at some time point after GC (4 collection points in 24 
hours) and 9 was significantly changed at all 4 time points. The inter-person 
variability was high and remained uninfluenced by the intervention. Thus, the 
22 metabolites associated with GC exposure in our study are reflections of 
both the difference in time from GC exposure and interindividual differences. 
Since the study by Bordag et al. used a targeted metabolomics method, it 
was not possible to directly compare the unidentified metabolites in our 
study with the metabolites in the Bordag study. In the Bordag study however, 
18-Hydroxycorticosterone, Corticosterone and Cortisol were downregulated 
after Dexamethasone intake, which would be expected since Dexamethasone 
normally inhibits the pathway of steroid hormone syntheses, and in our 
study other metabolites in the same steroid pathway (Cortisolsulfate and 
Dehydrocorticosterone) were also downregulated. This indicates consistency 
between the two studies. 

Strengths and limitations 
The strength of the current study is that it is the largest metabolomics study 

in patients with GIDM and that the majority of patients had blood drawn at the 
same time of day (10.30-12.30), which is important since the metabolome is 
known to exhibit circadian rhythmicity [34,35]. 

Since the metabolome consists of very different compounds like 
lipids and amino acids that differ both in the presence in tissues and in 
concentrations, no single metabolomic method can currently measure the 
whole metabolome and there are interlaboratory variations. Furthermore, 
the metabolome can be altered by exogenous substances like foods 
or endogenous by metabolism, in a subject specific manner. In the GC 
exposure analysis, we had a small sample of n=6. 22 metabolites were 
associated with GC exposure, but it’s possible, that we had found more 
metabolites in a larger sample. As previously discussed, no data on concurrent 
medications and nutrition were recorded and this could bias our results. 

At least 22 metabolites were associated with GC exposure. Drug    
metabolites such as beta-hydroxy prednisolone and metabolites in the steroid 
hormone pathways were expected to be associated with GC exposure, which 
indicates that the trustworthiness of the metabolomics method in our study 
is good. The significance of the association between the di peptides and 
the phytochemicals and GIDM is unclear. Dipeptides are often short-lived 
compounds from breakdown of proteins to amino acids. Plasma levels of 
amino acids are correlated to plasma glucagon levels, which are an important 
driver for hyperglycemia, and it has been demonstrated in mechanistic studies 
that prednisolone can stimulate glucagon secretion. Hence, our findings 
could indicate that GC exposure elicit hyperglycemia via amino acid driven 
hyperglucagonemia. 

In a targeted metabolomics study Bordag et al. found, that treatment with 
GCs lead to immediate changes (within 6 hours) in the metabolome in healthy 

Conclusion 
This metabolomics study in a cohort of cancer patients treated with GC 

shows significant differences in the metabolome between patients developing 
GIDM and those who do not. Furthermore, changes in the metabolome due 
to GC treatment were observed in 22 metabolites which support previous 
findings. The results of our study suggest that there could be a potential for 
using metabolomics to better understand the development of GIDM (in contrast 
to development of T2DM) and perhaps in future to be able to identify patients 
at risk of GIDM before clinical manifestation. This could lead to preventative 
measures with the potential of lowering the increased mortality and morbidity 
related to GIDM. It could also form the basis for mechanistic and clinical studies 
to prevent GIDM during GC therapy by either personal risk stratification to GC- 
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sparing treatments or by the development of new drugs to treat the metabolic 
disturbances before clinical manifestation of GIDM. 
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