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proteins [16]. These observations suggested that clusterin may play 
an important role in preventing diabetes-induced breakdown of 
the blood–retinal barrier. PEDF is produced by the retinal pigment 
epithelium and is as a major inhibitor of intraocular angiogenesis [17]. 
Although whether PEDF levels are altered in patients with proliferative 
DR is still controversial, PEDF may be a candidate target protein for 
the treatment of DR. 

A combined study using cytokine assays and proteomics should 
provide the most basic information for comparisons of DR patients and 
controls. Further studies to evaluate the precise role of these potential 
biomarkers of DR pathogenesis and their potential as therapeutic 
targets are warranted. 
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Diabetic retinopathy (DR), a serious and debilitating complication 
of diabetes, is one of the leading causes of blindness worldwide. Early 
diagnosis and prevention of retinopathy is crucial in ameliorating 
diabetes-induced vision loss. Prolonged hyperglycemia in diabetic 
patients causes irreversible pathological changes in the retina, leading 
to proliferative DR with retinal neovascularization and diabetic macular 
edema (DME) [1,2]. Although intensive metabolic control is a highly 
effective in controlling DR, recent research has identified the key role 
of vascular endothelial growth factor (VEGF) in the vascular lesions 
found in DR, and new agents that block VEGF action are effective 
treatment in patients for whom metabolic control alone is insufficient 
[3]. Whereas the role of high blood glucose has been suggested to be 
the primary catalyst for the biomolecular and cellular changes seen in 
the retina, less is known regarding the intraocular biochemical changes 
associated with the mechanism that potentially contributes to the 
pathogenesis of proliferative DR. 

For investigating the pathogenesis of DR, 2 main strategies 
are applied for the analysis of vitreous protein. The first strategy is 
antibody-based detection of vitreous cytokines. In previous studies of 
vitreous cytokines in DR, conventional enzyme-linked immunosorbent 
assay (ELISA) were used [4,5]. Recently, simultaneous analysis of 
the expression profiles of multiple cytokines and chemokines in the 
vitreous fluid was performed using an array system of antibody-coated 
beads [6]. Compared with the control group, interleukin (IL)-6, IL-8, 
IL-10, IL-13, interferon-inducible 10-kDa protein (IP-10), monocyte 
chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1 
beta (MIP-1β), platelet-derived growth factor (PDGF), and VEGF 
levels in the vitreous fluid were significantly higher in the DR group. 
The second strategy is proteomic analysis of vitreous proteins [7-11]. 
Fluorescence-based difference gel electrophoresis (DIGE) combined 
with matrix-assisted laser desorption ionization time-of-flight mass 
spectrometry (MALDI-TOF MS) has enabled accurate quantitative 
comparisons of multiple proteins [12]. MALDI-TOF MS analysis 
of vitreous fluid detected approximately 1300 protein spots, and 25 
of these intravitreal proteins were differentially expressed between 
DME and control groups. Hemopexin, beta-crystallin S, clusterin, 
and transthyretin were found to be specifically associated with DME. 
In a study using the same technique, 1242 protein spots were detected 
containing 19 differentially expressed intravitreal proteins between 
proliferative DR and control groups [13]. Differences in hemopoxin, 
clusterin, and pigment epithelium-derived factor (PEDF) levels were 
also observed between proliferative DR and control groups. Therefore, 
hemopexin expression was upregulated in DME and proliferative 
DR, whereas clusterin expression was downregulated in DME and 
proliferative DR and PEDF expression was downregulated only in 
proliferative DR. 

Hemopexin is an acute-phase plasma glycoprotein and is expressed 
in multiple cell lines derived from different tissues [14]. Importantly, 
increasing glucose concentrations in vitro increased hemopexin 
expression and modulated the reactive oxygen species levels in cells; 
these effects were partially reversed by addition of reduced glutathione. 
Clusterin is associated with protection from apoptosis of retinal cells 
[15]. In a mouse model of DR, clusterin reduced the leakage from 
vessels in the diabetic retina and restored expression of tight junction 
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