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Introduction
Influenza remains a global threat and a significant public health 

problem [1]. Insight into the process of influenza viral variation can 
help inform public health policy, antiviral drug development and pro-
tective vaccine design. We report here a bioinformatic analysis of sub-
sets of the Hemagglutinin (HA) gene of the 2009-2010 pandemic H1N1 
influenza virus. Subset sorting was based upon the HA nucleotide po-
sition of maximum information entropy (H). The sorting of HA gene 
mutants reported here is consistent with the non-random organization 
of intergenic mutual information in the pandemic virus previously re-
ported [2]. The results of this research suggest that this intra- and inter-
genic organization may provide targets for analyzing, and perhaps, ma-
nipulating the evolutionary trajectory of the influenza virus.

Materials and Methods
The entire dataset of 3460 hemagglutinin (HA) sequences from the 

2009-2010 H1N1 pandemic was downloaded from the NCBI Influenza 
Virus Resource Database [3] on November 26, 2010. The dataset was 
comprised of H1N1 influenza A HA sequences obtained from hu-
man patients world-wide between March 30, 2009 and April 4, 2010. 
Sequences either with nucleotides identified as other than A, C, G or 
U/T or which terminated before position 1701 were excluded. A total 
of 3382 (97.75%) of these HA sequences were of sufficient length and 
quality to be used for this analysis. The nucleotides of the influenza vi-
rus HA gene are referred to in this report with numbering of the 1701 
nucleotide positions relative to the 5’-terminus of the mRNA.

Computations were performed with Python 2.6.4 [4] with SciPy 
0.7.1 [5], Numpy 1.3.0 and matplotlib [6]. Information entropy (H) 
was computed according to Shannon [7]. Mutual information (MI) was 
computed according to Equation 2.28 in Cover and Thomas [8]. Z score 
probabilities are reported as two-tailed. Standard deviations for z scores 
were each obtained from 1000 pseudorandom trials.

In order to facilitate comparison of the kinetics of acquisition of HA 
subset sequences, each cumulative sequence count (Y) was approxima-
ted as a continuous integral function (Equation 1):

(  ) Y f sequence count dt= ∫ (1)

A logistic-type function [9] was fit to Y by regression to cumulative, 
sequence counts obtained for the HA sequence subsets for the entire 
pandemic period:
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Where t represents time (t), a and b are non-linear parameters and c 
is a linear parameter. Values of the parameters a, b and c were determi-
ned for each subset by regression to the observed cumulative sequence 
counts, as a continuous, integral over t (time).

The parameter values were used to obtain numerical values for the 
first (Y’), second (Y’’) and third (Y’’’) derivatives of Y with respect to 
time according to Equations 3 – 5:
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Abstract
We report here an analysis of mutations in the 2009-2010 pandemic H1N1 influenza Ahemagglutinin gene 

(HA) based upon information entropy (H), Mutual Information (MI) and geography. The purpose of this study is 
to determine whether the processes that dominated the evolution of the pandemic virus were either non-random 
or random. The complete pandemic dataset was bisected into two subsets according to the nucleotide occupying 
the position of maximum H. The resulting subsets were almost disjoint with respect to overall H distribution, with 
correlation of H less than that of randomly formed subsets. It was further found that MI between the two nucleotide 
positions of greatest H was associated with an asymmetric, non-random distribution of mutant counts. The cumulative 
distributions of pandemic HA sequences from 23 geographic locations world-wide were represented by a system of 
equations that yielded sequence distributions that were in concordance with available epidemiological/clinical data. 
It is concluded that the non-random distributions and correlations observed for the HA gene in this research reflect 
non-random, deterministic biological forces that influenced the evolutionary trajectory of the 2009 – 2010 H1N1 
pandemic influenza virus.
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Differentiation of Equation (2) with respect to time and fitting of 
values to parameters a, b, and c to Equation (2) by regression was per-
formed with Maple 15.01 (Maplesoft, a division of Waterloo Maple, 
Inc.).

Subsets were formed from the complete dataset of HA sequences 
depending upon the nucleotide occupying the position of maximum 
entropy. Subsets were further classified according to geographic origin 
for locations from which at least 20 HA sequences had been collected 
during the pandemic.

Results
The distribution of information entropy (H) in the HA gene se-

quences of the complete dataset is shown in Figure 1. The mean and 
median H values are 0.01409 and 0.0039, respectively with standard 
deviation = 0.0417. The H distribution in Figure 1 is highly asymme-
tric (skew = 11.0517, z score = 45.7727, p<2.22E-16) and peaked 
(kurtosis = 170.9245).There are 11 nucleotide positions with H grea-
ter than the mean plus 4 standard deviations. This subset of statistical 
outliers consisted of the following nucleotide positions (z scores and 
p values in parentheses): position 4 (5.8456, 5.0487e-09), position 145 
(8.2279, 1.9052e-16), position 340 (5.3584, 8.3965e-08), position 658 
(20.5529, <2.22e-16), position 717 (7.6279, 2.3864e-14), position 852 
(4.9299, 8.2270e-07), position 930 (6.8301, 8.4828e-12), position 1012 
(7.1721, 7.3832e-13), position 1171 (13.7875, <2.22e-16), position 1281 
(11.5394, <2.22e-16) and position 1408 (14.6859, <2.22e-16).

The position of maximum entropy (position 658) was used as a ba-
sis for sorting the complete set of HA sequences from the pandemic 
into two subsets, according to the nucleotide occupying that position 
(either A658 or U658). The A658 subset was comprised of 2406 sequen-
ces while the U658 subset was comprised of 976 sequences (z score = 
23.6085, p < 2.22e-16). There was no significant correlation (Pearson r 
=0.1879) between the distributions of entropy in the A658 and U658 
subsets (Figure 2). In contrast, the correlation between entropy values 
of randomly formed subsets of the same sequences was highly signifi-
cant (Pearson r = 0.9633, p < 2.22e-16).The six extreme outliers along 
the A658 subset axis in Figure 2 were identified as (H values in pa-
rentheses): position 340 (0.2947), position 717 (0.4255), position 852 
(0.2771), position 1012 (0.3575), position 1171 (0.7193) and position 
1281 (0.6059). The four extreme outliers along the U658 subset axis in 
Figure 2 were identified as: position 4 (0.5988), position 145 (0.7195), 
position 930 (0.6363) and position 1408 (0.9963). These outlier nucle-
otide positions are the same as those identified as statistical outliers in 
Figure 1.

The mutual information (MI) distribution of the HA gene sequen-
ce, with nucleotide position 658 as the reference position, is shown in 
Figure 3. The MI of position 1408 exceeds the mean MI plus four stan-
dard deviations. The counts of A, C, G and T(U) nucleotides at position 
1408 of the A658 subset of sequences were determined to be 0, 7, 0 and 
2396.The corresponding counts for the U658 subset of sequences were 
0, 523, 0 and 453. Thus, there were 74.7 times the number of sequences 
with C at position 1408 in the U658 subset (523 sequences) than were 
in theA658 subset (7 sequences) yielding for [7,5,23] a z score = 22.8854 
(p < 2.22e-16).

The time course for the acquisition of HA sequences in the A658 
and U658 subsets of the entire HA dataset for the pandemic is shown in 
Figure 4. The observed cumulative sequence counts are given in Figure 
4 (upper). The observed time course for the A658 subset is different 
from that of the U658 subset, with A658 emerging as dominant on day 
127 of the pandemic. The total cumulative sequence counts (A658= 

2406, U658= 976) that were obtained in these time series differed signi-
ficantly from each other (z score =22.4780, p<2.22e-16). The time to re-
ach ½ of the of the total summed count, ie, time to half-maximum, was 
178 days for the A658 subset and 58 days for the U658 subset (zs core = 
7.7125, p=1.2338e-14). The Spearman r for the correlation between the 
observed cumulative curve of sequence counts and Y values calculated 

Figure 1: Information Entropy (H) Distribution in the Pandemic 2009-2010 
H1N1 HA Gene. The red dashed line represents the mean plus four standard 
deviations. H is expressed in bits.

Figure 2: Relation Between Information Entropy (H) Distributions in HA 
(A658) and HA(U658) Subsets. Observed H values (black circles) for nucleo-
tide positions of subset A658 sequences are on the abscissa and for nucleotide 
positions of subset U658 sequences are on ordinate. H values for nucleotide 
positions of random subsets of the sequences are shown as red circles. The 
dotted red line is a reference straight line with slope = 1.0 and intercept = 0.0.

Figure 3: Distribution of HA Nucleotide Position 658 Mutual Information in 
the HA Gene of the 2009-2010 Pandemic H1N1 Influenza Virus.The dashed 
red line represents the mean plus 4 standard deviations.
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according to Equation (2) was r = 0.9999 (p < 2.22e-16) for the A658 
subset and r = 0.9995 (p < 2.22e-16) for the U658 subset of sequences. 
Numerical values of parameters a, b and c determined from Equation 2 
by regression were a = 0.0184, b = 0.0419and c = 107.8571 for the A658 
HA sequence subset and a = 0.0411, b = 0.0872 and c = 83.2110 for 
the U658 subset of HA sequences. The numerical values obtained with 
these parameters for the derivatives Y’, Y’’ and Y’’’ for the A658 subset 

clearly differed from those obtained for the U658 subset (see Supple-
mentary Figure 1). Values for Y’, shown in Figure 4 (lower), are approxi-
mations to the daily raw sequence counts with smoothing of the spikes.

Twenty-three (23) geographic locations were identified world-wide 
at which at least 20 pandemic HA nucleotide sequences had been de-
posited in the NCBI influenza database. The sequence counts for A658 

Figure 4: HA Subset Global Sequence Acquisition Kinetics. Results for A658 subset sequences in red and results for 
U658 subset sequences are in blue.

Figure 5: HA Subset Local Sequence Acquisition Kineticsforthe state of Wisconsin, USA. Results for A658 subset se-
quences are in red and results for U658 subset sequences are in blue. The hospitalization rate per 100, 000 population s (dashed 
black, vertical lines) wasadapted from Truelove, Chitnis, Heffernan et al [10].
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and U658 subsets from these 23 locations are given in Table 1. Overall, 
there was no correlation between the sequence counts in the A658 sub-
sets and in the U658 subsets (Pearson r = 0.2739, p=0.2060; Spearman 
r=0.0803, p= 0.7157). At six of the locations (Argentina, Australia, Chi-
le, Egypt, Madrid and Malaysia) only members of the A658 sequence 
subset were reported, i.e, the U658 subset was empty at each of these 
geographic locations. For all instances of the reported viral sequences 
(Supplementary Table 1), there was high correlation between the ob-
served cumulative sequence counts and the values of Y calculated from 
Equation 2, with a minimum correlation (Pearson r = 0.9495, p < 2.22e-
16) for California and maximum (Pearson r = 0.9991, p < 2.22e-16) for 
Thailand and for Wisconsin. See the Supplementary Figures 2-24 for 
graphs of Y, Y’, Y’’ and Y’’’ for the HA (A658) and HA (U658) subsets 
at all 23 locations.

From one of the geographic locations in the study (Wisconsin, 
USA), published epidemiological and clinical data were available in the 
literature [10]. The rate of hospitalization for influenza illness (Figure 5) 
is consistent with Y’ values calculated from Equation 3. Note the wave-
like distribution of HA sequences in Figure 5, predicted from Equation 
3 and observed for the hospitalization rate. It was reported by the De-
partment of Health of the State of Wisconsin that influenza illness in 
the second wave, (HA (A658) was more severe than in the first wave 
(HA (U658)).

Discussion
The evolutionary trajectory of the influenza A virus reflects inte-

ractions among viral genetics, host genetics and environmental factors 
[11]. The A658U transversion in the HA gene of the pandemic virus 
changes the ACA codon to UCA, thereby producing the T203S mu-
tation in the HA protein. (Mutation T203S is designated T206S in H3 
numbering; see Garten et al. [12]). Mutation HA T203S has been shown 

Geographic 
Location

Sequence Count 
A658 Subset

Sequence Count
U658 Subset Zscore, p (z)

Afghanistan 9 20 1.9633, 0.0496
Argentina 32 0 5.6900, 1.2706e-08
Australia 57 0 7.9120, 2.5335e-15
Boston 39 27 1.4825, 0.1382

California 124 34 7.1839, 6.7749e-13
Canada 4 25 3.8898, 0.0001

Chile 49 0 6.9011, 5.1618e-12
Egypt 37 0 6.0651, 1.3190e-09

Finland 117 10 9.75362, 1.7805e-22
Houston 4 26 4.0223, 5.7621e-05
Kuwait 7 17 2.0522, 0.0401
Madrid 20 0 4.6777, 2.9008e-06

Malaysia 42 0 6.5512, 5.7094e-11
Managua 34 96 5.5279, 3.2411e-08
Mexico 7 72 7.2833, 3.2583e-13

Nagasaki 67 12 6.1698, 6.8396e-10
NewYork 346 47 15.0578, 3.0671e-51
Ontario 26 12 2.2398, 0.0251

SanDiego 54 13 5.0878, 3.6233e-07
Singapore 114 9 9.4229, 4.3872e-21

Texas 155 58 6.6027, 4.0367e-11
Thailand 27 36 1.1378, 0.2552

Wisconsin 137 190 2.8408, 0.0045

Table 1: Geographic Distribution of A658 and U658 Pandemic Influenza Hem-
agglutinin Subsets. Sequence count colors: red (A658>U658); blue (A658<U658); 
black (A658≅U658).

to have played an important role in the global and local organization 
of 2009-2010 pandemic influenza viral strains into clusters and clades 
[13-17]. The molecular and cellular mechanisms of theT203S effects on 
influenza viral organization have not yet been determined. Despite its 
proximity to a surface epitope, no effect of the HA T203S mutation on 
the antigenicity of the virus has been demonstrated [12,13].

The primary question addressed in this research is whether the pro-
pagation of influenza virus mutations during the 2009-2010 H1N1 pan-
demic was random or non-random. The sorting of HA sequences from 
the pandemic, based upon the nucleotide identity at the position of 
maximum entropy (Figure 1) produced two subsets with correlation of 
information entropy clearly less than that of randomly formed subsets 
(Figure 2). Furthermore, the mutual information (Figure 3) between 
the two HA nucleotide positions of greatest entropy (positions 658 and 
1408) represented an asymmetric distribution of mutants with proba-
bility smaller even than the epsilon number (2.22e-16) of the computer 
used (see Results). These results suggest that the point-mutational evo-
lutionary trajectory of the pandemic H1N1 was highly non-random. 
Three of the ten HA mutations that displayed almost-disjoint distri-
butions of mutations (Figure 2) were sites of synonymous mutations 
(U852C, A1281G and U1408C) thereby suggesting interactions of co-
varying mutations at the nucleotide level. These results are consistent 
with the non-random intergenic interactions in the pandemic influenza 
virus recently reported in which seven of the nine mutating, interac-
ting nucleotide positions were sites of synonymous mutations [2]. It has 
been demonstrated in bacteria, that rates of protein synthesis are regu-
lated at the ribosomal level by synonymous mutation [18].

The viral subsets were analyzed by a set of Ordinary Differential 
Equation(S) (ODEs) (Equations 3-5) derived from an integral equation 
(Equation 2). Application of the equations to the viral sequence counts 
results in a curve-fitting step (Figure 4 top) and a curve-smoothing 
step (Figure 4 bottom). A biomedical significance of these equations 
is suggested by the observed concordance between the predicted time 
course of their derivatives and the wave-like epidemiological and cli-
nical descriptions of the pandemic (Figure 5). Wave-like behavior is a 
characteristic that has been reported for previous, more deadly influen-
za pandemics [19].

The equations used in this study are continuous and differentiable, 
yielding algebraic solutions for the differentiation operation. See Sup-
plementary Figures 1-24 for graphs in which Equations 2-5 were ap-
plied to every subset of HA sequences considered here.

It is proposed that the non-random correlations of mutations re-
ported here reflect deterministic, intragenic regulatory processes that 
occurred within the HA gene of the 2009 – 2010 H1N1 pandemic in-
fluenza virus and that describing and understanding these processes 
can be helpful in tracking and managing future influenza epidemics.
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