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Introduction
Microbial mediated methane (CH4) oxidation play a major role 

in reducing global atmospheric CH4 and annually about 10-40 Tg 
atmospheric CH4 is consumed by methane oxidizing microbes [1-4]. 
Microbial CH4 oxidation has been reported to occur at significant rates 
in many natural ecosystems and soils can act as sinks for CH4 from 
atmosphere [5-10]. Therefore the biological CH4 oxidation process is 
important process to minimize global climate change and there is need 
of extensive research to characterize methanotrophic activity in various 
ecosystems for possible application to reduce atmospheric greenhouse 
gas. CH4 is produced anaerobically from flooded rice field while 
its oxidation takes place under aerobic condition. So far most of the 
studies characterizing methane oxidation rate are restricted to upland 
aerobic soil ecosystem and limited information are there to support 
our understanding in flooded soil ecosystem [7,11-13]. Soil moisture 
is important to regulate soil CH4 oxidation [14] either by affecting 
diffusion of gas phase [15] or affect soil methanotrophs metabolism 
by osmotic stress [16] In increased moisture containing wetter soils, 
CH4 oxidation decreases with higher soil moisture [17-20], but at lower 
soil moistures CH4 oxidation is not highly correlated with soil moisture 
[21-23]. Typically in very dry soils such as in deserts, CH4 oxidation is 
higher after precipitation [24]. In such soils osmotic stress may limit 
activity of CH4-oxidizing bacteria more than diffusion of gases through 
the soil [16]. Few studies have revealed that water addition to soil can 
stimulate CH4 oxidation and methanotrophic activity maxima can be 
attained at intermediate soil moistures [25,26]. It has been projected that 
climate change will affect the water distribution globally and increasing 
temperature will lead to more wet lands [27,28]. Many upland soils will 
remain flooded and this may influence the green house gas (GHG) foot 
print by affecting both methanogenic and methanotrophic bacteria.

In a flooded rice soil, CH4 oxidation activity varies with cropping 
period [29]. Under flooded condition anaerobic microbes are 
predominantly active and reduces aerobic microbial metabolism. 
However flooded soil does not necessarily result in the development of 
uniformly reduced profile. A thin, oxidized surface horizon overlying a 
deep, reduced horizon is formed due to the dissolved oxygen from the 
overlying floodwater diffusing across the surface water-soil interface 

and in soils planted with rice, the rhizosphere is oxidized because of the 
delivery of oxygen (O2 ) into roots [30-32]. In periodically submerged 
soil, anaerobic microbial redox metabolism takes place by sequential 
reduction of inorganic electron acceptors such as oxygen, nitrate, 
manganese (IV), iron (III), sulphate and carbon dioxide (CO2). The 
sequence of reduction processes is best described by the thermodynamic 
theory, which predicts preferential reduction of available electron 
acceptors with the most positive redox potential [33,34] Many studies 
have investigated on the impact of oxidized electron acceptors on 
methanogenic microbes in flooded rice field soil [35,36]. In anaerobic 
layer anaerobic microbes like denitrifiers, dissimilatory iron reducers, 
sulphate reducers, and methanogenic bacteria are active in presence 
of high input of labile organic material. These microbial groups are 
often competing for common reduced carbon sources [37-39]. In the 
flooded soil ecosystem CH4 oxidation activity is affected due to O2 
limitation and along with predominance of reduced species [40,41]. 
Under such anaerobic condition i.e absence of O2, CH4 oxidation has 
been reported at the less reduced site through NO3-, Fe3+and SO4

2-
reduction [42,43] Anaerobic CH4 oxidation is poorly understood 
process because the microorganisms capable of performing this process 
have not been characterized from soil. The significance of increasing 
concentration of greenhouse gas, CH4 in the atmosphere and its role 
in the global warming has been reviewed earlier [44-47]. Flooded soil 
ecosystems are considered as one of the major sources of CH4 to the 
atmosphere and this process is governed by many factors like moisture 
regime, temperature, organic matter (added or native), sulphate, pH, 
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aquatic plant related factors [48,49]. CH4 oxidation acts as sink to the 
atmospheric CH4. This activity is carried out by specific microbial 
groups known as methanotrophs. The following literature review is 
concerned with the significance of CH4 as the greenhouse gas, its role 
in global warming, the sources, and sinks of CH4 i.e. CH4 oxidation and 
factors affecting the processes.

Nanoparticles released from products and applications can get 
directly or indirectly to the soil. Direct soil contamination occurs 
from purposefully applying products like biocides, compost, fertilizer, 
and nanoparticles for remediation, and products which contaminate 
soil unintentionally like abraded material, some coating materials, 
contaminated soils, and water for irrigation. Product ingredients 
reaching soils indirectly on the other hand are released to other 
environmental compartments e.g. air, water, or groundwater. Thus 
nanoparticles get exchanged between the environmental compartments.

Methanotrophs physiology
Methanotroph bacterias consume methane for energy and carbon 

[50]. All known methanotrophs under α-and γ-proteobacteria 
phyla oxidize methane ultimately to carbon dioxide. Basically 3 
types of pathways are followed by methanotrophs. In the general 
methanotrophic pathway, methane is initially hydroxylated to 
methanol by pMMO(particulate methane monooxygenase) or sMMO 
(soluble methane monooxygenase), which is further oxidized to 
formaldehyde by periplasmic methanol dehydrogenase (MDH) [51]. 
In the catabolic pathway, formaldehyde is oxidized to CO2 via formate 
by formaldehyde dehydrogenase (FalDH) and formate dehydrogenase 
(FDH), yielding reducing equivalents as either quinol or NADH. In the 
anabolic pathway, formaldehyde is incorporated into cell biomass via 
incorporation into either ribulose monophosphate (RuMP) or serine 
pathway, depending on the type of methanotroph.

Phylogeny 
Methanotrophic bacteria are classified into one of two major groups, 

type I and type II. The major distinction between the two types is the 
pathway via which formaldehyde is incorporated into cell biomass. 
Type I methanotrophs assimilate biomass via ribulose monophosphate 
(RuMP) pathway, while type II methanotrophs use serine pathway 
for the same operation. Also, there are other notable differences that 
are used to distinguish these groups of methanotrophs other than 
biomass assimilation pathway such as cell morphology, composition 
of phospholipid fatty acids, and membrane arrangements as listed in 
Table 1.

Atmospheric Methane and Global Warming 
In stratosphere, CH4 influences ozone (O3) by secluding O3 by 

destroying Cl-atoms into HCl molecules which on reaction with–OH 
radicals releases O3 depleting Cl-and ClO-radicals. It also undergoes 
photochemical oxidation and produces water vapour that reacts 
with O3 destroying NO and NO2 to less reactive HNO3 [52,53]. CH4 
contributes about 15-20% of the current increase in global warming 
[49]. In addition to general climatologically effects, global warming 
may affect the global carbon cycle by greatly reducing the soil organic 
carbon content, which may be released as CO2 and is likely to add to the 
current burden of CO2 in the atmosphere [54].

Sources and Sinks of Atmospheric Methane 
CH4 production can be from biological and abiological sources. 

The abiological sources such as mining, transport, fossoil fuels, and 
biomass burning contribute about 20-30% to the total atmospheric 
CH4 (Figure 1). The main sink of atmospheric CH4 is its reaction 
with–OH radicals [55]. The build up in the global atmospheric CH4 
concentration is attributed to many activities including the bacteria 
mediated methanogenesis (microbial CH4) occurring in the anoxic 
ecosystems and the thermocatalytic reactions (thermogenic CH4) 
during petroleum formation [56].

Biogeochemical Cycling of Methane 
The primary producer i.e plants fix carbon atoms photosynthetically 

into a myriad of organic molecules, varying in size and complexity, but all 
being intermediate in redox potential between CO2 and CH4. In anoxic 
(anaerobic) conditions, organic materials are converted into organic 
acids, alcohols, methylated amines and H2 by microbial communities 
[57,58]. Under highly reducing conditions and in the absence of 
other potential electron acceptors such as NO3-, SO4

2-, or Fe3+, these 
substrates can be converted to CH4 by strict anaerobic methanogenic 
bacteria [59]. CH4 thus formed enters the atmosphere at or near earth’s 
surface after escape from methanogenic habitats including wetland, rice 
paddies and other sources. A high redox potential equals to well-aerated 
environmental conditions and a low redox potential equals to saturated 
environmental conditions. Saturated soils become depleted of oxygen, 
because this is rapidly consumed by aerobic organisms and cannot 
be replenished by diffusion quickly. Then, anaerobic and facultative 
organisms continue the decomposition process. In the absence of 
oxygen, other electron acceptors begin to function, depending on their 
tendency to accept electrons. When flooding occurs the reduction of 
the remaining oxygen will take place first, followed by the reduction 
of nitrate, then manganese, iron, sulphate, and carbon dioxide. The 
reduction of oxygen occurs by the O2 consumption of aerobic organisms, 
NO3 serves as a biochemical electron acceptor involving N-organisms 
that ultimately excrete reduced N, the reduction of Mn can be initiated 

Figure 1: Route of environmental nanoparticles.Table 1: Differential biochemical and physiological characteristics of type I and II 
methanotrophic bacteria [51].

Characteristic Type 1 Type 2

Cell morphology Short rods, usually 
occur singly; some 
cocci or ellipsoids

Crescent-shaped rods, rods, 
pear-shaped cells, sometimes 

occur in rosettes

G+C content of DNA 
(mol%)

49-60 62-67

Nitrogen fixation No Yes

RuMP pathway 
present

Yes No

Serine pathway No Yes
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in presence of NO3-, whereas the reduction of Fe cannot be initiated in 
presence of NO3-, and sulphate reducing bacteria are involved to reduce 
SO4

2-. The sequential reduction of the different electron acceptors in soil 
is assumed to be due to different types of microorganisms that compete 
for common electron donors with greater efficiency according to the 
redox potential of the electron acceptors [60]. For example, the two most 
important immediate precursors for CH4 formation are acetate and H2 
for which, however, SO4- -reducing and Fe3+-reducing bacteria compete 
successfully, if SO4- and Fe3+ are available, respectively. CH4 production 
in anoxic rice paddies begins only if all the other redox processes, 
i.e. reduction of NO3, Fe3+ and SO4- are finished. Methanogenesis is
inhibited by competition for H2, if SO4- reduction and Fe3+ reduction
was made possible by addition of SO4- and Fe3+, respectively. About
85% of the total CH4 input flux is consumed by tropospheric OH,
producing CO2, H2O, CO, H2 and various intermediate products. The
remaining flux enters the stratosphere. Reaction with stratospheric OH 
is the dominant sink, followed by reaction with O and Cl atoms. Under 
anoxic conditions CH4 is oxidized in the presence of electron acceptors 
with sugar as the end product [42]. Sugar thus formed is oxidized by
other microorganisms with ultimate CO2 formation. In the presence
of oxygen, CH4 is oxidized to CO2 by methanotrophic bacteria. The
oxidation of CH4 to CO2 completes the carbon cycle.

Oxidation of Methane by Methanotrophs
The capability of methanotrophs to degrade a wide variety of potential 

pollutants, including methane and halogenated hydrocarbons, has been 
studied for applications in climate change control and bioremediation 
[61-71]. Methane is an important greenhouse gas contributing to global 
climate change. Although present in relatively small concentrations 
in the atmosphere, ~1.7 ppmv, methane is approximately 25 times 
as efficient as carbon dioxide at absorbing infrared radiation [72,73] 
and the atmospheric methane concentration has risen rapidly since 
the industrial revolution. The increase in atmospheric methane 
concentration is attributed to increased anthropogenic methane 
emissions, which have led to a disruption of global methane cycling [72]. 
A significant portion of natural and anthropogenic methane generation 
occurs via biological methanogenesis. Strictly anaerobic environments 
such as wetlands and landfills promote microbial methanogenesis 
and thus, are major sources of the atmospheric methane. It is known, 
however, that significant amounts of methane are also emitted from 
upland forest soils, ruminant animals, and fossil fuel combustion [74].

Degradation of atmospheric methane occurs via two general 
pathways: (1) photochemical elimination and (2) microbial oxidation 
[75]. In photochemical elimination processes, atmospheric methane 
is primarily degraded through reactions in the stratosphere with 
either the hydroxyl radical (OH•) or electronically excited singlet 
oxygen (O1D) [76]. It is estimated that methanotrophic consumption 
of methane accounts for 1-15% of the combined amount of biotic 
and abiotic methane removal [77]. In natural environments, e.g., 
wetlands, methanotrophs are known to oxidize a significant portion 
of methane generated in anaerobic zones with reported methane 
oxidation potentials of up to 0.29 μmol CH4/g wet peat-h [78]. It is also 
known that methanotrophs in landfill cover soils significantly reduce 
the amount of methane released from landfills. Methane oxidation 
potentials up to 10.8 μmol CHt/g dry weight of soil-h were reported in 
in vitro experiments performed with landfill cover soils [79].

Nanoparticles Flow between Soil and Its Environment 
Nanoparticles come to the soil and leave it through various 

processes. Out of information on nanoparticles applications found in 

web and literature studies, a chart of nanoparticles fluxes to and from 
soil could be drawn (see Figure 1). Included are only fluxes within the 
system boundary.

Of major relevance for soil contamination are the directly 
applied products and nanoparticle applications with indirect flows 
to the soil, either because of mass production or high concentrations 
of nanoparticles in the products. These are especially automotive 
equipments, biocides, fertilizers, soil remediation, irrigation, coatings, 
and air deposition.

Effects of Nanoparticles on Soil Microbes
Several researches revealed that nanoparticles impact terrestrial 

organisms. Mostly the aquatic organisms are exposed to nanoparticles 
primarily through gut intake followed by translocation within the body 
[80,81]. Terrestrial animals are exposed through the lung (inhalation) 
and gut (diet), while plants are most likely to be exposed via root uptake. 
Nanoparticles can diffuse through the cell membrane or can be taken 
up by adhesion and endocytosis. A consistent body of evidence shows 
that nano-sized particles are taken up by a wide variety of mammalian 
cell types, are able to cross the cell membrane and become internalized 
[82-84]. The uptake on NP is size-dependent [85,86]. The uptake 
occurs via endocytosis or by phagocytosis in specialized cells. They 
are not dependent upon the circulatory system but can move through 
the body via cell-to-cell contact. This is a very important consideration 
in understanding nanoparticle distribution and metabolism within 
organisms. Potential mechanisms of toxic action within an organism 
include: disruption of membranes or membrane potential, formation 
of reactive oxygen species, oxidation of proteins, interruption of energy 
transduction, release of toxic constituents, and genotoxicity [87]. 
Antibacterial activity occurs as a direct contact between a positively 
charged nanoparticle and the bacterial cell surface. This changes the 
surface phosphorylation and membrane permeability, causes oxidative 
stress and formation of highly reactive epoxides resulting in DNA 
damage, and affects the integrity of the bacterial cell membrane.

Conclusion
There is currently a lot of attention being paid to the behaviour and 

effects of engineered NP, but there is still only limited solid information. 
However, the mechanisms underlying the nanoecotoxicity potential of 
ENPs are still not clear enough. Nanotechnology applications in food 
and agriculture are in its nascent stage. Moreover, some guidance is 
needed as to which precautionary measures are warranted in order 
to encourage the development of “green nanotechnologies” and other 
future innovative technologies, while at the same time minimizing the 
potential for adverse effects on human health and/or the environment. 
Thus there is urgent need for a systematic evaluation of the potential 
adverse effect of nanotechnology. It is therefore recommended that 
the ecotoxicological effect of nanomaterial be clarified before their 
application.
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