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Editorial
Fungal diseases affect a considerable proportion of the worldwide 

population, ranging in severity from mild superficial infections 
to grave invasive diseases [1-7]. The emergence and spread of 
systemic life-threatening fungal infections have increased in the 
last three decades, causing a major and alarming global concern [1-
7]. The more widespread provision of new medical practices (e.g., 
immunosuppressive therapy, use of broad spectrum antibiotics and 
invasive surgical procedures such as solid organ and bone marrow 
transplantation) and the greater number of people suffering from 
predisposing conditions (e.g., immunocompromising status such as 
neutropenia, diabetes and human immunodeficiency virus infection, 
low-birth-weight newborns, burns, patients with cancer and critically 
ill patients requiring implanted medical devices or grafts) are the main 
factors that have been implicated in the augmented number of fungal 
infections [8-12] (Figure 1).

The high morbidity and mortality associated with fungal infections 
is compounded by the limited therapeutic options and the emergence 
of drug-resistant fungi [13-17]. Timely and adequate interventions 
are necessary to maximize favorable outcomes, culminating in a 
successful treatment. Improved antifungal strategies are therefore 
urgently required [13-17]. In this context, the anti-virulence strategy is 
in vogue and is a light at the end of the tunnel considering the limited 
antifungal armamentarium [18-20]. In theory, the anti-virulence 
therapy prevents the emergence of resistance against a particular drug, 
since it inhibits the expression of virulence attribute(s) that are essential 
for the development of infection, without inhibiting the microbial 
proliferation [18-20]. Fungi are able to produce an arsenal of virulence 
factors [21-24], including the ability to form biofilm in both biotic (e.g., 

host tissues such as the oral cavity, respiratory, gastrointestinal and 
urinary tracts) and abiotic surfaces (e.g., implanted medical devices 
such as venous catheters, cannulation, pacemakers, endotracheal 
tubes, ventriculoperitoneal shunts, prosthetic joints, breast implants, 
contact or intraocular lenses, stents, intrauterine contraceptive devices 
and dentures) [24-27]. Alarming statistics on this theme corroborate 
the relevance of biofilm-related diseases: (i) the National Institutes 
of Health (NIH, USA) estimated that microbial biofilms (including 
both bacterial and fungal biofilms) were responsible for over 80% of 
all infections in USA [28], (ii) approximately 500,000 intravascular 
device-related bloodstream infections occur in USA each year [29], (iii) 
the majority of bloodstream infections are caused by infected central 
venous catheters, which is correlated with prolongation of hospital stay 
and added costs to the health care system, resulting in an estimated cost 
of US$ 11 billion annually [30-32].

Biofilm is the predominant growth lifestyle of many microorganisms, 
including several human opportunistic fungal pathogens (e.g., Candida 
albicans, non-albicans Candida species, Cryptococcus neoformans, 
Cryptococcus gatti, Trichosporon asahii, Rhodotorula spp., Aspergillus 
fumigatus, Malassezia pachydermatis, Histoplasma capsulatum, 
Coccidioides immitis, Pneumocystis spp., Fusarium spp. and many 
others), and is defined as a community of microorganisms encapsulated 
in a self-produced extracellular polymeric substance (or extracellular 
matrix) attached to a surface [33-36]. The biofilm extracellular matrix 
is mainly composed by polysaccharides, proteins, lipids and DNA, 
which form a robust shelter that offers a protected and nutritionally 
rich environment, contributing to survival, molecule exchanges and 
proliferation [37]. The analysis of the A. fumigatus biofilm extracellular 
matrix by solid-state nuclear magnetic resonance spectroscopy revealed 
approximately 43% polysaccharide, 40% protein, 14% lipid and 3% 
aromatic-containing components [38]. The formation of a microbial 
biofilm can be didactically summarized in five sequential steps: (i) 
adherence of cells to a surface, (ii) initial formation of colonies, (iii) 
secretion of extracellular polymeric substances, (iv) maturation in a 
three-dimensional structure and (v) cell dispersion [39].

Taking into account the clinical perspective, biofilms are 
intrinsically resistant to (i) conventional antifungal drugs, (ii) host 
immune responses and (iii) several environmental stress conditions, 
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Figure 1: The fungal disease is the consequence of the direct interaction among 
fungi, host and environment. In this context, the ability of fungal cells to produce 
numerous () attributes of virulence during the infection of an immunosuppressed 
host (), for example, attended at a hospital setting (e.g., interned at intensive 
therapy unit) culminates in the establishment of successful fungal disease.
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making biofilm-based infections a significant clinical challenge due to 
the fungal persistence in the host and, consequently, the establishment 
of a chronic disease [33,40-44] (Figure 2). Positive correlations have 
been demonstrated between severity of candidiasis and a biofilm 
phenotype [45,46]. In this way, medical devices provide a reservoir for 
fungal biofilm development. For example, catheter-related candidemia 
has been reported to be present in 20-70% of patients diagnosed with 
this fungal infection. Moreover, C. albicans cells forming biofilm can 
display 1,000-fold greater minimum inhibitory concentration (MIC) to 
certain classical antifungal drugs compared to planktonic counterparts 
under laboratory conditions [47]. Corroborating this finding, our 
research group reported that the biofilm-forming clinical strains of both 
Candida parapsilosis sensu stricto and Candida orthopsilosis presented 
a considerable resistance to different antifungal classes, especially 
regarding azole (e.g., fluconazole, itraconazole and voriconazole), 
polyene (e.g., amphotericin B) and echinocandin (e.g., caspofungin) 
drugs, for which biofilm MICs were determined to be several-fold 
higher than their corresponding planktonic MICs [48]. Recently, 
similar results were reported by Candida nivariensis [49]. 

The dispersion of cells from a mature biofilm is another 
important step in the fungal biofilm development cycle, which can 
induce devastating consequences for the patient, including either 
bloodstream or invasive fungal infections, with high risks of mortality 
[14-16,19,26,30-33,40-42]. For instance, the biofilm-detached C. 
albicans cells were more cytotoxic than their planktonic free-living 
cells and significantly more virulent in a murine model of infection 

[50]. As expected, removal of the implanted device from patients with 
candidemia is associated with decreased mortality and duration of the 
infection; however, this medical practice usually requires a costly and 
painful surgical procedure for the patients [51,52].

The mechanisms of biofilm resistance to antifungal agents are not 
fully elucidated; however, multiple interacting mechanisms appear to 
operate in a coordinated way, including (i) the different physiological 
state of biofilm development, (ii) limited penetration of drugs through 
the biofilm extracellular matrix; (iii) modulated expression of drug 
targets (e.g., membrane sterol composition of biofilm cells contains 
a significantly lower concentration of ergosterol, especially during 
the later phases of biofilm growth, compared to the planktonic cells, 
as observed in C. albicans), (iv) distinct growth and metabolic rates, 
different cell cycle phases and distinctive fungal morphologies within 
biofilm (e.g., fungal cells that are deeper in a biofilm grow more slowly 
owing to a lack of nutrients, and are subsequently more resistant to 
antifungal drugs that rely on cell growth for their effects), (v) expression 
of numerous resistance genes induced by contact with a surface, 
particularly those encoding efflux pumps and transporter proteins, 
and (vi) presence of a small subpopulation of drug-resistant cells that 
spontaneously enter in a dormant and non-dividing state, which is 
called persister cells [53-59].

The extracellular matrix, which holds the biofilm strongly cohesive, 
has a primordial role in the tolerance to drugs, since it acts as a physical 
barrier that prevents the access of antifungals to the cells embedded in 
the biofilm community [60]. The amount and nature of the extracellular 
matrix as well as the physicochemical properties of the drug will govern 
the battle between biofilm and antifungals [61]. For instance, soluble 
β-(1,3)-glucan released from the fungal cell wall of C. albicans and A. 
fumigatus is a key component of the biofilm extracellular matrix, being 
able to sequester antifungal molecules, especially azole and polyene 
drugs, which prevents their access to biofilm cells, and as such do not 
reach their intracellular targets, and also block the elicitation of host 
immune responses [62-64]. Supporting this hypothesis, echinocandins 
(e.g., caspofungin) that target β-(1,3)-glucan synthase, a enzyme 
responsible for the synthesis of cell wall β-(1,3)-glucans, are able to 
inhibit the biofilm development in C. albicans [65]. Extracellular DNA 
(eDNA), released by autolysis of fungal cells, decisively participates in 
the maintenance of structural and architectural integrity of biofilms as 
well as it contributes with the enhanced levels of antifungal resistance 
[66,67]. Furthermore, a variety of host components are also able to 
modulate the biofilm formation. Serum and its components (e.g., 
fetuin) were able to induce the biofilm formation in A. fumigatus, 
notably promoting a considerable increase in the extracellular matrix 
thickness, a phenomenon directly related to its virulence and antifungal 
resistance [68,69].

For all the reasons raised here, biofilm represents high value 
targets, especially the extracellular matrix components that act as a 
drug sponge, for the development of novel antifungal agents [70]. 
Considering this new antifungal strategy, both inhibition of biofilm 
formation and disruption of mature biofilm are plausible approaches to 
combat biofilm-associated fungal infections [19,71-72]. Several groups 
around the globe are looking for and testing new and repurposing old 
compounds in order to find potent anti-biofilm drugs (Table 1). With 
no doubt, it comprises a currently area of very active research [73]. 
Finally, the authors really hope that all these findings together arouse 
the curiosity and the enthusiasm of other researchers in order to search 
novel compounds presenting anti-biofilm activity.
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Figure 2: Biofilms formed on implanted medical devices are notorious 
clinical challenges due to recalcitrant feature, since they confer to fungal 
cells the ability to resist to different classes of drugs (e.g., antifungals, 
disinfectants and several others), environment stresses (e.g., ultraviolet 
radiation and dehydration) and host immune responses (e.g., antibody, 
complement system, and immune effector cells), culminating in the fungal 
infection persistence.
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