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Abstract
Enteric and diarrheal diseases are major causes of childhood illness and death in countries with developing 

economies. Each year, more than half a million kids under the age of five die from these diseases. Escherichia coli, 
E. coli, a water/foodborne pathogen, is one of the major sources of food poisoning which results in severe diarrhea 
at extremely low concentrations and therefore is very challenging to be detected. Using available technologies, 
which are mostly based on amplification of low concentration samples, to detect the presence of the bacterium 
takes several hours to days; thus, a fast and an accurate detection alternative is on demand over lab-based 
technologies. In this sense, emerging nanoscale bio-transistors enable quantitative detection mechanism based on 
electrochemical binding of circulating analytes to immobilize antibodies on the biodevice's active surface. The state 
of the art of the Bio Field Effect Transistors (BioFETs) for fast track and accurate detection of E. coli is the concern 
of this review paper which describes and compares the recent advancements in the field. Furthermore, implications 
for novel approaches to different configurations based on the sensing principles and corresponding parameters are 
elaborated and discussed in detail.
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Introduction
E. coli, a gram-negative rod-shaped bacterium with more than 

150 serotypes discovered in the human colon in 1885 by German 
bacteriologist Theodor Escherich, is considered an important group 
of bacterial enteropathogenesis. Many serotypes of the bacterium are 
usually harmless and live in the gut of healthy people and can benefit their 
hosts by producing vitamin K2, and by preventing the establishment 
of pathogenic bacteria within the intestine. However, some, such as 
O157:H7, O104:H4, O121, O26, O103, O111, O145, VTEC O157, and 
O104:H21 cause common infections such as urine infections and gut 
infections (gastroenteritis). The VTEC O157 is a less common cause of 
infection but can lead to a severe gut infection with bloody diarrhea 
and other serious diseases such as Haemolytic-Uraemic Syndrome 
(HUS) and Thrombotic Thrombocytopenic Purpura (TTP). O104:H4 is 
a virulent strain that was behind the deadly E. coli outbreak in Europe 
in June 2011. O157:H7, discovered in 1982, is also notorious for causing 
serious and even life-threatening complications such as HUS. During 
an outbreak in the western United States in late 1992 to mid-1993, 
many people became infected with the virus after the consumption of 
hamburger; some were hospitalized and a few died. Between 2003 and 
2012, the Centers for Disease Control and Prevention (CDC) traced 
391 O157:H7 outbreaks, including 4,930 cases of the illness, with 1,274 
hospitalizations (26%), 300 cases of HUS (6%), and 34 deaths. Based on 
CDC reports, the beef (55 percent of the outbreak) was diagnosed as the 
most common food source for this bacterium. Leafy greens and dairy 
and all other types of meats and poultry were also found to represent 21, 
11 and 6 percent of the food sources, respectively [1].

E. coli consists of various groups of bacteria. Pathogenic E. coli 
strains are categorized into pathotypes. Five pathotypes, as explained 
below, are associated with diarrhea and collectively are referred to as 
diarrheagenic E. coli [1-3].

Shiga toxin-producing E. coli (STEC) may also be referred to as 
Verocytotoxin-producing E. coli (VTEC) or enterohemorrhagic E. 
coli (EHEC). This pathotype is the most commonly heard about in 

the news in association with foodborne outbreaks. EHEC strains are 
characterized by the production of influential cytotoxins called Shiga 
toxins (Stx1 and Stx2) or verotoxins that induce microvascular changes 
in vivo and are the major virulence factor linked to paralytic and lethal 
cases in mice, and are cytotoxic for selected cell lines in vitro.

•	 Enteropathogenic E. coli (EPEC), unlike VTEC, do not produce 
any classic toxins. Their virulence mechanism involves the 
formation of A/E lesions followed by interference with host 
cell signal transduction. Following the ingestion of EPEC, the 
organisms adhere to the epithelial cells of the intestine, causing 
either watery or bloody diarrhea.

•	 Enteroaggregative E. coli (EAEC) are associated with acute or 
persistent diarrhea, especially in developing countries. Infection 
is typically followed by a watery, mucoid, diarrhoeal illness 
with little to no fever and an absence of vomiting. The precise 
mechanisms by which EAEC cause diarrhea and the role of the 
various pathogenicity factors are poorly understood. EAEC 
strains are characterized by their ability to adhere to tissue 
culture cells in a distinctive “stacked, brick-like” manner.

•	 Enteroinvasive E. coli (EIEC) is transmitted through the fecal-
oral route. Even minimal contact is adequate for transmission. 
Following the ingestion of EIEC, the organisms invade the 
epithelial cells of the intestine resulting in a mild form of 
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dysentery often mistaken for dysentery caused by Shigella 
species.

Enterotoxigenic E. coli (ETEC) is a major cause of traveler’s 
diarrhea worldwide. Infection with ETEC leads to watery diarrhea 
which lasts up to a week but can be protracted. Upon infection, ETEC 
first establishes itself by adhering to the epithelium of the small intestine 
via one or more colonization factor antigens (CFA). This is followed 
by the expression of one or more heat-stable (ST) or heat labile (LT) 
enterotoxins.

At the moment, the traditional diagnoses of pathogenic E. coli 
O157:H7 mainly rely on conventional cell culture, microscopic analysis, 
and biochemical assays, which are laborious and time-consuming 
procedures and require special equipment and trained users. Over next 
sections, we will briefly report some of the methods used to detect the 
bacterium.

As has been mentioned above, the most frequently used techniques 
to detect E. coli are based on conventional methods including culturing 
and colony counting, polymerase chain reaction (PCR), and enzyme-
linked immunosorbent assay (ELISA) because of their sensitivity to 
target microorganisms, efficiency, reproducibility, and suitability to a 
wide range of food matrices, and they are considered to be more reliable 
options to confirm results obtained on the presence of the pathogens 
[4,5]. Persson et al. and Tong et al. [6,7] developed an indirect ELISA 
for the efficient detection of E. coli infection in cattle. They utilized a 
simple, rapid and convenient method for detecting the infection of E. 
coli with different serotype strains. In this procedure, with the relative 
sensitivity of 100% and specificity of 96.47%, the recombinant OmpT 
(an aspartyl protease) has been applied as a capture antigen in the 
ELISA. 

A direct PCR (DPCR) has also been developed for the detection of 
the STEC including tracing O157:H7 in environmental as well as other 
samples [8]. The detection procedure takes place by applying specific 
primers to water and milk samples to encode Shiga toxin genes and 
is performed using whole cells without DNA extraction. This simple 
method could potentially be an alternative for existing techniques or 
may be used in conjunction with other conventional methods; with 
the aim of reducing the complexity and time for the assay, a direct 
detection of amplified toxins, taken directly from E. coli cultures, can 
be made.

In another experiment and to compare the results, two culture-
based and three PCR-based methods have been employed for detecting 
of E. coli O157:H7 in minced beef [9]. Minced beef samples have 
individually been tested with five distinct strains of E. coli O157:H7 
(17 and 1.7 CFU/65g) and then exposed to the various testing 
methodologies. The PCR-based methods were the same to detect the E. 
coli O157:H7 in the minced beef at 1.7 CFU/65g. Although the culture-
based system detected more positive samples compared to the PCR-
based one, its detection time was longer than the PCR-based method.

In low- and middle-income countries, a simple, low-cost diagnostic 
device to detect E. coli in water and at a clinic would have a significant 
impact. In light of this situation, a simple paper-based colorimetric 
platform was developed to detect E. coli contamination in 5 h [10]. The 
technique is less time-consuming, easier to perform, and less expensive 
than conventional methods, making it an innovative point-of-care 
diagnostic (PoCD) tool to rapidly detect E. coli. It could potentially be 
applied to other pathogens, especially in places where there is a lack of 
advanced clinical equipment.

Despite the advantages, all of the conventional methods require 
amplification of the bacterium in a sample and tend to be laborious, 
time-consuming, expensive, require highly trained personnel, and 
cannot be used on-site, resulting in a delay in response during the spread 
of epidemic outbreaks. Hence, it is extremely important to develop new 
techniques for the detection of E. coli with label-free, rapid, portable 
biosensors to prevent catastrophic explosions of diseases caused by the 
public consumption of contaminated foods and drinks.

T﻿he aim of this work is to report both the early stages and the 
state-of-the-art of detection methods for pathogenic bacteria, with 
focus on advanced detection techniques, in particular, the integrated 
on silicon ones. To this end, the remaining parts of this manuscript 
include a description of main biosensing techniques in Section II. In 
Section III, biosensors intended for bacteria detection are summarized. 
Section IV deals with submicron transistors-based sensing devices is 
discussed. Finally, conclusions about discussed methods and devices 
are the subject of Section V.

Types of Biosensors
The term of “biosensor” refers to an analytical device composed 

of a biological receptor and a physical or chemical transducer that 
can specifically recognize and capture the target analyte and convert 
the biological and/or chemical phenomenon into quantifiable and 
analyzable signals, as shown in Figure 1. As demonstrated, the biological 
receptors used in a biosensor could be an antibody, an aptamer, an 
enzyme, a ssDNA/RNA probe, a bacteriophage, and so forth [10-16].

Based on the transduction mechanism, biosensors are classified 
into four major types [17-23] 1) Optical-including light absorption/
reflection, surface plasmon resonance (SPR), fluorescence, 
luminescence, and optical fiber; 2) Piezoelectric-including quartz 
crystal microbalance (QCM), surface acoustic wave, magnetoelastic, 
and cantilever; 3) Electrochemical-including amperometric/
voltammetric, potentiometric, impedimetric, and conductometric; 
and 4) Colorimetric―including conventional thermistors, enzyme 
thermistors, thermopile sensors, etc., working based on the detection 
of heat produced from biological reactions caused by enthalpy changes 
[24]. These main types of biosensors will be thoroughly described in the 
next Section with a focus on the detection of E. coli.

After briefly introducing the properties of biosensors, it is 
important to have a look at the reported statistics in this field. A survey 
of papers published from 2000 to 2015 [1] demonstrates that optical 
and electrochemical biosensors are the most frequently reported 
studies on the detection of E. coli O157:H7, as can be observed in 
Figure 2. However, optical biosensors encounter some constraints such 
as manufacturing expenses and short-term stability of the immobilized 
reagents under an incident light, while the electrochemical biosensors 

 

Figure 1:  Main components of a typical biosensor.
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suffer from drawbacks related to bacterium detection difficulties 
because of an extremely improbable distribution of the bacterium in 
the samples. Furthermore, the selectivity and the low limit of detection 
(LoD) of the electrochemical biosensors are also a concern, especially 
to the bacteria, with no health risks that can show a false positive result 
and for the detection of small quantities of E. coli O157:H7 in the 
samples [2,25,26].

For the purposes of commercialization, three main issues must be 
considered in the design of a biosensor: 

a) the stability and preservation of the biological materials, 

b) the consistency of the biosensors under different working 
conditions, and 

c) the accuracy when dealing with the complex matrices of the real 
foods [2,27]. 

In this case, researchers have recently focused on the development 
of features including bioreceptors and novel nanoparticles for an 
effective reaction. Furthermore, it has been found that environmental 
conditions such as temperature, pH, and humidity impact the 
bioactivity of the biomaterials in biosensors [26,27]. The sensitivity of a 
biosensor becomes less efficient over time, which will greatly affect the 
performance of assessments, in particular in the case of electrochemical 
assays. Currently, most studies have focused on the development of 
new conductive nanoparticle materials and nucleic acid-based bio-
recognition elements to replace the traditional antibodies (Abs) or 
enzymes. These molecules and chemicals have the advantages of being 
low-cost, stable, and comparable efficiency with their counterparts 
to improve sensitivity and stability. Table 1 summarizes the desired 
performance and the main features of a biosensor intended for the 
detection of pathogens.

Methods for Detecting E. coli
In the previous section, the various types of biosensors that are 

categorized based on transducers are introduced and compared on the 
whole. Here, to make a more precise comparison, the recent methods 
presented surrounding the detection of E. coli O157:H7 is considered 
individually. Characteristic parameters of every procedure have been 
extracted and summarized, as elaborated in the following sections. 

Optical biosensors

Optical biosensors have been applied mainly to healthcare, 
environmental applications, and the biotechnology industry [28-31]. 
These biosensors suggest some advantages over conventional analytical 
techniques as a result of the direct, real-time and label-free detection of 
many biological and chemical substances.

The surface plasmon resonance (SPR) with a very high sensitivity 
is the most common method, other than optical ones, to detect the 
foodborne pathogenic. In SPR, which employs reflectance spectroscopy 
for the detection of a pathogen, the electromagnetic radiation of a 
certain wavelength interacts with the electron cloud of a thin metal layer 
and produces a strong resonance. When the pathogen binds to bio-
receptors immobilized on the surface of a metal layer, this interaction 
alters its refractive index, which results in the change of wavelength 
required for electron resonance. Table 2 demonstrates some optical 
methods surrounding the detection of E. coli.

Electrochemical biosensors

Electrochemical biosensors are considered to be low-cost, 
miniaturized, easy-to-use and portable devices for a wide range of 
applications, in particular medical diagnosis and environmental 
monitoring. This type of sensor operates by reacting with the analyte to 
produce an electrical signal proportional to the concentration of target 
molecules in the analyte. A typical electrochemical sensor consists 
of a sensing electrode (working electrode) and a reference electrode 
separated by an electrolyte. For most applications, a three-electrode 
system is used with the reference connected to a high-input-impedance 
potentiostat and a counter electrode is used to complete the circuit 
for current flow. An electrochemical biosensor is generally classified 
into several different types such as amperometric, impedimetric, 
potentiometric, and conductometric according to the measurement of 
changes in current, impedance, voltage, and conductance, respectively, 
which is caused by antigen-bioreceptor interactions. Many researchers 
have reported the successful detection of foodborne pathogens by 
electrochemical biosensors; Table 3 shows main works intended to the 
detection of E. coli [30-38].

Mass-based biosensors

Mass-sensitive biosensors operate based on the sensing of 
small changes in mass [39,40]. These biosensors are composed 
of piezoelectric crystal, which will vibrate at a certain frequency, 
induced by a sensible change of mass. Binding the target molecules 
to the receptors immobilized on the crystal creates a measurable 
change in the vibrational frequency of the crystal, correlated with 
the added mass on the crystal surface. The mass-based biosensors are 
categorized into two major types; the bulk acoustic wave resonators 
(BAW) or quartz crystal microbalance (QCM) and surface acoustic 
wave resonators (SAW). Although these types of sensors are used in 
various detection fields, nonetheless in terms of foodborne pathogen 
detection, their application is generally less than electrochemical and 
optical biosensors [41-43]. Some devices relevant to E. coli detection 
have been summarized in Table 4.

From a comparison of the aforementioned methods, a summary 
of their advantages and drawbacks is provided in Table 5. In order 
to deal with the drawbacks mentioned earlier, researchers have been 
inclined to develop high-performance devices conducting appropriate 
structures and synthesis alternative receptors; aptasensor, with its 
unified features, is one of the devices that refine some properties of 
biosensors, such as stability and selectivity [44,45].

Figure 2: Approximate number of publications that use biosensor methods 
for the detection of E. coli O157:H7 [2]. 
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Properties Value or quality
Sensitivity Less than 10 cfu/mL

Specificity
Can identify a specific target strain from other serotypes in the same or different species (e.g., can distinguish E. coli O157:H7 from other 

E. coli or Salmonella 
Minimum background noise (minimum unspecific binding from the food matrices)

Detection time Real-time
Size Portable, compact instrumentation can fit into a suitcase

Consistency The test can be performed under different conditions at the site of interest, and test results have no significant difference to those done at 
laboratory

Stability The biorecognition elements or biochemical labels should be stable for months under normal conditions for simple preservation
Sample processing Minimal pre-treatment of sample, simple test procedures (better to be label-free)

Operator requirements No special training needed to use the assay, can be used by individuals at home

Table 1: Properties of an ideal biosensor for the detection of foodborne pathogens. 

Mode of transducers Bio-recognition Detection
Ref

Immobilization of Ab & Functionalization Label Detection 
time

Detection range
Culture Food

Photonic

	 To immobilize a network of biotinylated antibodies interfaced with 
biotinylated polyethylene glycol thiols through the link provided by 
neutravidin.

	 Post-processing of thiolated samples in ammonium sulfide was 
applied to increase the stability of the biosensing architectures while 
allowing biosensing at an attractive level of detection

NA
64.5 ± 1.1%,
77.0 ± 1.8%,
90.5 ± 3.9%

103,104,105 (cell/ml) PBS [32]

Surface Plasmon 
Resonance

	 The surface is subsequently functionalized by the formation of a 
mixed self-assembled monolayer (SAM) by incubating the cleaned 
substrate in ethanol with 0.7 mM 11-mercapto-1-undecanol (C11OH) 
and 0.3 mM 16-mercaptohexadecanoic acid (C15COOH) at room 
temperature

	 Monoclonal antibody immobilized onto a mixed –COOH and –OH-
terminated SAM of alkanethiols on a gold surface

Label free 10 to 60 min

Samples 103-heat-
killed samples 
105-untreated 
samples 106

PBS with 
1 mg/ml 

BSA
[33]

	 The activation process performed by NHS-EDC
	 Lectins were immobilized onto the surface of CM5 chip through an 

amide bond
Label free Real-time 3 × 103 [34]

	 After activation with EDC/NHS, anti-E. coli O157: H7 antibody was 
immobilized on the gold surface

	 Then the ethanolamine was injected
Label free 5 to 7 min 3 × 105 [35]

Table 2:  Optical biosensors presented for the detection of E. coli.

Mode of 
transducers Bio-recognition Detection Detection     Ref

  Immobilization of Abs & Functionalization Label Time Range Culture Food  

DNA Electro-
chemical

   Magnetic cobalt particles modified with alginic acid were used   
for isolation of microbial DNA of E. coli.

 The NH2 labeled oligonucleotide DNA probe was immobilized 
to magnetic beads for magnetic separation of the conjugated 
samples.

   Daunomycin (DNR) was used as DNA hybridization indicator

NH2 Labeled

>10 min for 
E. coli DNA 
hybridization 

detection

102 to 2 × 103 (cell/
ml) and 10 (cell/ml)

PBS and 
water [36]

Ampero-
metric

  (AEAPS) interlayer and an Au nanoparticles shell (denoted as 
Au-AEAPS-PB-Fe3O4). 

 The immunomagnetic anti-E. coli O157: H7/Au-AEAPS-PB-
Fe3O4 beads were prepared through the Au-SH bond between 
the antibodies of E. coli O157:H7 anti-E. coli O157:H7) and 
Au-AEAPS-PB-Fe3O4.

  Blocking with BSA

Labeled NA

detection limit 
of  4.3×102 from 

3.6×103 to 3.6×106 
(cfu/ml)

PBS [37]

 SPE/MWCNT-PAH/ABs
Respective Abs Conjugate 

with CdS, CuS, or PBS 
Nano-crystals

>1 h 800, 400, and 400 Milk [38]

 Bare SPCE
MBs-1st 

AB 
+AuNPs-2nd AB

>1 h
148 in buffer, 457 

in minced beef, and 
309 in tap water

  [39]

Impedi-
metric

Graphene paper was prepared by chemical reduction of 
Graphene oxide paper obtained from vacuum filtration 
method

 The gold nanoparticles were grown on the surface of Graphene 
paper Electrode by one-step electrodeposition technique

 The immobilization of anti-E. coli O157: H7 antibodies on paper 
electrode were performed via biotin-streptavidin system

Label free NA 1.5×102 to 1.5×107 
(cfu/ml)

Ground 
beef & 

cucumber
[40]

Table 3: Electrochemical biosensors presented for the detection of E. coli.
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Aptasensors
The discovery of Systematic Evolution of Ligands by an Exponential 

Enrichment (SELEX) assay has led to the generation of aptamers from 
libraries of nucleic acids [46-53]. These single-stranded DNA, RNA, 
or modified nucleic acids possess unique properties that make them 
superior biological receptors to antibodies with a plethora of target 
molecules. Some specific areas of opportunities explored for aptamer-
target interactions include biochemical analysis, cell signaling and 
targeting, biomolecular purification processes, pathogen detection 
and clinical diagnosis and therapy [54,55]. Most of these potential 
applications rely on the effective immobilization of aptamers on 
support systems to probe the target species.

Aptamers, since they have an exclusive secondary structural 
conformation, are able to distinguish between various targets or 
enantiomers based on the conformational differences in the structures 
of target molecules. Additionally, aptamers can be an efficient 
alternative to conventional receptors such as antibodies based on some 
advantages, including:

•	 Much smaller size 

•	 Have non-covalent bonding or fold around small molecules

•	 More easily modified at terminal sites with several functional 
groups

•	 More stable than antibodies against both reducing conditions 
and heat denaturation

•	 Typical aptamers are shorter than 40 nucleotides (nts) and easy 
for high-quality production by chemical synthesis

At this point, it is noteworthy that some researchers have attempted 
to amend the procedure for the detection of E. coli with the aptamer. 
The impact of an aptamer as a bioreceptor has apparently emerged 
in the detection time and range. In addition to the consequences 
summarized in Table 6, Marton et al. used cell-SELEX to isolate four 
single-stranded DNA (ssDNA) aptamers that bind strongly to E. coli 
cells (ATCC generic strain 25922) [56]. Specificity tests with twelve 
different bacterial species showed that one of the aptamers is highly 
specific for E. coli.

The methods described in previous sections are mostly multi-
stage processes, time-consuming and expensive. Therefore, there 
is significant demand to develop manufacturing processes that can 
reliably and reproducibly generate functional nanostructures at low 
cost and in large quantities for implementation in practical integrated 
devices. The development of field portable monitoring devices, such 
as the field effect transistors (FETs)-based biosensors, has increased 
during the past decade. These devices show attractive prospects, which 
will be broadly applied in clinical diagnosis, food analysis, process 
control, and environmental monitoring in the near future [57,58].

Bio-FET
Biotechnology needs very cost-effective, intelligent biochips for 

analysis and multi-component detection for portable devices that use 
smaller sample volumes and have faster read-outs [59]. In this regard, 
biosensors, based on FETs, generally called (Bio-FET), drew attention 
to the fact that they could easily be integrated into a low-cost array 
of sensors for the simultaneous screening of large panels of analytes 
[60-64]. Additionally, these devices have shown great promise as a 

Mode of trans-
ducers Bio-recognition   Detection     Ref

  Immobilization of Ab & Functionalization Label Time Range culture Food  

Mass-piezo

   The polyclonal antibody, anti E. coli rabbit IgG was used as the biomolecular 
recognition element 

   The antibody is immobilized onto the surface of MSMC with freshly gold-coated 
surface using physical absorption.

-
Real-time 
(less than 

5min)
105 to 109 Water [43]

   The chip is functionalized with poly-l-Lysine 
   Three integrated electrodes. The first electrode is the doped silicon, the second
      electrode is the gold strip at the fixed end, the third electrode is the gold strip 

Label-free Real time 105, 106, 107 (cell/
ml) Water [44]

   A thiolated single-stranded DNA (ssDNA) probe specific to E. coli O157:H7 
eaeAgene was immobilized onto the QCM sensor surface through self-
assembly. 

   The hybridization was induced by exposing the ssDNA probe to the 
       complementary target DNA-streptavidin conjugated Fe3O4 nanoparticles  

Biotin-labeled 
primers

Less than 1 
min

2.67×102 to 
2.67×106

PCR 
products [45]

   Au nanoparticles were immobilized onto the thioled surface of the Au electrode. 
  Thiolated single-stranded DNA (ssDNA) probes could be fixed through Au-SH 
     bonding. 
  The hybridization was induced by exposing the ssDNA probe to the complementary 
    target DNA of E. coli O157:H7 gene eaeA

Label free Real time 2×103  (cfu/ml) products [46]

Table 4: Mass-based biosensors presented for the detection of E. coli.

Detection method   Advantages Limitations

Biosensor-based Optical 
• High sensitivity 
• Enables real-time or near real-time detection 
• Label-free detection system

• High cost

  EElectrochemical
• Can handle large amounts of samples 
• Automated 
• Label-free detection

• Low specificity 
• Not suitable for analyzing samples with few microorganisms 
• Analysis may Interfere with Food matrices 
• Many washing steps

  Mass based 

• Cost-effective 
• Easy to operate 
• Label-free detection 
• Real-time detection

• Low specificity 
• Low sensitivity 
• Long incubation time of bacteria
• Many washing and drying steps
• Regeneration of crystal surface may be problematic

Table 5: Advantages and limitations of above described detection methods.



Citation: Salami M, Abadi MHS, Sawan M, Abadi NSK (2019) BioFET-based Integrated Platform for Accurate and Rapid Detection of E. coli Bacteria: 
A Review. J Biosens Bioelectron 10: 266. doi: 10.4172/2155-6210.1000266

Page 6 of 11

Volume 10 • Issue 1 • 1000266J Biosens Bioelectron, an open access journal
ISSN: 2155-6210 

potential supplement for direct, label-free detection of bio-molecules 
with their superior ultra-high sensitivity and scalability and low-power 
consumption, low-fabrication cost, and excellent portability. Bio-
FETs are semiconductor-based structures functionalized with suitable 
bio-receptors, which detect bimolecular interactions in a label-free 
potentiometric fashion and with great sensitivity. In conventional 
bio-FETs, the surface of the gate dielectric layer, as a sensitive layer, is 
functionalized by receptors for selectively capturing target molecules. 
This causes an electrostatic gating effect when the target molecules 
are captured. The sensitive component can be a functionalized Nano 
ribbon, nanotube or Nano sheet; the latter two cases being the focus of 
the researchers. Since these 1D and 2D materials have inherently small 
body dimensions compared to 3D materials, when they are applied to 
transistor-like devices, the carriers in these materials are expected to 
be better modulated by electrostatic effects, such as gate electric-field 
in the transistor and positively/negatively charged target molecules 
in the biosensor. In particular, graphene and carbon nanotube-based 
FETs (GFETs and CNT-FETs) present exciting and bright prospects 
for sensing applications due to their significantly higher sensitivity and 
stronger selectivity. For this reason, this review scrutinizes a selection 
of important and recent topics pertinent to GFETs and CNT-FETs and 
their application as a biosensor in the detection of E. coli. 

Carbon-nanotube FETs (CNT-FETs)

Carbon-based nanomaterials such as CNTs, as an interesting 
transducer, have allegedly enhanced the performance of biosensors 
[64-73]. On the one hand, these nanomaterials exhibit particular 
electrical and physical properties. On the other hand, highly porous 
3D networks on their surface increase the density of receptors that 
are immobilized on the surface. Researchers then piece together how 
these features correlate to increase sensitivity, which some of the more 
significant findings are highlighted hereafter.

In 2013, a CNT-FET biosensor was fabricated with the enrichment 
SWNTs for E. coli O157:H7 detection by Zhang et al. [74]. They reported 
a simple, scalable way to enrich semiconducting SWNTs by using an 
HNO3/H2SO4 solution. The CNT channels were modified by the linker 
PASE, which plays an important role in immobilizing nanotubes 
and antibodies. Since the special structure of PASE is composed of 
two functional groups, pyrene and CFSE, Pyrene moiety could be 
functionalized with the SWNTs by π–π stacking and succinimidyl ester 
could react with -NH2 in an antibody to be a covalent bond. 

In terms of electrical properties of the device, I-V measurement 
indicated that CNT-FET had p-type characteristics in the blank PBS 
buffer. Finally, the time dependence of the resistance of CNT-FET 
after the introduction of O157:H7 at a different concentration into 
antibody CNT-FET has been investigated; resistance increases sharply 

to the maximum after it is dropped into the solution. Then it decreases 
rapidly in around 50 sec to a relatively stable level.

Subramanian et al. have described an electronic platform to detect 
very small amounts of genomic DNA from bacteria and without the 
need for PCR amplification and molecular labeling, as can be observed 
in Figure 3 [75]. This work has highlighted the detection sensitivity 
and influence of this biosensor without the stringent requirement of 
DNA sample preparation. This system uses CNT-FET arrays whose 
electrical properties are affected by instant electrical charges localized 
on their active regions, since the DNA is intrinsically charged from its 
phosphate backbone.

A new 45-mer probe specific to E. coli O157:H7 has been used along 
with the protocols for immobilization, hybridization, dehybridization, 
and blanking, which are essential for proper operation and accurate 
analysis of results. These results are consistent with negative charge 
accumulation on the gold gate surface for probe immobilization and 
hybridization, which in turn is measurable as a positive shift in Vth, 
while the dehybridization reduces the surface charges. This shift of the 
threshold voltage has a relation with the bound surface charges given 
by the following equation: 

                                                                                          (1) 

Where, ∆σ_DNA the added surface charge per unit area on the 
transistor and_C_D where is the effective capacitance per unit area is 
arising from the double layer the screening effect of the mobile ions 
around the bound charges Authors should discuss the results and how 
they can be interpreted in perspective of previous studies and of the 
working hypotheses. The findings and their implications should be 
discussed in the broadest context possible. Future research directions 
may also be highlighted.

This detection methodology relies on the unique properties of 
SWCNTs to increase the sensing surface area [76]. In 2014 a 2 × 2 
multi-crossbar junction sensing array including gold-tungsten wires 
(50 µm diameter) coated with polyethylenimine (PEI) and SWCNTs 
was fabricated for the detection of Escherichia coli K-12, [77]. The 
crossbar junction was functionalized with streptavidin and biotinylated 
antibodies to improve specificity towards targeted cells. The electrical 
current changes after bioaffinity reactions between bacterial cells and 
antibodies on the SWCNT surface. In this study, a linear relationship 
(R2 = 0.973) was reported between the changes in current and 
concentrations of bacterial suspension in the range of 102–105 

CFU/mL.

Graphene-based FET (G-FET)

Graphene sheet, a monolayer of carbon atoms packed into a two-

Bio-recognition (Mode of transducers)   Detection     Ref
Immobilization of Abs & Functionalization Label Time Range culture Food  

    Target bacteria binding aptamers are adsorbed on the surface of unmodified AuNPs to 
capture target bacteria, and the detection was accomplished by target bacteria-induced 
aggregation of the Aptasensor which is associated with

Label free 20 min or less 105 PBS [58]

   Two single-stranded DNA sequences were tested as recognition elements and compared. 
   The aptamer capture probes were immobilized, with and without 6-mercapto-1-hexanol 

(MCH) on a gold electrode.
Label free - 10−7–2×10−6 M Water [59]

    the target E. coli was captured by antibody-conjugated magnetic beads. 
    the RNA aptamers were bound to the surface of captured E. coli in a sandwich way. 
 the heat-released aptamers were amplified by using real-time reverse-transcriptase-PCR 

(RT-PCR)

- Real time from 101 to 107 (cfu/ml) PBS [60]

   the aptamer for Escherichia coli O111 was immobilized on a gold electrode by hybridization 
with the capture probe anchored on the electrode surface through Au-thiol binding. - 3.5 h 112 & 305 PBS and Milk [61]

Table 6: Aptasensors intended for the detection of E. coli.
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dimensional honeycomb lattice with unique electrical, physical, and 
optical properties, is considered to be a promising semiconducting 
material for FETs [78-83]. The intrinsic Graphene, as a zero-gap 
semiconductor, has remarkably high-electron mobility (about 100 
times greater than that of silicon), making it ideal and efficient for 
electronic devices, energy storage, atomic-scale and high-speed 
chemical/biological sensors. Since Graphene can be prepared cost 
effectively by reducing Graphene oxide (GO), the thermally reduced 
GO (TRGO)-based biosensors have been developed with advantages 
such as tunable electronic properties (ambipolar, n- or p-type 
semiconducting behavior), simple device structure, and label-free 
detection, some of which have been considered below.

With regards to this, Chang et al. [84] have demonstrated 
highly sensitive and selective FET sensors for the detection of E. coli 
bacteria using thermally reduced monolayer GO (TRMGO) sheets as 
semiconducting channels. At first, the GO sheets are assembled on the 
aminoethanethiol (AET)-functionalized gold (Au) electrodes through 
electrostatic interactions assisted with ultrasonic (Figure 4). Then, anti 
E. coli antibodies, as selective receptors for the detection of E. coli cells, 
have been immobilized on the GO surface through covalent bonding 
with Au nanoparticles (AuNP). The TRMGO FET device shows 
stability and high sensitivity to E. coli cells with a concentration as 
low as 10 CFU/mL. The conductibility of the devices continued to rise 
with increasing concentrations of E. coli cells. The dynamic response of 
the device has been measured with the specific binding such that the 
conductance of the device increased correspondingly with the insertion 
of the E. coli cell solution and the current change in the device was 
around 1.1% with the introduction of 10 CFU/mL.

As the second device introduced in this section, Lui et al. [85] have 
demonstrated a simple and selective methodology for the detection of 
gram-negative bacteria, E. coli, that outperformed other tested carbon 
nanomaterials. The detection method consists of exploiting interactions 
between Magainin I and gram-negative bacteria [86] and transducing 
those interactions into conductance changes using (holey reduced 
Graphene oxide) hRGO-based FET devices The results show that 
hRGO affords a rich chemistry that facilitates the functionalization of 
highly sensitive sensors while retaining the useful electronic properties.

Additionally, in order to examine the efficiency of hRGO versus 
other carbon nanomaterials, RGO, commercially available pristine 
SWNTs (pSWNTs), and oxidized SWCNTs (oSWNTs) have also been 
employed as the transducer element in FET devices to detect bacteria 
(Figure 5). For RGO and pSWNTs, this low response may be attributed 

to the amount of oxygen functionality (i.e., carboxyl groups) available 
for coupling. At low concentrations of this functional group, minimal 
antimicrobial peptides (AMP) would be bound, which would result 
in insufficient binding of the bacteria. The low efficiency of oSWNTs, 
which underperformed all other samples, can be attributed to the 
availability of the oxygen content as well as the loss of the electronic 
efficiency from oxidization.

The final case has been allocated to a Graphene-based FET real-
time detector of the target bacteria E. coli K12 in food and water in 
order to guarantee food safety [87]. After the device fabrication process, 
the Graphene-based FET sensor is functionalized as ssummarized 
as follows Figure 6: a) A solution of 6 mM 1-pyrenebutanoic acid 
succinimidyl ester (1-PBS) in dimethylformamide (DMF) is prepared. 
Then the device is incubated with this 6mM1-PBSE (Sigma-Aldrich, 
457078) dimethylformamide (DMF, Sigma-Aldrich, D4551) solution 
for 2 hours at room temperature; b) A 50 ppm anti-E. coli O + E. coli 
K antibody (Abcam 33604) in DI water solution is prepared; c) The 
microchip is incubated with 0.1 Methanolamine (pH 9.0) for 1 hour; 
d) The device is incubated with 0.1% Tween 20. After the E. coli K12 
molecules with negative charges attach to the sensor surface, the 
bacteria induce holes in the Graphene channel, increasing the bias 

 

Figure 3: Platform for genomic DNA detection (Subramanian et al.,): (a-
c) A biosensor chip, where the dark regions are the metal pattern, the 
intermediate contrast (green) regions are the semiconductors with an oxide 
passivation layer and the bright regions (gold) are the gold coated gate 
active areas upon which the gold oligomers are immobilized; (d) Principle of 
operation. When target DNA is captured at the gold floating gate, the curve 
representing the drain-source current (ID) versus gate voltage (VGS) shifts 
by an amount, Vth, commensurate with the amount of extra charges that 
have been captured [77]. 

Figure 4: TRMGO sheets across the electrode gaps: (a and b) SEM images 
of AFM data (tapping mode) on a silicon wafer, (c) height and (d) phase 
images of the same zone at a cross-sectional area (dashed line indicates a 
scanning trace), (e) Height profile obtained by scanning from a bare silicon 
wafer to TRMGO [86]. 

Figure 5: Comparison of the mean normalized responses (Vg = −0.5 V) of four 
Magainin I functionalized carbon nanomaterials to 107cfu/mL E. coli. Averaged 
from four devices; the error bars represent 1 standard deviation [88]. 
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current of Graphene FET due to the increment of carrier numbers. The 
corresponding relationship between bacteria concentration and carrier 
density could be found.

Taking into account some limitations of the G-FET and CNT-
FET, such as device sensitivity due to the Debye–Hükel phenomenon 
and limited surface area, is fundamental in developing improved 
bioelectronics for applications in the clinical setting. The Debye-Hükel 
phenomenon decreases the Debye-screening length, and as a result 
reduces the sensitivity outside of this length. However, significant 
efforts have focused on bypassing this issue by alternating the nucleic 
acid-based sensors, aptasensors, and antigen-binding fragment 
(Fab) modified G-FETs and CNT-FETs. Using aptamers and Fabs as 
bioreceptors declines the distance of the interaction between receptors 
and target molecules from 10-15 nm to 3-5 nm. The Debye-screening 
length for the 0.01×PBS solution is 7.4 nm. Although Graphene has 
an inherently large area, it was reported that this feature could be 
further improved, and has resulted in increasing the sensitivity. This 
was possible by decorating the G-FET surface with metal nanoparticles, 
increasing the binding sites for the bio-recognition element, and 
therefore the target analyte. In 2017, Wu et al. reported bio sensing 
using G-FETs with the aid of pyrene-tagged DNA aptamers, which 
exhibit excellent selectivity, affinity, and stability for E. coli detection. 
The aptamer is employed as the sensing probe due to its advantages 
such as high stability and high affinity toward small molecules and even 
whole cells [81]. 

The ambipolar characteristic is a unique V-shaped transfer curve 
for graphene, which simultaneously exhibits the transfer feature of 
p-type and n-type transistors. In order to evaluate the interaction 
between biomaterials and graphene from the perspective of its 
ambipolar characteristic, Mulyana et al. [88] investigated the alteration 
in ambipolarity of G-FET after the adsorption of E. coli bacteria onto 
its graphene layer. After the adsorption of E. coli, due to the negative 

charge of the E. coli cells, a positive shift was observed in the ambipolar 
curve. A significant advantage of this study was no decrease in the 
electron mobility or conductivity of the G-FET, confirming that E. coli 
cells were only physically adsorbed onto the graphene surface without 
any damage to the graphene lattice.

In most scientific fields, modeling is a powerful method that can 
help predict the performance of the device. Recently, Wu et al. modeled 
and simulated a G-FET with COMSOL Multiphysics where they used 
to study the motion of E. coli cells in electrolytes and the surface charge 
induced by E. coli on the graphene [89]. The results show that the 
sensing probe size is a key parameter affecting the surface charge of 
graphene The graphene-bacteria distance, defined by the size of the 
sensing probe, is found to play a key role in improving the sensing 
performance of the biosensors since it leads to more efficient induced 
surface charge and a resultant larger electrical response. Smaller 
graphene-bacteria distances and higher bacterial concentrations yield 
larger changes of source-drain current of the biosensor. 

In other words, in terms of electrical properties, the results show 
that the power consumption of these sensors is very high because 
they create off-currents. However, a new generation of transistors, 
such as multi-gate transistors, improves the short channel effects. 
Although Graphene has many interesting features compared to other 
semiconductor technologies, the majority of these characteristics 
measured in G-FET and CNT-FET sensors depend on the quality of 
the fabricated samples based on a prototyping procedure. Therefore, it 
is difficult to obtain this in a mass-scale manufacturing process.

To solve these limitations, CMOS technology is proposed, which 
is a powerful fabrication technology for biosensor implementation as 
the case for both system-and lab-on-chip potentials [90-93]. Moreover, 
this technology has the ability to scale down with a nanometer-scaled 
feature size, interacting in most biosensing schemes. The cost-effective 
and mass production of CMOS provides an opportunity to design 

Figure 6: Solution using gate Graphene-based FET. Gate voltage (𝑉g) is applied to the solution inside the recording chamber. The chosen 
linker is 1-pyrenebutanoicacid succinimidyl ester; the antibody is anti-E. coli O and K antibody (Abcam 33604) [89]. 
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scalable sensors as well as the implementation of a sensor array for 
the simultaneous detection of analytes. However, the materials used in 
CMOS technology are not biocompatible, so it is necessary to do some 
post-process steps. In other words, the connections to the external 
components for readout driver or powering a chip should be protected 
from the chip as well. For an accurate investigation of CMOS-based 
sensors to detect E. coli, the characteristics of main devices have been 
listed in Table 6. Potentiometric sensors, which measure pH changes, 
meet the needs for low sensitivity and cost-effectiveness. Giang et 
al. developed a high-sensitivity ion-sensitive FET sensor which was 
massively fabricated in a standard 65-nm CMOS process [94-99]. It 
was amplified to 123.8mV/pH with a 0.01 pH resolution, which greatly 
exceeded 6.3 mV/pH observed in a traditional source-follower based 
readout structure. This sensing system was applied to E. coli detection 
with densities ranging from 14 to 140 CFU/mL.

Conclusions
With regards to the existing challenges to improve the properties 

of the biosensors, there has been a serious attempt to put forward 
new methods to complement laboratories-based ones In this way, 
nanotechnology (composed of nano-materials and nano-devices) has 
advanced as a new discipline to diagnose and manage health problems 
all over the world. The development of biosensors mostly relies on 
sensitivity, specificity, non-toxicity, small molecule detection and 
cost-effectiveness. These characteristics will eventually address critical 
parameters required and related to major limitations of these detection 
methods. Overall, an appropriate combination of these methods may 
conduct to successful development of expected biosensors in the 
modern era. Ultimately, we have discussed the use of CMOS technology 
for biosensing with a special focus on the efforts being invested into 
the combination of existing CMOS technology and nanomaterials 
such as carbon nanotubes, and Graphene based devices. The findings 
contend that CNT-FETs and G-FETs can be a promising technology 
for a label-free, rapid, precise portable analysis suitable for molecular 
screening of pathogens and diagnostics of genetic-based disorders. 
According to the consequences presented earlier, the conclusion can 
be drawn that in contrast to the aforementioned advantages, CNT-
FET and G-FET have some drawbacks. These restrictions account for 
a new generation of FETs, including multi-gate transistors, which have 
recently drawn some attention as a promising device in biosensing. It 
is noteworthy that multi-Gate FETs with much better control on the 
channel conduction and increasing surface for immobilizing receptors, 
will lead to improvements in sensitivity and accuracy. Currently, based 
on attempts in various fields of bioscience, researchers express that 
they tend to achieve comprehensive assay tools such as lab-on-a-chip 
(LoC based platforms).
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