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Abstract

Type 2 Diabetes mellitus is a disease which manifests with a variety of cardiovascular risk factors, including
hypertension, dyslipidemia and overweight or obesity that contributes to development of long term complications
termed diabetic related ailments. Diabetic peripheral neuropathy (DPN) is a debilitating condition affecting as many
as one half of all patients with diabetes during the course of their disease. Several metabolic and vascular pathways
have been identified as contributors to the pathogenesis of diabetic neuropathy. Diabetic neuropathy encompasses
a wide range of clinical and subclinical syndromes from pain to complete loss of sensation. Metabolic and
therapeutic approaches have focused on aldose reductase, poly (ADP- Ribose) polymerase, protein kinase C,
advanced Glycation end products. Novel approaches to identify targets for treatment of diabetic peripheral
neuropathy require cross links between molecular and computational biology methods.
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Introduction
Diabetes mellitus is one of the most common non-communicable

diseases worldwide. It is the fourth or the fifth leading cause of death
in most developed countries, and substantial evidence points to an
epidemic of diabetic mellitus in many developing and newly
industrialized nations [1].The rapid rise in its prevalence has been
driven over recent decades by changes in environment including
lifestyle of populations [2]. Chronic hyperglycemia is a well-
established cause of micro vascular complications [3]. Peripheral
neuropathy is a common complication in patients with diabetes
mellitus [4]. Diabetic peripheral neuropathy affects at least 50% of
patients with type 1 and type 2 diabetes [5]. Biochemical changes
found in diabetic neuropathy are more wide spread and more
controversial than anatomic changes [6]. Different hypothesis for the
pathogenesis of diabetic complications besides increased polyol
pathway activity have been proposed including altered protein kinase
C activity, increased oxidative stress and an acceleration of
nonenzymatic glycation [7]. Haimanot and Abdulkadir [8] also
suggested a relation between diabetic neuropathy and duration of
diabetes, but no relation between neuropathy and the age of patients.
Therefore, 10% of the diabetic population diagnosed for less than one
year suffers of neuropathy while this number increases to up to 50% of
the diabetic population diagnosed for more than 25 years. It is
generally accepted that 30% of the diabetic population suffers from
diabetic neuropathy.

Pathogenesis and clinical indications of diabetic peripheral
neuropathy

Diabetic peripheral polyneuropathy (DPN) is a multifactorial
disorder arising from hyperglycemia and or insulin deficiency. Two
main hypotheses have been proposed for the pathogenesis of diabetic
neuropathy although it is not clearly established. One is the metabolic
derangement theory, hyperglycemic activation of the polyol pathway

leading to accumulation of sorbitol and potential changes in theNAD:
NADH ratio may cause direct neuronal damage and/or decreased
nerve blood flow [9]. The other is that endoneurial micro vascular
lesions which plays an important role in diabetic neuropathy. At
present, it is thought that both metabolic and vascular factors play
roles in the pathogenesis of clinical neuropathy. The
pathophysiological mechanisms of diabetic neuropathy (DN) are
complex and involve the activation of numerous pathways involving
nerve growth factors, inflammatory mediators, and reactive oxygen
and nitrogen species [10]. Advanced DPN causes serious
complications such as diabetic foot ulcers, gangrene and charcot joint,
all of which reduce the quality of life of patients with DPN [11]. DPN
is often characterized by damage to both large as well as small thinly
myelinated C fibers. Small fiber DPN is associated with increased
morbidity and mortality [12]. Symptoms include numbness, pain and
decreased sensation as well as autonomic symptoms such as anhidrotic
skin, orthostatic hypotension, resting tachycardia, hypoglycemia
unawareness, delayed gastric emptying, decreased bladder tone and
impotence [12].

Biochemical Factors and Diabetic Neuropathy

Na+/K+ ATPase activity
The factors include decreased Na+/K+ ATPase activity, increased

anaerobic glycolysis, increased myoinositol, nerve ischemia due to
microangiopathy [13]. From biochemical studies in rat diabetic
models, it is known that decreased Na+/K+ ATPase activity in diabetic
subjects reverses rapidly after normalization of blood glucose levels
[14]. There is a reduction in catecholaminergic neuronal ability with a
reduction in catecholamine synthesis associated with a difficulty to
release the neurotransmitters from synaptic terminals [6]. The study
reported that alterations in catecholamine metabolism are dependent
on the severity and duration of diabetes. Short term diabetes is
accompanied with increase or no change in catecholamine content or
release, but reduced release and increased storage of catecholamines
are found in long term diabetes [15].
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Advanced glycation end products
The enhanced formation of advanced glycation end products

(AGEs) induced by hyperglycemia has been implicated in
pathogenesis of diabetic complications [16]. The oxidative stress may
accelerate auto oxidation of glucose to dicarboxyl compounds
(glyoxal) that are precursors of N-Ɛ(carboxymethyllysine) (CML) [17]
and glycooxidation of amadori products to CML [18]. The main
source of reactive oxygen species in diabetes is thought to be
mitochondria mediated or mitochondria dependent [19].

Uncoupled proteins
Uncoupled proteins (UCPs) can provide a controlled leak of

protons across the inner membrane of mitochondria, thus uncouple
oxidative phosphorylation from respiration with a concomitant
decrease in mitochondrial membrane potential [20] and free radical
generation [21]. UCP2 which is expressed in various human tissues, is
thought to control body temperature, energy metabolism as well as to
regulation of mitochondrial production of ROS (Reactive Oxygen
species). Hence, UCP2 gene is considered to be involved in DPN. A
study revealed that the -866 G/A and A/A genotypes of UCP2 are
significantly associated with nerve conduction slowing and impaired
blood pressure regulation on a head-up tilt test. This suggests that
higher UCP2 activity related to the A allele of - 866 G/A
polymorphism that causes deterioration of peripheral nerve function
by energy depletion rather than neuroprotective effect against
oxidative stress in type 2 diabetic patients [22].

Polyol pathway
Elevated blood glucose in diabetic patients leads to increased

activity of aldose reductase, anenzyme that converts glucose to
sorbitol, one of the alcohol sugars. The result is accumulation of
sorbitol within nerves, which is associated with oxidative stress and
nerve damage. The polyol pathway secondarily converts sorbitol into
fructose .The polyol pathway plays an important role in the
development and progression of diabetic neuropathy. Enhanced
catabolism of glucose via polyol pathway is known to augment reactive
oxygen species by mechanisms such as glutathione depletion or
increased prostaglandin synthesis [23]. Superoxide dismutase is
known to lose its activity as a consequence of reacting with reducing
sugars or other intermediate metabolites which in turn augments
radical species [24]. Diabetes is one of the diseases that activates
ubiquitin proteasome pathway and it has been proposed that
activation of this pathway is responsible for wasting muscle because of
insulopenia. The activation of ubiquitin proteasome pathway in some
neuronal diseases and insulopenia suggests that ubiquitin may play a
role in diabetic neuropathy [25].

Oxidative nitrosative stress manifest by accumulation of lipid
peroxidation products, 4 hydroxynonal adducts nitrated proteins and
8-hydroxy guanosine in peripheral nerve, spinal cord and dorsal root
ganglion neurons of diabetic rats or mice [26]. Oxidative nitrosative
stress is a key mechanism contributing to nerve blood flow and nerve
conduction deficits, small sensory nerve fibre dysfunction and
morphological manifestation of diabetic peripheral polyneuropathy.

Metanx
Metanx containing 1-methyl folate, pyridoxal 5’ phosphate and

methylcobalamine was evaluated on oxidative nitrosative stress and
manifestations of DPN in Zucker diabetic fatty acid rats. The high

efficacy of metanx is probably explained by its interactions of its
components counteracting oxidative nitrosative stress through
restoration of eNOS (endothelial nitric oxide synthase) coupling in
vasa nervorum. (L-methylfolate), neutralization of superoxide and
peroxynitrite (methylcobalamine) and chelation of transition metals
and abrogation of advanced glycation end products formation.
(Pyridoxal 5’ phosphate) [27]. Metanx alleviated sensory neuropathy
without affecting MNCV (motor nerve conduction velocity) or
morphometric characteristics of large myelinated fibers [27]. Fonsceva
et al. [28] conducted a multicenter, randomized, double blind placebo
trial consisting of 214 patients for 24 weeks to assess whether Metanx
would improve objective measures of diabetic peripheral neuropathy.
The study provides evidence that Metanx is a safe and effective therapy
for alleviation of peripheral neuropathy symptoms, at least in short
term.

Glutathione
The administration of reduced glutathione has partially improved

experimental diabetic neuropathy [29]. Experimental diabetic
neuropathy results in a reduction in nerve blood flow(NBF) by 50%
nerve conduction slowing and a large decrease in glutathione and that
lipoic acid supplementation resulted in a dose dependent
normalization of NBF and glutathione suggest that neuropathy is due
in significant part due to oxidative stress and that improving free
radical scavenging capacity is responsible for improvement in NBF
and neuropathy and a time and dose dependent improvement in
digital nerve conduction velocity [30]. One mechanism of reduced
NBF is inhibitory effect of superoxide anion on nitric oxide synthase
with resultant decreased NO in Experimental neuropathy [31].

Alpha lipoic acid
Alpha lipoic acid which has been shown to be effective in both

somatic and autonomic neuropathies in diabetes, normalizes
endoneural blood flow [30] reduces oxidative stress [32] and improves
vascular dysfunction [33]. In a placebo controlled trial in patients with
diabetic neuropathy, a significant relief of neuropathic symptoms was
observed in patients who received alpha lipoic acid [34].

A meta-analysis that combined the results of four randomized
trials, including 1258 patients, found that treatment with 600 mg/day
of intravenous racemic lipoic acid for 3 weeks significantly reduced the
symptoms of diabetic neuropathy to a clinically meaningful degree
[35].

Acetyl carnitine
Acetyl carnitine is deficient in diabetic condition. In preclinical

studies, substitution with acetyl carnitine corrects perturbation of
neural Na+/K+ ATPase, myoinositol, NO, prostaglandin and lipid
peroxidation all of which play important early pathogenic roles in
diabetic peripheral neuropathy [36].

In a 52 week randomized placebo controlled study of 1257 patients
with diabetic neuropathy 2 doses of acetyl carnitine, 500 and 1000
mg/day t.i.d (three times a day) were tested and results demonstrated
significant improvement in pain and vibration perception association
with improvements in sural nerve morphometry in patients treated
with 1000 mg acetyl carnitine t.i.d for one year [37].
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Resveratrol
Resveratrol was demonstrated to induce effects that may contribute

to the protection of β cells in diabetes. In experiments on pancreatic
islets, the ability of resveratrol to reduce insulin secretion was
demonstrated; this effect was confirmed in animals with
hyperinsulinemia, in which resveratrol decreased blood insulin levels
[38]. Using a randomized double-blind placebo-controlled clinical
trial, a study examined the effects of resveratrol in lowering blood
glucose and other related outcomes (e.g., insulin, metabolic markers,
cardiovascular risk factors) in patients with type 2 diabetes. In the
randomized, double-blind, placebo-controlled clinical trial study,
intake of 1 g/d of resveratrol for 45 days was found to significantly
reduce systolic blood pressure, fasting blood glucose, hemoglobin A1c,
insulin, and insulin resistance, while HDL (high density lipoprotein)
was significantly increased, when compared to their baseline levels
[39].

Glyoxalase 1
Glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) present an enzymatic

defense system against glycation that suppresses glycation mediated
cell damage [40]. Altered Glo1 activity is associated with late diabetic
complications [41]. Increased formation of methylglyoxal in diabetes-
associated hyperglycaemia leads to a 2–4 fold increase in modifications
of proteins by methylglyoxal to form AGEs at the sites of vascular
complications [42]. Glo1 activity was significantly reduced in patients
with severe painful neuropathy symptoms for both type 1 and type 2
diabetes mellitus patients. The molecular mechanisms that are linked
to the altered activity of Glo1 deserve further investigations. The
pathogenesis of type 2 diabetes mellitus is considerably heterogeneous
and both glycation stress and inflammation-related processes could be
cooperatively driving forces in the development of late complications
of diabetes mellitus [43].

Poly (ADP- Ribose) polymerase
In Diabetic neuropathy, elevated glucose level increases the ROS

production and these free radicals induce DNA strand breaks, thereby
activating PARP. After sensing the DNA damage, PARP gets activated
and repairs the DNA by transferring ADP-ribose unit to the nuclear
proteins and depletes the intra-cellular NAD. Intra-cellular NAD re-
synthesis consumes ATP which further leads to impairment of several
NAD dependent pathways like glycolysisand mitochondrial
respiration. The energy consuming cycle results in rapid depletion of
intra-cellular NAD+ and ATP pools and ultimately the cell dysfunction
[44]. PARP over activation has shown increased sensitivity to
mechanical noxious stimuli associated with diabetes [45].

Protein Kinase C
Protein kinase C is overactivated by hyperglycemia and by

disordered fatty acid metabolism resulting in increased production of
vasoconstrictive, angiogenic and chemotactic cytokines including
transforming growth factor, vascular endothelial growth factor
inhibitors. Protein kinase C overactivation blocking is a critical step in
the pathogenesis of diabetic polyneuropathy via its impact on
microvascular mechanism [46].

A number of aldose reductase inhibitors have been developed [47].
But none have achieved success for diverse reasons, one being that not
all aldose reductase inhibitors penetrate human peripheral nerves. A
paradigm shift is imminent in the research arena of diabetic

neuropathy using molecular and bioinformatics approaches to reduce
the pain and symptoms experienced in late stages of type 2 diabetes.
Multiple biochemical pathways have been implicated in the
pathogenesis of diabetic peripheral neuropathy. It has been
demonstrated that strict glycemic control alone can decrease the
incidence of diabetic complications [48]. However, it is impossible to
completely prevent the development of diabetic complications solely
by glycemic control. The future therapeutic approach which needs to
be reckoned with, must focus on developing novel drugs with better
efficacy that elicit better response in patients. Moreover, it is
imperative to target critical cellular pathways leading to increased
oxidative stress production and thereby to enhance the antioxidant
defense potential to mitigate diabetic peripheral neuropathy state.
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