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Introduction
Regenerative procedures using barrier membrane technology 

are presently well established in implant dentistry and periodontal 
therapy. Collagen membranes (CMs) are frequently used in guided 
tissue regeneration (GTR) and guided bone regeneration (GBR), based 
on the premise that barrier membrane materials will promote selective 
cell re-population and subsequent reconstitution of the periodontal 
attachment apparatus as well as bone [1]. The adherence of connective 
tissue cells to the inside of a CM promotes periodontal regeneration 
[2], and an attachment can help to stabilize the blood clot and integrate 
the membrane into the tissue [3]. Collagen is suitable for GTR/
GBR application because it is chemotactic for periodontal ligament 
fibroblasts, acts as a barrier in migrating epithelial cells, provides 
homeostasis, and serves as a fibrillar scaffold for early vascular and 
tissue ingrowth [4]. 

Platelet-derived growth factor (PDGF) is a potent mitogen that 
facilitates wound healing [5] and stimulates bone repair by expanding 
osteoblastic precursor cells [6,7]. Studies have shown that recombinant 
human PDGF treatment of rat periodontal ligament (PDL) fibroblasts 
induced a strong mitogenic and chemotactic cell response, which also 
stimulated collagen synthesis [8]. Furthermore, it was found that the 
PDGF-BB isoform is more effective than PDGF-AA and PDGF-AB in 
promoting PDL cell mitogenesis in vitro [9]. PDGF-BB is approved by 
United States Food and Drug Administration (US FDA) for use in the 
treatment of localized periodontal defects and diabetic ulcers [10-12]. 
When PDGF has been used as a clinical application, it was usually 
mixed with grafting materials and then the site was covered by CMs 
[13]. Limited information is available regarding how long PDGF stays 
in the local site. In addition, the influence of PDGF on the mechanical 
integrity of grafting materials is unknown. Also, the lack of effective 
delivery of PDGF and the efficient targeting specificity limits its clinical 
applications. We hypothesized that a CM can be utilized as a carrier for 
sustained delivery of PDGF to enhance bone regeneration. This is the 

first study to examine the use of a commercially available CM for the 
delivery of PDGF. The objective of this study was first to evaluate the 
ability of a CM as a carrier to successfully release PDGF-BB. The second 
aim was to determine the subsequent effects of the released factor on 
cell viability, cell proliferation, expression levels of differentiation 
marker genes, and osteoblastogenesis. 

Materials and Methods
Cell culture

MC3T3-E1 mouse preosteoblasts (donated by Dr. Mani Alikhani, 
New York University College of Dentistry) were cultured in alpha 
minimal essential medium (αMEM; Invitrogen, Carlsbad, CA, USA), 
supplemented with 10% fetal bovine serum (FBS, Invitrogen), 5,000 U/
ml penicillin (Invitrogen) and 5,000 µg/ml streptomycin (Invitrogen) 
at 37°C in a 5% CO2 humidified atmosphere. 

Preparation of CM containing PDGF

A commercially available CM, OsseoGuard (noncross-linked 
bovine type I collagen, Biomet 3i, Warsaw, Indiana, USA), samples 
was prepared to a size of 7 mm diameter each. Recombinant PDGF-BB 
solution (R&D Systems, Minneapolis, MN, USA) was dropped onto the 
CMs and incubated at room temperature for 1 h. The amount of PDGF 
applied to each CM disc for each study was the following: (1) release 
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Abstract
The objective of this study was to evaluate the ability of a collagen membrane (CM) as a carrier to successfully 

deliver platelet-derived growth factor (PDGF) and to observe the subsequent effects of the factor on preosteoblasts 
in vitro. MC3T3-E1 mouse preosteoblasts were cultured with a commercially available CM containing PDGF. After 
a two-day cell culture, cell viability was investigated by the MTT assay and cell proliferation was assessed by 
the crystal violet proliferation assay. Expression levels of the following osteoblastic differentiation marker genes 
were measured by real-time PCR: runt-related transcription factor 2 (RUNX2), osteopontin (OPN), bone sialoprotein 
(BSP), and osteocalcin (OCN). A cell proliferation assay was conducted, and osteoblastogenesis was determined 
by alkaline phosphatase (ALP) activity. A sustained release of PDGF from a CM was observed for ~3 weeks. Gene 
expression of all RUNX2, OPN, BSP, and OCN in CM with PDGF was significantly upregulated compared to those 
in CM without PDGF (all p < 0.05). Interestingly, CM without PDGF also significantly increased gene expression of 
RUNX2 and OPN in MC3T3-E1 cells compared to the cell control (both p < 0.05). Furthermore, it was observed 
that the PDGF released from CM significantly promoted ALP activity and cell proliferation with little cytotoxicity. 
These results suggest that a CM can be utilized for sustained delivery of PDGF. Also, released PDGF can promote 
MC3T3-E1 cell activities. This strategy may lead to an improvement in the current clinical treatment of bone defects 
in periodontal and implant therapy.
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kinetics, 1.248 ng; (2) ALP assay, 16.25, 32.5, or 65 pg; (3) proliferation 
assay, 32.5 pg; (4) gene expression, 32.5 pg; (5) MTT assay, 32.5 pg. 

Release kinetics of PDGF from CMs

CMs containing 1.248 ng of PDGF were incubated in 1 ml of 
pH 7.4 PBS buffer at 37oC. As a control, the same amount of PDGF 
without CM was added to 1 ml of PBS buffer. At pre-determined time 
intervals (0, 1, 2, 3, 4, 9, 10, 12, 15, 17, 18, and 19 days), these samples 
were collected from the buffer and assayed for PDGF concentration 
as determined by a commercial enzyme-linked immunosorbent assay 
(ELISA) for PDGF-BB (R&D Systems). The lower limit of detection 
was 5 pg/ml. Cumulative release profiles were generated for each test 
CM and controls by summing the total PDGF recovered up to and 
including each time point and plotting the data against time. The 
percent recoveries were normalized to recoveries of control PDGF, 
based on ELISA data, which were considered to represent 100% 
recovery of the protein.

ALP activity assay 

ALP activity was measured by SensoLyte pNPP ALP Assay Kit 
(AnaSpec Inc, San Jose, CA, USA). MC3T3-E1 cells (2 × 104 cells/well) 
were prepared in 48-well culture plates. After cell culture with CMs 
carrying PDGF for 2 days, the cells were washed twice with 1× lysis 
buffer. Then, 70 ml of a mixed buffer, containing 20 µl of Triton X-100 
and 10 ml of 1× lysis buffer, was added to the cells. After the adherent 
cells were scraped off, the cells were collected in a microcentrifuge tube 
and incubated for 10 min at 4oC under agitation. Then, the supernatant 
was corrected after the cell suspension was centrifuged for 10 min at 
2,500 g at 4oC. Fifty µl of the supernatant or ALP standard and 50 µl of 
pNPP reaction mixture, containing 100× diluted pNPP stock solution 
with 2× assay buffer, were applied each well (96-well plate). After the 
plate was gently shaken to mix the reagent well for 30 sec and incubated 
for 30 min at 37oC, 50 µl of stop solution was added to each well. The 
optical density was quantified in a multi-detection microplate reader, 
SynergyTM HT (BioTek Instruments Inc, Winooski, VT, USA) at 405 
nm wavelengths after the plate was gently shaken for 1 min. 

Cell proliferation assay

MC3T3-E1 cells (5 × 103 cells/well) were prepared in 48-well 
culture plate. After cell culture with CMs carrying PDGF for 2, 4, 
and 6 days, CMs and medium were discarded. Two hundred µl of 1% 
glutaraldehyde was applied the well and it was aspirated after 15 min 
incubation. Cells were washed with 300 µl of 1× PBS. After 200 µl of 
0.02% crystal violet aqueous solution was added to the well, cells were 
incubated for 30 min. Then, cells were washed with H2O for 15 min 
to wash away excess dye. After washing, cells were dissolved in 360 µl 
of 70% ethanol with shaking for 3 h. The absorbance was read by a 
multi-detection microplate reader, SynergyTM HT (BioTek Instruments 
Inc) at 578 nm wavelength. The effects of CM or CM with PDGF on 
cell proliferation were calculated as follows: [%] T/C = (T–C0)/(C–C0) 
×100 with T representing the mean absorbance of the treated cells, C 
representing the mean absorbance of the controls, and C0 representing 
the mean absorbance of the cells at time zero [14].

Quantitative real-time polymerase chain reaction with 
reverse transcription (QRT-PCR)

The cell-seeded CMs were incubated for 2 days. After cell culture 
with CMs carrying PDGF in 24-well culture plates for 2 days, total RNA 
in the harvested cells were isolated with RNeasy Mini Kit (Qiagen, 
Valencia, CA, USA), according to the manufacturer’s instructions. The 

cells were first homogenized for 30 sec in a lysis buffer. The lysis buffer 
containing the homogenate was centrifuged for 1 min at 13,000 g at 
4°C. The supernatant was applied to RNeasy column, rinsed and eluted. 
RNAs were measured by NanoDrop ND-1000 Spectrophotometer 
(NanoDrop Technologies, Wilmington, DE, USA) and treated with 
DNase I. Mouse Universal ProbeLibrary probes and target-specific PCR 
primers for runt-related transcription factor 2 (RUNX-2), osteopontin 
(OPN), bone sialoprotein (BSP), osteocalcin (OC), and GAPDH, a 
housekeeping gene, were selected using the ProbeFinder assay design 
software (Table 1). cDNAs were synthesized from 1 µg of total RNA 
for each sample using reverse transcriptase (Roche, Nutley, NJ, USA). 
Reactions for the 480 LightCycler (Roche) were performed in 20 µl 
reaction volumes for the genes encoding RUNX2, OPN, BSP, OC, and 
GAPDH using 1 µl of cDNA under the following conditions: 95ºC for 
5 min, 50 cycles for 95ºC for 10 sec, 60ºC for 15 sec, and 72ºC for one 
sec. The method used for obtaining quantitative data of relative gene 
expression was the comparative Ct method (also as known the 2–∆∆Ct 
method). QRT-PCR for experimental genes was normalized against the 
internal control, GAPDH. Quadruplicates of each data were averaged, 
and the mean values were used for statistical analysis.

MTT assay

Cytotoxicity of CM, PDGF, and CM carrying PDGF was evaluated 
by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide, 
MTT assay. MC3T3-E1 cells (1 × 106/ml) in 200 µl of αMEM 
(Invitrogen) supplemented with 10% FBS were seeded in 48-well plates 
and incubated overnight. After incubation, 300 µl of medium was 
added and cells were incubated with CM with/without PDGF for 24 h. 
Then, CMs and medium were discarded after incubation. Two hundred 
µl of medium and 20 µl of MTT reagent were added into the plates 
and incubated 4 h. After incubation, the medium was aspirated and 
dimethyl sulfoxide (200 µl/well) was added to stop the reaction. The 
optical density was quantified in a multi-detection microplate reader, 
SynergyTM HT (BioTek Instruments Inc) at 570 nm wavelength. The 
percentage of cell viability was calculated by comparing the appropriate 
optical density to the control cells.

Statistical methods

Descriptive statistics were computed for each experimental 
condition to summarize the mean expression levels. Bivariate 
comparisons (ANOVA and t-test) were computed to compare different 
experimental conditions. For all statistical analyses, p values less than 
0.05 were considered significant.

Results
PDGF release from CMs

To evaluate the ability of a CM to deliver a growth factor, 
cumulative PDGF release from the CM in PBS was measured (Figure 
1). Initially, approximately 60% of the incorporated PDGF was released 
within the first 3 days. After that, a sustained release of PDGF from CM 
was observed for ~3 weeks. 

Biological effects of released PDGF from CM on cellular ALP 
and proliferation activity

To evaluate the biological effect of PDGF from CM, 
osteoblastogenesis was determined by ALP activity measured in 
MC3T3-E1 cells (Figure 2). CM carrying 16.25 or 32.5 pg of PDGF 
significantly promoted an ALP activity compared to the control, 
CM without PDGF (both p < 0.05). Based on the results 32.5 pg of 
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PDGF was used for all subsequent studies. In addition to ALP activity, 
cell proliferation activity was measured to evaluate the proliferative 
effect of PDGF released from CM (Figure 3). Although there was no 
significant difference in cell proliferation activity between CM carrying 
PDGF and CM alone for up to 4 days, CM carrying PDGF significantly 
induced cell proliferation at 6 days compared to the control CM alone 
(p < 0.05).

Effect of released PDGF from CM on gene expression of 
osteogenic markers 

The biological effect of released PDGF on gene expression levels 
of osteoblastic differentiation markers, RUNX2, OPN, BSP, and OCN, 
in MC3T3-E1 cells was evaluated by QRT-PCR. Three experimental 
groups, (1) cell only, (2) CM only, and (3) CM with PDGF, were 
assessed. Gene expression of RUNX2 and OPN in CM with PDGF was 
significantly upregulated compared to expression in CM without PDGF 
(p < 0.001 and p < 0.01, respectively) (Figure 4A & B). Interestingly, the 
CM without PDGF group also significantly increased gene expression 
of RUNX2 and OPN compared to the cell control group (p < 0.001 
and p < 0.01, respectively). However, the increase was significant less 
than the CM with PDGF group. CM without PDGF group significantly 

decreased gene expression of BSP and OCN compared to the cell 
control group (both p < 0.001) (Figure 4C & D). Despite this CM-
mediated decrease of BSP and OCN gene expression, CM with PDGF 
produced a significant increase in expression of these factors compared 
to CM without PDGF (both p < 0.001). 

Cytotoxicity of PDGF, CM, and CM carrying PDGF

For the determination of cytotoxicity of CM or CM carrying PDGF 
by MTT assay, composition and preparation of conditions were the 
same as described above (32.5 pg of PDGF). A high amount of viable 
cells was found in the PDGF alone, CM alone, CM carrying PDGF, and 
cell control groups, and there was no significance difference among 
them (p = 0.943) (Figure 5). Also, no obvious visible changes were 
noted in cell morphology in any of the groups. 

Discussion
This is the first study to examine the use of a commercially 

available CM for the delivery of PDGF. The results of the present study 
demonstrate the achievement of a sustained release profile for PDGF 
and the subsequent effects of the released factor on cell functions in 
vitro using a commercially available CM as a carrier for bone tissue 
regeneration applications. When PDGF has been used in clinical 
applications, it is usually mixed with grafting materials or GEM 21S 
(Osteohealth, Shirley, NY, USA) which contains PDGF-BB and β-TCP 
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Figure 1: Cumulative release of Platelet-derived growth factor (PDGF) from a 
collagen membrane (CM). Data were calculated by detected PDGF divided by 
total PDGF as % release of PDGF from the CM.
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Figure 2: Alkaline phosphatase (ALP) activity in MC3T3-E1 cells after culture 
with a collagen membrane (CM) with/without platelet-derived growth factor 
(PDGF) (16.25, 32.5, or 65 pg). Data are expressed as mean value ng/mg 
protein ± standard deviation from quadruplicates. * p < 0.05. 
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Figure 3: Cell proliferation activity in MC3T3-E1 cells after culture (2, 4, 
and 6 days) with a collagen membrane (CM) with/without platelet-derived 
growth factor (PDGF). The percentage of cell proliferation was calculated 
by comparing the appropriate luminescent signal to the signal obtained with 
the control cells. Each value represents the mean ± standard deviation from 
quadruplicates (white bars, CM; and black bars, CM with PDGF). As a control, 
non-treated cells were used. * p < 0.05.

Table 1: Primer sequences for QRT-PCR.

RUNX2
Forward CGAAATGCCTCCGCTGTTAT
Reverse CGCTCCGGCCCACAA

OPN
Forward CATGAAGAGCGGTGAGTCTAAGG
Reverse CTTTCCGTTGTTGTCCTGATCA

BSP
Forward AGGACTGCCGAAAGGAAGGT
Reverse ATGGAGACGGCGATAGTTCC

OCN
Forward TGCTTGTGACGAGCTATCAG
Reverse GAGGACAGGGAGGATCAAGT

GAPDH
Forward AACGACCCCTTCATTGAC
Reverse TCCACGACATACTCAGCAC
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particles approved by the US FDA and marketed for the treatment of 
periodontal bone defects. After the materials are packed, the surgical 
site is covered by CMs. It was reported about GEM 21S that almost 
100% of the PDGF was rapidly released from β-TCP within 90 min in 
vitro and approximately 90% of the PDGF was depleted from calvarial 
defect sites within 72 h of implantation in vivo without any controlled 
release profile [15]. Although PDGF is one of the most important 
growth factors acting on all cells of mesenchymal derivation, its half-life 
is less than 2 min in vivo [16]. Ruskin et al. [17] demonstrated that the 
use of recombinant human transforming growth factor β1 (rhTGF-β1) 
in conjunction with a CM greatly enhanced bone regeneration in 
osseous oral defects in vivo. However, in vivo release kinetics was not 
measured in their study so no determination for the coral matrix as 
an effective carrier could be made. To achieve a successful release of 
growth factors in a tissue engineering approach, in general, tissues 
should be exposed for relatively long periods to these molecules to 
obtain the proposed effect [18]. Our in vitro results indicated that a 
sustained release of PDGF from CM was observed for ~3 weeks with 
100% of PDGF delivered. The influence of an in situ environment is 
missing from an in vitro testing system and therefore may account for 
the differences between the in vitro and in vivo release profiles. Our 
delivery system may be more applicable to bone regeneration because 
it requires tissues be exposed to growth factors for a sustained period in 
order to complete regeneration [19].

In the present study, the biological functionality of PDGF 
released from CM was confirmed by real-time PCR, ALP assay, and 
cell proliferation assay using MC3T3-E1 cells. Our data showed that 

released PDGF could promote gene expression of the osteoblastic 
differentiation markers, RUNX2, OPN, BSP, and OCN, in MC3T3-E1 
cells. Osteoblast differentiation is controlled by multiple transcription 
factors at various stages [20]. RUNX2 has been identified as zinc-finger 
containing proteins, the osteoblast-specific transcription factors acting 
as developmental regulators of cell differentiation and mineralization 
[21,22]. Loss of RUNX2 leads to severe impairment of bone formation. 
Hence, it is possible that the stimulatory actions of released PDGF on 
MC3T3-E1 cells in this study might be mediated by RUNX2. OPN has 
been implicated as an important factor in bone remodeling [23] and 
plays a role in anchoring osteoclasts to the mineral matrix of bones 
[24]. RUNX2 is required for the expression of OPN. RUNX2 binds 
promoters of osteoblast-specific genes such as type I collagen (COL 
I), BSP, and OPN and upregulate transcription [25]. It is possible that 
released PDGF first stimulated RUNX2 gene expression followed by 
upregulation of OPN and BSP gene expression in MC3T3-E1 cells. 
OCN is one of the molecular markers of late-stage differentiation. 
Therefore, our results indicate that released PDGF might affect late-
stage differentiation of MC3T3-E1 cells. Interestingly, CM without 
PDGF significantly increased gene expression of RUNX2 and OPN in 
MC3T3-E1 cells, whereas CM without PDGF significantly decreased 
gene expression of BSP and OCN compared to the cell control. These 
results suggest that stimulated gene expression of RUNX2 and OPN 
might be mediated by COL I, the main component of the CM, though 
it is difficult to explain the reason of downregulation of BSP and OCN 
genes. While CMs have been widely used in implant dentistry, there 
are only a few reports, especially gene expression studies, regarding 
cellular responses to the commercially available resorbable CMs 
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Figure 4: mRNA levels of differentiation maker genes, runt-related transcription factor 2 (RUNX2) (A), bone sialoprotein (BSP) (B), osteopontin (OPN) (C), and 
osteocalcin (OCN) (D) in MC3T3-E1 cells measured by real-time PCR after cell culture with a collagen membrane (CM) with/without platelet-derived growth factor 
(PDGF). Data represent relative expression to the level of the cell control, set at 1, and mean value ± standard deviation from quadruplicates (white bars, cell control; 
gray bars, CM; and black bars, CM with PDGF). * p < 0.05, ** p < 0.01, and *** p < 0.001.
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[26,27]. Changing membrane composition and structure, and culture 
conditions can also alter phenotypic expression of osteoblasts [28,29].

ALP activity is a marker of osteoblastic activity/differentiation, 
i.e., bone turnover and remodeling. Our results showed that PDGF 
released from CM significantly increased ALP activity in MC3T3-E1 
cells compared to the control, CM without PDGF. Therefore, 
our data suggest that released PDGF might also affect late-stage 
differentiation of MC3T3-E1 cells. Also, our results showed that 
osteoblast cell proliferation activity was significantly increased in 
CM carrying PDGF compared to the control CM alone at 6 days in 
culture. This concurs with Strayhorn et al. [30] who demonstrated 
that recombinant PDGF treatment promoted proliferation of 
MC3T3-E1 cells. Therefore, together, our functional studies indicate 
that released PDGF affects both differentiation and proliferation of 
MC3T3-E1 cells. The concentration of PDGF used in our studies was 
16.25 – 65 pg/CM. Interestingly, the amount of PDGF higher than 
65 pg significantly reduced ALP activity of MC3T3-E1 cells. Optimal 
concentration of PDGF might be an important concern for clinical 
applications. In addition to functional activities, biocompatibility will 
be an important criterion for determining which device to choose for 
a clinical application. Toxicity, pyrogenic and hemolytic activity, and 
antigenicity must also be extensively examined under in vitro and in 
vivo conditions prior to clinical usage. Our in vitro study showed that 
no cytotoxicity was found in any of the conditions: PDGF alone, CM 
alone, or CM carrying PDGF. Therefore, this result suggests that the 
bioactive CM may be applicable for a variety of clinical applications. 
In addition, some commercially available CMs alone can induce 
enhanced cell proliferation [31]. While many studies have evaluated 
different collagen materials and cross-linking techniques for their 
effect on cell proliferation, the nordihydroguaiaretic acid and chitosan 
techniques are two promising approaches, both showing excellent 
cytocompatibility in vitro by enhancing cell proliferation to the same 
or even a higher extent as non-cross-linked controls [32,33].

In conclusion, this study demonstrates that PDGF can be 
incorporated into CM for sustained release over a prolonged period 
of time, ~3 weeks in vitro. The released PDGF significantly increased 

gene expression of osteoblast differentiation markers and ALP and cell 
proliferation activities with little cytotoxicity in MC3T3-E1 cells. This 
strategy may lead to an improvement in the current clinical treatment 
of bone defects for periodontal and implant therapy. 
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Figure 5: Cell viability with a collagen membrane (CM), platelet-derived 
growth factor (PDGF), and CM carrying PDGF evaluated by MTT assay. 
The percentage of cell viability was calculated by comparing the appropriate 
luminescent signal to the signal obtained with the control cells. Each value 
represents the mean ± standard deviation from quadruplicates. As a control 
(100% viability), the control cells were used. There was no significant difference 
among CM, PDGF, and CM carrying PDGF.
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