Bifurcation Behavior of a Capacitive Micro-Beam Suspended between Two Conductive Plates

Azizi A*, Mobki H and Rezazadeh G
1Department of Engineering, German University of Technology, Haltban, Oman
2Department of Mechanical Engineering, University of Tabriz, Iran
3Department of Mechanical Engineering, Urmia University, Iran

Abstract

In this paper, bifurcation and pull-in phenomena of a capacitive micro switch suspended between two stationary plates have been studied. The governing dynamic equation of the switch has been attained using Euler Bernoulli beam theorem. Due to the nonlinearity of the electrostatic force, the analytical solution for the derived equation is not available. So the governing differential equation has been solved using combined Galerkin weighted residual and Step-By-Step Linearization Methods (SSLM).

To obtain the fixed points and study the local and global bifurcational behavior of the switch, a mass-spring model has been utilized and adjusted so that to have similar static/dynamic characteristics with those of Euler-Bernoulli beam model (in the first mode). Using 1-DOF model, mathematical and physical equilibrium points of the switch have been obtained for three different cases. It is shown that the pull-in phenomenon in the present micro-switch can be occurred due to a pitchfork or transcritical bifurcations as well as saddle node bifurcation which are transpired in the classical micro-switches. And for some cases primary and secondary pull-in phenomena are observed where the first one is due to a transcritical bifurcation and the second one is due to a saddle node bifurcation. In addition the dynamic response of the switch to a step DC voltage has also been studied and the results show that in contrast to the classical micro-switches, the ratio of the dynamic pull-in to the static one depends on the gaps and voltages ratio where for the classical one is approximately a constant value.

Keywords: Electrostatic actuation; Micro-switch; Nonlinear dynamic; Transcritical bifurcation; Saddle node bifurcation

Introduction

“Bifurcation, a French word introduced into nonlinear dynamics by Poincare, is used to indicate a qualitative change in the features of a system, such as the number and type of solutions, under the variation of one or more parameters on which the considered system depends” [1]. Electrostatically actuated Micro Electro Mechanical (MEM) and Nano Electro Mechanical (NEM) systems form a broad class of devices, which bifurcational behavior can be observed due to the nonlinearity of the electrostatic force.

Nowadays, because of the advantages of the electrostatic actuators, such as favorable scaling property, low driving power, low deflection capacity, relative ease of fabrication, and others, have led to their being more widely applied for electrostatic-actuator applications in MEM systems. The MEM switch is one of the most important devices in such systems. The structural elements that are used in MEM devices are typically simple elements including micro-beams, plates, and membranes. Electrostatically actuated micro-beams (e.g., cantilever and fixed-fixed micro-beams) are used in many MEM devices such as capacitive MEM switches and resonant sensors. Manufacturing and design of these devices are, to some extent, in a more mature stage than those of some other MEM devices [2].

One of the most significant issues in the capacitive micro and nano switches is the pull-in instability. In these devices, a movable beam/plate is suspended over a stationary plate, and a potential difference is applied between them. As the micro-structure is balanced between two forces, namely, electrostatic (attractive) and mechanical (elastic restoring) forces, both of these forces are increased when the applied voltage increases. When the voltage reaches a critical value, pull-in instability occurs. Pull-in is a situation at which the elastic restoring force can no longer balance the electrostatic attractive force. Further increasing the voltage will cause the structure to have a sudden displacement jump, causing structural collapse and failure. Pull-in instability is a snap-through like behavior and it is a saddle-node bifurcation type of instability [3].

The pull-in phenomenon usually occurs in many micro-machine devices which require bi-stability for their operation, such as in the MEM and NEM switches [4,5]. Many studies have been developed in the analysis of instability of the MEM structures due to their nonlinearity [6,7]. Zhang and Zhao [8] studied the Pull-in instability of a MEM switch under electrostatic actuation. Taghizadeh and Mobki [9] analyzed the pull-in phenomenon of a torsional micro-mirror. In nano scale, Dequesnes et al., [10,11] and Hosseini et al., [12] investigated the static and dynamic stability of a carbon nano tube. Mobki et al., [13] studied the static and dynamic pull-in phenomenon of a capacitive nano-beam, considering length scale-parameter.

In the case of bifurcational behavior of the MEM and NEM systems, some works have been done. Lin and Zhao [14-16] studied bifurcation and pull-in phenomenon of MEM actuators with considering van der Waals (vdW) and Casimir forces. They showed that the pull-in voltage causes a saddle node type bifurcation in these devices. Many researchers
have shown that the saddle node bifurcation, can be transpired in the electro statically MEM/NEM devices [3,9,13-18].

In spite of many research works accomplished on the stability of MEM structures, there is not enough comprehensive work explaining the stability of these switches from the type of bifurcation point of view.

In the present study, different types of bifurcation are investigated for a capacitive micro-beam suspended between two conductive plates. It should be mentioned that this specific sort of micro-switch allows us to produce different bifurcation types, by varying of some parameters. The micro-beam (micro-switch) is actuated by electrostatic forces induced by DC polarization voltages. Also, to study the bifurcation of the beam, the nonlinear equation of the dynamic motion of the Euler Bernoulli beam theorem, is:

\[E_{I} \frac{\partial^{4} w}{\partial x^{4}} + \rho A \frac{\partial^{2} w}{\partial t^{2}} = \frac{b_{e} E_{I}}{2} \left(\frac{V^{2}}{(G_{1} - w)} - \frac{V_{1}^{2}}{(G_{1} - w)} \right) \]

\[E_{I} \frac{\partial^{4} \hat{w}}{\partial x^{4}} + \rho A \frac{\partial^{2} \hat{w}}{\partial t^{2}} = \frac{b_{e} E_{I}}{2} \left(\frac{V^{2}}{(G_{2} - \hat{w})} - \frac{V_{2}^{2}}{(G_{2} - \hat{w})} \right) \]

Where, \(\hat{W}(x) \) and \(\hat{W}(x) \) are the flexural deflection of the micro-beam with respect to the lower and upper plates, respectively. Also, \(\varepsilon_{0}=8.854 \times 10^{-12} \text{C}^{2} \text{N}^{-1} \text{m}^{-2} \) is the permittivity of the vacuum within the gaps? Considering that, the deflection of the micro-beam with respect to the bottom plate equals to the negative value regarding to the upper plate, as:

\[W = \hat{W} \]

So the governing equation of the motion of the micro-beam, using Euler Bernoulli beam theorem, is:

\[E_{I} \frac{\partial^{4} w}{\partial x^{4}} + \rho A \frac{\partial^{2} w}{\partial t^{2}} = \frac{b_{e} E_{I}}{2} \left(\frac{V^{2}}{(G_{1} - w)} - \frac{V_{1}^{2}}{(G_{1} - w)} \right) \]

Where right hand terms of this equation are resultant electrostatic forces per unit length of the beam (\(q_{w}(V_{1}, V_{2}, \hat{W}) \)). In Eq. (4) first and second right hand terms indicate the imposed forces from lower and upper plates, respectively.

In order to compose a lumped mass-spring model for the micro-switch, Eq. (4) is converted to Eq. (5) [4]:

\[m \frac{\partial^{2} \hat{y}}{\partial t^{2}} + K_{y} = \frac{b_{e} L}{2} \left(\frac{V_{1}^{2}}{(G_{1} - \hat{y})^{2}} - \frac{V_{2}^{2}}{(G_{2} - \hat{y})^{2}} \right) \]

where \(m=\rho AL \) is the mass of the micro-beam, and \(K \) is the spring constant for the beam and defined as the ratio of the applied uniform force ‘\(q \)’ to the maximum beam deflection ‘\(\hat{y}_{\text{max}} \)’. Thus, the spring constant depends on the cross-section/shape of the beam as well as on the boundary conditions. Considering the mass-spring model, the

Mathematical Modeling

The static deflection equation of the presented micro-switch may be computed using Euler Bernoulli beam theory. Of course the mechanical behavior the nano and micro-beams is size dependent, but as the main propose of the present paper is to study the qualitative bifurcational behavior of a micro-beam therefore the micro-beam is modeled based on classical theories. The electrostatic forces per unit length of the beam applied to the lower and upper plates can be obtained [19] as in Eqs. (1) and (2) respectively:

\[q_{w}(V_{1}, \hat{w}) = \frac{b_{e} E_{I}}{2(G_{1} - \hat{w})} V_{1}^{2} \]

\[q_{w}(V_{2}, \hat{w}) = \frac{b_{e} E_{I}}{2(G_{2} - \hat{w})} V_{2}^{2} \]
spring constant for cantilever and fixed-fixed beams are $8EI/L^3$ and $384EI/L^3$, respectively [4]. In order to increase the accuracy of the mass-spring model, and to adjust it with the distributed model as well, corrective coefficients of a_0 and b_0 are applied as below:

$$a_0 m \frac{d^2 w}{dt^2} + b_0 \frac{dw}{dt} + K y = \frac{V^2}{2 (G_1 - s^2)} - \frac{V_1^2}{(G_1 + s^2)} \tag{6}$$

Where $a_0 m$ is the equivalent mass of the micro-beam. The parameters a_0 and b_0 are determined; so that the first natural frequencies and the static pull-in voltages obtained using both mass-spring and the distributed models, become equal.

For convenience Eqs. (4) and (6) can be rewritten in a non-dimensional form by defining the following parameters:

$$\hat{w} = \frac{w}{G_1}, \quad \hat{y} = \frac{y}{G_1}, \quad \hat{x} = \frac{x}{L}, \quad \hat{\tau} = \frac{t}{\tau}, \quad \hat{s} = \frac{s}{G_1}, \quad \hat{p} = \frac{p}{V_1} \tag{7}$$

Where $\hat{\tau}$ is the dimensionless time, and $\hat{p} = \frac{a_0 m}{\sqrt{K g}}$ for the mass-spring, and $\hat{r} = \sqrt{\frac{a_0 m}{EIGK}}$ for the Euler-Bernoulli beam models. Therefore Eqs. (4) and (6) may be written as:

$$\hat{\tau} \frac{d^4 \hat{w}}{d \hat{\tau}^2} + \hat{\tau} \frac{d^3 \hat{w}}{d \hat{\tau}^3} = \hat{a} \hat{V}^4 \left[\frac{1}{(1 - \hat{w})^2} - \frac{p^2}{(\hat{s} + \hat{w})^2} \right] \tag{8}$$

$$\hat{\tau} \frac{d^2 \hat{y}}{d \hat{\tau}^2} + \hat{y} = \hat{a} \hat{V}^4 \left[\frac{1}{(1 - \hat{y})^2} - \frac{p^2}{(\hat{s} + \hat{y})^2} \right] \tag{9}$$

Where \hat{a} and \hat{a}' are the non-dimensional parameters of the electrostatic forces in the distributed and mass-spring models, respectively. These parameters are:

$$\hat{a} = \frac{b_0 h b_L}{2EIG}, \quad \hat{a}' = \frac{b_0 h b_L}{2KG_1} \quad (\alpha'_{\text{lateral}} = \frac{h \alpha}{8}, \quad \alpha'_{\text{longitudinal}} = \frac{h \alpha}{384}) \tag{10}$$

Numerical Approach

Due to the presence of the nonlinear terms in Eq. (8), the analytical solution methods may not be employed to obtain the pull-in voltage $V_{\text{pull-in}}$ of the micro-beam. Hence, the SSSLM method together with Galerkin based reduced integration method are implemented to solve this equation. By using SSSLM, the smooth and continuous behavior of the beam, as well as the magnitude of the nonlinear forces, can be approximated in every iteration step [13].

Static deflection

The use of static SSSLM calls for smooth forces application. In the case of electrostatic forces, the voltages can be gradually increased from zero to the final value, so it satisfies the quasi-equilibrium condition.

Denoting superscript ‘i’ as the counting step, and w^i being the non-dimensional displacement of the micro-structure, subjected to V^i and V^i_1, and increasing the applied DC voltage in each step, the dimensionless static deflection at ($i+1$)th step can be obtained as:

$$V^{i+1} = V^i + dV^i_1 \quad V^{i+1}_1 = V^i + dV^i_1 \quad w^{i+1} = w^i + \delta w = w^i + \dot{\psi} \quad \tag{11}$$

By considering small values for dV^i_1 and dV^i_2, the variable will be small enough; so that we can approximate the excitation function with the first two term of its Taylor series expansion in each step. As a result, Eq. (8) for the ith step and quasi-static case will be:

$$\frac{d^4 w}{d\hat{\tau}^4} = q_{\text{elec}}(V^i, V^i_1, w^i) \tag{12}$$

and for ($i+1$)th step:

$$\frac{d^4 w^{i+1}}{d\hat{\tau}^4} = q_{\text{elec}}(V^{i+1}, V^{i+1}_1, w^{i+1}) \tag{13}$$

Substituting w^{i+1}, $\dot{\psi}^{i+1}$ and $\ddot{\psi}^{i+1}$ from Eq. (11) into Eq. (13) and using Taylor expansion, results in:

$$\frac{d^4 w}{d\hat{\tau}^4} + \frac{d^4 \dot{\psi}}{d\hat{\tau}^4} = q_{\text{elec}}(V^i, V^i_1, w^i) + \left(\frac{\partial q_{\text{elec}}}{\partial V}\right) \dot{V}^i + \frac{\partial q_{\text{elec}}}{\partial V_1} \dot{V}^{i+1}_1 + \frac{\partial q_{\text{elec}}}{\partial w} \dot{w}^i \quad \tag{14}$$

With subtracting Eq. (12) from Eq. (14) one can obtain:

$$\frac{d^4 \dot{\psi}}{d\hat{\tau}^4} - \left(\frac{\partial q_{\text{elec}}}{\partial V}\right) \dot{V}^i + \frac{\partial q_{\text{elec}}}{\partial V_1} \dot{V}^{i+1}_1 + \frac{\partial q_{\text{elec}}}{\partial w} \dot{w}^i \quad \tag{15}$$

This is a linear ordinary differential equation which represents the variation of the deflection along the micro-beam. This linear differential equation may be solved using Galerkin method in which $\dot{\psi}(x)$ can be expressed as:

$$\dot{\psi}(x) = \sum_{j=1}^{N} q_j \dot{\psi}_j(x) \tag{16}$$

Where $\dot{\psi}(x)$ is the jth shape function satisfying the boundary conditions of the micro-beam. The primary variable in step i $\dot{\psi}(x)$ is approximated by truncating the summation series to the finite number, N.

$$\dot{\psi}_j(x) \approx \sum_{j=1}^{N} q_j \dot{\psi}_j(x) \tag{17}$$

By substituting Eq. (17) into Eq. (15) and multiplying them by $\psi_j(x)$ as a weight function in the Galerkin method, and integrating the outcomes from $x=0$ to 1, a set of algebraic equations will be generated. Solving these set of equations in each step, the deflection at any given point, under applied voltage can be determined. The pull-in voltage of the micro-beam is subsequently obtained in the last step when the instability occurs.

Dynamic analysis

For obtaining the response of the system excited by the time dependent voltage, dynamic analysis of the micro-beam has also been performed. Applying a minor modification on Eq. (4), by assuming the generalized deflections are function of time i.e.,

$$w^i(x,t) = \sum_{j=1}^{N} q_j(t) \psi_j(x) \tag{18}$$

and using the Galerkin approximation method, the equation of dynamic response will be:

Figure 2: Mass-spring model of the micro-beam.

where M_y is the effective mass and f is the actuating force. The Jacobian matrix of the system is given by:

$$
\begin{bmatrix}
M_i & [K]\theta_q = [F] \\
\end{bmatrix}
$$

(19)

where $M_y = \rho A \int_0^L \psi_x^2 \psi dx$, $[K] = \int \frac{d^2 \psi}{dx^2} \psi \psi dx$, and $[F] = \int \frac{V_e^2}{G_x - \psi} \psi \psi dx$.

In Figure 3 by increasing the control parameter V_1, three physical fixed points get closer together and for $V_1=8.97V$, i.e. pull-in voltage, they coalesce and change to one unstable saddle node. This condition represents subcritical pitchfork bifurcation [1], for the presented MEM switch where $p=s=1$.

Figures 4-7 present motion trajectories of the presented micro-switch for different values of the applied voltage V_e with different initial conditions. As shown in Figures 4-6, in each case, there is a physical region of periodic set of center point which is bounded with heteroclinic orbit (black bold curve). Figures 4-7 show that with increasing the applied voltage, the physical region of the periodic set is contracted and when the applied voltage is equal to the pull-in voltage, this physical region of the periodic set vanishes, rendering the system unstable for any initial condition (In this paper, continues and dashed curves represent periodic and unstable orbits for phase diagrams respectively).

Geometrical non-symmetric micro-switch with balanced electrostatic force ($p=s\neq 1; \xi \neq 1$): Bifurcation diagram of a micro-switch in the case of $p=s=2$ is shown in Figure 8. In the corresponding bifurcation diagram, a transcritical bifurcation occurs due to an exchange of stability between the trivial ($y=0$) and nontrivial branch in $V_1=10.33V$ (primary pull-in). For this bifurcation no fixed points appear or disappear, only their stability properties change [22].

Furthermore, by increasing the controlling parameter V_1, the distance, between two nontrivial physical fixed points, is decreased and for $V_1=11.04V$ they meet together in a saddle node bifurcation (secondary pull-in). For the case where there is no physically stable branch after pull-in voltage. But as shown in this figure, for the applied voltage $10.33<V_1<11.04$, there is a physically stable branch after pull-in voltage. This phenomenon can be observed in the capacitive microbeam suspended between two conductive plates in the condition of $p=s=1$.

Figures 9 and 10 shows bifurcation diagrams for the micro-switch in the case of $p=s=3$ and $p=s=4$ respectively. As shown in these figures, the stable branches appear after primary pull-in voltage. For the case of $p=s=3$ and $p=s=4$, the mentioned branches can be observed in the ranges of $11.09<V_1<13.02$ and $11.49<V_1<14.75$ respectively. With comparison of Figures 8-10 with each other, it may be noted that with increasing of the parameter p, the mentioned stable branch is extended, for the case of $p=s$ and $G_2>G_1$.

Figures 11-16 present motion trajectories of a micro-switch with $p=s=2$ (Figure 8) for different values of the applied voltage V_e, with different initial conditions. As it is seen in Figures 12 and 13, there are physical region of periodic set of center point and a region of repulsion of unstable saddle node in each diagram. It must be noted that the substrate position acts as a singular point and velocity of the system near this singular point tends to infinity. The region of periodic set of the physical center point is bounded by a bold closed orbit (homoclinic orbit). Depending on the location of the initial condition, the system can be stable or unstable. Similar to the previous case, Figures 11-13 shows that with increasing the applied voltage, the physical region of the periodic set is contracted and when the applied voltage equals to the primary pull-in voltage (Figure 14), there is no region of periodic set and the system becomes unstable for any initial conditions.

Figures 15a and 15b shows phase diagrams of the micro-switch for the case of $10.33<V_1<11.04$. As shown in these figures, physical region of the periodic set exists in $V_1=10.8V$ and disappears in $V_1=11.04V$ (Figures 16a and 16b). This condition represents the saddle-node bifurcation in $V_1=11.04V$ (secondary pull-in), which is shown in Figure 8.
Figure 3: Equilibrium points of the micro-beam versus applied voltage \(V_1\) (\(p=s=1, V_{pill-in}=8.9V\)).

Figure 4: Phase diagram for the micro-switch when \(p=s=1\) and \(V_1=0V\).

Figure 5: Phase diagram for the micro-switch when \(p=s=1\) and \(V_1=3V\).

Figure 6: Phase diagram for the micro-switch when \(p=s=1\) and \(V_1=6V\).

Figure 7: Phase diagram for the micro-switch when \(p=s=1\) and \(V_1=8.97V\).

Figure 8: Equilibrium points of the micro-beam versus applied voltage \(V_1\) (\(p=s=2\)).
Figure 9: Equilibrium points of the micro-switch versus applied voltage V_1 ($p=s=3$).

Figure 10: Equilibrium points of the micro-switch versus applied voltage V_1 ($p=s=4$).

Figure 11: Phase diagram for the micro-switch when $p=s=2$ and $V_1=0$V.

Figure 12: Phase diagram for the micro-switch when $p=s=2$ and $V_1=3$.

Figure 13: Phase diagram for the micro-switch when $p=s=2$ and $V_1=7$V.

Figure 14: Phase diagram for the micro-switch when $p=s=2$ and $V_1=10.33$V.
It must be noted that in the classic micro-switches the pull-in phenomenon is occurred due a saddle node bifurcation, whereas in the presented micro-switch in the symmetric case ($p=s=1$) the pull-in phenomenon is occurred owing to a pitch fork bifurcation and in the non-symmetric cases $p=s=1$ this phenomenon is first happened primarily due to a transcritical bifurcation (can be called as primary pull-in phenomenon) and secondarily due to a saddle node bifurcation (can be called as secondary pull-in phenomenon).

In addition, it can be said that the first case $p=s=1$ can be obtained from the second case decreasing the value of the voltages and gap ratios (ς). With decreasing the value of (ς) the transcritical and saddle node bifurcation points approaches together and at the case when these ratios are equal to 1 ($\varsigma=1$) only one saddle node bifurcation point is observed.

Geometrical non-symmetric micro-switch with un-balanced electrostatic force ($p \neq s \neq 1$): Figure 17 shows bifurcation diagram of the micro-switch in the case of $p \neq s$ ($p=1, s=2$). As shown in this figure, by increasing the control parameter V_1, two physical fixed points get close to each other and in $V_1=7.21V$, (pull-in voltage), they meet together in a saddle node bifurcation point.

Figures 18-21 shows phase diagram of the micro-switch for different values of the applied voltage V_1, with different initial conditions. As shown in Figures 18-20 there is a physical region of the periodic set of the center point in each diagram. The region is bounded by a bold closed orbit (homoclinic orbit). Depending on the location of the initial condition in the phase diagram, the system can be stable or unstable. Figures 18-21 show that with increasing the applied voltage, the physical region of the periodic set is contracted until the applied voltage reaches to the pull-in voltage; the region of the periodic set vanishes making the system unstable for any initial condition.

Dynamic response

The static bifurcation was investigated in previous subsection, and in this part we study the dynamic response of the micro-switch subjected to a step DC voltage. The solution of dynamic response is based upon Galerkin reduced order method. The physical characteristics of the studied fixed-fixed beam are $L=600 \mu m$, $h=2 \mu m$, $G_1=2 \mu m$, $b=4 \mu m$, $E=169$ Gpa. The static pull-in voltage for this micro-switch in the case of $p=0$ is 10.54 V whereas for the dynamic case is 9.62 V, which is 91.3%
leads to instability in the mentioned beam and the dynamic pull-in phenomenon occurs.

For micro switches, with \(p \neq 0 \), the dynamic pull-in condition may be different from reported results [13,23]. In micro-switches with \(p \neq 0 \), the dynamic pull-in voltage may be equal or less than the static one. This condition occurs because of the application of two electrostatic forces with opposite directions. In addition to applied voltage, the parameter \(s \) can be effective on the dynamic response of the micro-switch.

Figure 23 shows the magnitude of dynamic pull-in voltages versus \(s \) (1≤\(s \)≤10) for \(p=0.5,0.75,1 \). As shown in this figure, with increasing of parameter \(s \), for any value of \(p \), the dynamic pull-in voltage approaches to 9.62, which agrees with the result [13,23]. On the other hand, with decreasing of the \(s \), the dynamic pull-in voltage increases. As shown in this figure for \(p=1 \) and \(s=1.61 \) the dynamic pull-in voltage reaches to the static one. This condition for \(p=0.75 \) occurs when \(s=1.19 \). But as shown in this figure, for \(p=0.5 \) dynamic pull-in voltage is less than the static one for every magnitude of the \(s \). for this case, maximum value of dynamic pull-in voltage is 10.07 \(V \), which is occurred in \(s=1 \).

It must be noted that the dynamic pull-in voltage cannot be more than the static one. In exact word, based on reported results of refs [13,23] and obtained results of this paper, it can be said that dynamic pull-in voltage is in the range of 0.9\(V_{\text{p,static}} \) ≤ \(V_{\text{d,static}} \) ≤ 1\(V_{\text{p,static}} \) in which \(V_{\text{p,static}} \) and \(V_{\text{d,static}} \) represent static and dynamic pull-in voltages, respectively.
So for $p=1$ in range of $s \leq 1$ and $p=0.75$ in range of $s \leq 1.19$, dynamic pull-in voltage is the same with static pull-in voltage.

The time history and phase portrait of the micro-beam with $s=2$ and $p=1$ and various step DC voltages is shown in Figure 24. As shown in Figure 24a the response of the micro-beam to DC voltage lower than 10.34 V is periodic but for higher than this value, the response is non-periodic (unstable). This condition represents pull-in condition. As shown in this figure, with increasing of applied voltage from pull-in value, pull-in time is decreased. Figure 24b shows a metamorphosis of how a periodic orbit approaches to homoclinic orbit at dynamic pull-in voltage ($V=10.34V$). Indeed, the periodic orbit is ended at dynamic pull-in voltage where a homoclinic orbit is formed. In other words, when the applied voltage approaches the dynamic pull-in voltage, the periods of the closed orbits tend to infinity. It can be said that, the homoclinic bifurcation happened, when the periodic orbit collides with a saddle point at dynamic pull-in voltage. It must be noted that the scenario of instability in the case of applying step DC voltage is different from its static application. As Figure 17 shows, when applied DC voltage approaches the static pull-in voltage, the system tends to an unstable equilibrium position by undergoing to a saddle node bifurcation. A saddle node bifurcation, which is seen in the static application of the DC voltage, is a locally stationary bifurcation. This kind of bifurcation can be analyzed based on locally defined eigenvalues. In addition to local bifurcations, periodic orbits encounter phenomena that cannot be analyzed based on locally defined eigenvalues. Such phenomena are global bifurcations [24]. Furthermore for DC step excitation voltages lower than 9.2 V, the response is linear and the trajectories in the phase plane have symmetric forms. Increasing the voltage of the step excitation the trajectories in the phase plane shows a symmetric breaking for voltages between 9.2 and 10.33 V.

Conclusion

The governing equation to analyze the dynamic motion of the micro-beam suspended between two conductive plates and subjected to electrostatic forces was presented. Due to the nonlinearity of this equation, it was solved using SLM and Galerkin weighted residual method. The bifurcation behavior of the micro-switch under various conditions and excited voltages and stationary electrodes distances from the micro-beam were obtained using a modified mass-spring model. By solving the equation of the static deflection, fixed points of the micro-switch was determined, for three different cases of $p=s=1$, $p=s \neq 1$ and $p \neq s \neq 1$. It was shown that, the pull-in phenomena were occurred by undergoing to a pitchfork and a saddle node bifurcation in the cases of $p=s=1$ and $p \neq s$ respectively. For these cases it was shown that, there are five fixed points in range of $0<V<V_{\text{pull-in}}$ and also it was shown that this number decreases to three fixed points for $V>V_{\text{pull-in}}$. Also was shown that for the electro-statically balanced case $p=s$ one of the fixed points is a trivial solution. For the case when $p=s=1$ it was shown that primary and secondary pull-in phenomena are observed. In this case the primary pull-in phenomenon is due to a transcritical bifurcation and the secondary one is due to a saddle node bifurcation. Furthermore it was shown that, a stable center point exists between these unstable fixed points. The length of the stable branch between these unstable fixed points is increased with simultaneously increasing...
the voltages and gap ratios (ς). In another word the case of p=ς=1 is a special case of the second one when these ratios are equal to 1 and in this case two bifurcation points join together and only one saddle node bifurcation is observed.

In the case of applying step DC voltage, the results show that, contrary to the classic micro-switch, for presented micro-switch, the ratio of the dynamic pull-in voltage to the static one is not a constant value and located in the range of 0.9 to 1. In another word when the system is in the electro-statically balanced case (p=ς) and exist the trivial solution, as there is no inertial forces in the system, the static and dynamic pull-in values are equal.

References