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Introduction
“Bifurcation, a French word introduced into nonlinear dynamics 

by Poincare, is used to indicate a qualitative change in the features of a 
system, such as the number and type of solutions, under the variation 
of one or more parameters on which the considered system depends” 
[1]. Electro statically actuated Micro Electro Mechanical (MEM) and 
Nano Electro Mechanical (NEM) systems form a broad class of devices, 
which bifurcational behavior can be observed due to the nonlinearity of 
the electrostatic force.

Nowadays, because of the advantages of the electrostatic actuators, 
such as favorable scaling property, low driving power, large deflection 
capacity, relative ease of fabrication, and others, have led to their being 
more widely applied for electrostatic-actuator applications in MEM 
systems. The MEM switch is one of the most important devices in 
such systems. The structural elements that are used in MEM devices 
are typically simple elements including micro-beams, plates, and 
membranes. Electro statically actuated micro-beams (e.g., cantilever 
and fixed–fixed micro-beams) are used in many MEM devices such as 
capacitive MEM switches and resonant sensors. Manufacturing and 
design of these devices are, to some extent, in a more mature stage than 
those of some other MEM devices [2].

One of the most significant issues in the capacitive micro and nano 
switches is the pull-in instability. In these devices, a movable beam/
plate is suspended over a stationary plate, and a potential difference 
is applied between them. As the micro-structure is balanced between 
two forces, namely, electrostatic (attractive) and mechanical (elastic 
restoring) forces, both of these forces are increased when the applied 
voltage increases. When the voltage reaches a critical value, pull-in 
instability occurs. Pull-in is a situation at which the elastic restoring 
force can no longer balance the electrostatic attractive force. Further 

increasing the voltage will cause the structure to have a sudden 
displacement jump, causing structural collapse and failure. Pull-
in instability is a snap-through like behavior and it is a saddle-node 
bifurcation type of instability [3].

The pull-in phenomenon usually occurs in many micro-machine 
devices which require bi-stability for their operation, such as in the 
MEM and NEM switches [4,5]. Many studies have been developed 
in the analysis of instability of the MEM structures due to their 
nonlinearity [6,7]. Zhang and Zhao [8] studied the Pull-in instability of 
a MEM switch under electrostatic actuation. Taghizadeh and Mobki [9] 
analyzed the pull-in phenomenon of a torsional micro-mirror. In nano 
scale, Dequesnes et al., [10,11] and Hosseini et al., [12] investigated the 
static and dynamic stability of a carbon nano tube. Mobki et al., [13] 
studied the static and dynamic pull-in phenomenon of a capacitive 
nano-beam, considering length scale-parameter.

In the case of bifurcational behavior of the MEM and NEM systems, 
some works have been done. Lin and Zhao [14-16] studied bifurcation 
and pull-in phenomenon of NEM actuators with considering van der 
Waals (vdW) and Casimir forces. They showed that the pull-in voltage 
causes a saddle node type bifurcation in these devices. Many researchers 
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Abstract
In this paper, bifurcation and pull-in phenomena of a capacitive micro switch suspended between two stationary 

plates have been studied. The governing dynamic equation of the switch has been attained using Euler Bernoulli beam 
theorem. Due to the nonlinearity of the electrostatic force, the analytical solution for the derived equation is not available. 
So the governing differential equation has been solved using combined Galerkin weighted residual and Step-By-Step 
Linearization Methods (SSLM).

To obtain the fixed points and study the local and global bifurcational behavior of the switch, a mass-spring model 
has been utilized and adjusted so that to have similar static/dynamic characteristics with those of Euler-Bernoulli beam 
model (in the first mode). Using 1-DOF model, mathematical and physical equilibrium points of the switch have been 
obtained for three different cases. It is shown that the pull-in phenomenon in the present micro-switch can be occurred 
due to a pitchfork or transcritical bifurcations as well as saddle node bifurcation which are transpired in the classical 
micro-switches. And for some cases primary and secondary pull-in phenomena are observed where the first one is due 
to a transcritical bifurcation and the second one is due to a saddle node bifurcation. In addition the dynamic response 
of the switch to a step DC voltage has also been studied and the results show that in contrast to the classical micro-
switches, the ratio of the dynamic pull-in to the static one depends on the gaps and voltages ratio where for the classical 
one is approximately a constant value. 
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Mathematical Modeling
The static deflection equation of the presented micro-switch may be 

computed using Euler Bernoulli beam theory. Of course the mechanical 
behavior the nano and micro-beams is size dependent, but as the main 
propose of the present paper is to study the qualitative bifurcational 
behavior of a micro-beam therefore the micro-beam is modeled based 
on classical theories. The electrostatic forces per unit length of the 
beam applied to the lower and upper plates can be obtained [19] as in 
Eqs. (1) and (2) respectively:
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Where, Ŵ(x) and Ŵˈ(x) are the flexural deflection of the micro-
beam with respect to the lower and upper plates, respectively. Also, 
ε0=8.854 × 10-12 C2 N-1 m-2 is the permittivity of the vacuum within the 
gaps? Considering that, the deflection of the micro-beam with respect 
to the bottom plate equals to the negative value regarding to the upper 
plate, as:

Ŵ= Ŵˈ                      (3)

So the governing equation of the motion of the micro-beam, using 
Euler Bernoulli beam theorem, is:
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Where right hand terms of this equation are resultant electrostatic 
forces per unit length of the beam (qelec(V1, V2, Ŵ)). In Eq. (4) first and 
second right hand terms indicate the imposed forces from lower and 
upper plates, respectively.

In order to compose a lumped mass-spring model for the micro-
switch, Eq. (4) is converted to Eq. (5) [4]:
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where m=ρAL is the mass of the micro-beam, and K is the spring 
constant for the beam and defined as the ratio of the applied uniform 
force ‘q’ to the maximum beam deflection ‘Ymax’. Thus, the spring 
constant depends on the cross-section/shape of the beam as well as 
on the boundary conditions. Considering the mass-spring model, the 

have shown that the saddle node bifurcation, can be transpired in the 
electro statically MEM/NEM devices [3,9,13-18]. 

In spite of many research works accomplished on the stability of 
MEM structures, there is not enough comprehensive work explaining 
the stability of these switches from the type of bifurcation point of view. 

In the present study, different types of bifurcation are investigated 
for a capacitive micro-beam suspended between two conductive plates. 
It should be mentioned that this specific sort of micro-switch allows us 
to produce different bifurcation types, by varying of some parameters. 
The micro-beam (micro-switch) is actuated by electrostatic forces 
induced by DC polarization voltages. Also, to study the bifurcation 
of the beam, the nonlinear equation of the dynamic motion of the 
Euler Bernoulli beam using a one term Galerkin weighted residual 
method is converted to a lumped mass-spring model. Compared to the 
distributed model, the mass spring has lower accuracy in studying the 
static and dynamic behavior of the micro-beams. In order to overcome 
this shortcoming, in this work, the accuracy of the model has been 
improved using corrective coefficients. By solving the static deflection 
equation, the fixed points of the micro-beam are obtained for different 
conditions, resulting in saddle-node, pitchfork, and transcritical 
bifurcations. In order to study the stability of the fixed points, motion 
trajectories are produced in phase portraits. Moreover, dynamic 
response of the system to a step DC voltage also is investigated

Model Description
Figure 1a shows the schematic view of a fixed-fixed beam with 

length L, which is suspended between two stationary conductor 
plates. The beam distances from the bottom and top plates are G1 and 
G2, respectively. The illustrated beam is attracted toward the lower 
and upper plates by applying the voltages of V1 and V2, respectively. 
By different combination of the applied voltages and gaps, different 
bending states, and hence different bifurcation types, can be obtained.

In the present study, the micro-beam is assumed to be an isotropic 
material with modulus of elasticity E, density ρ, width b, thickness h, 
cross section area A and moment of inertia I. 

As mentioned before, in order to simplify the analysis of the 
bifurcation behavior of the micro-beam, the illustrated model in Figure 
1b can be simulated by an equivalent mass-spring model, which is 
shown in Figure 2. 

 
Figure 1: Schematic view of a beam-based MEM switch. a) A beam-based MEM switch; b) Cross section of the micro beam.
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spring constant for cantilever and fixed-fixed beams are 8EI/L3 and 
384EI/L3, respectively [4]. In order to increase the accuracy of the 
mass-spring model, and to adjust it with the distributed model as well, 
corrective coefficients of a0 and b0 are applied as below:
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Where a0m is the equivalent mass of the micro-beam. The 
parameters a0 and b0 are determined; so that the first natural frequencies 
and the static pull-in voltages obtained using both mass-spring and the 
distributed models, become equal. 

For convenience Eqs. (4) and (6) can be rewritten in a non-
dimensional form by defining the following parameters:
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Where α and αˈ are the non-dimensional parameters of the 
electrostatic forces in the distributed and mass-spring models, 
respectively. These parameters are:
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Numerical Approach
Due to the presence of the nonlinear terms in Eq. (8), the analytical 

solution methods may not be employed to obtain the pull-in voltage 
‘Vpull-in’ of the micro-beam. Hence, the SSLM method together with 
Galerkin based reduced integration method are implemented to solve 
this equation. By using SSLM, the smooth and continuous behavior 
of the beam, as well as the magnitude of the nonlinear forces, can be 
approximated in every iteration step [13]. 

Static deflection 
The use of static SSLM calls for smooth forces application. In the 

case of electrostatic forces, the voltages can be gradually increased from 
zero to the final value, so it satisfies the quasi-equilibrium condition.

Denoting superscript ‘i’ as the counting step, and wi being the 
non-dimensional displacement of the micro-structure, subjected to 

iV1 and iV2 ; and increasing the applied DC voltage in each step, the 
dimensionless static deflection at (i+1)th step can be obtained as:

1 1 1
1 1 1 2 2 2     &i i i i i i i iV V dV V V dV w w w w+ + += + = + Þ = +d = +j           (11)

By considering small values for dV1 and dV2, the variable will be 
small enough; so that we can approximate the excitation function with 
the first two term of its Taylor series expansion in each step. As a result, 
Eq. (8) for the ith step and quasi-static case will be:
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Substituting Wi+1, 1
1
+iV  and 1

2
+iV  from Eq. (11) into Eq. (13) and 

using Taylor expansion, results in:
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With subtracting Eq. (12) from Eq. (14) one can obtain:
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This is a linear ordinary differential equation which represents the 
variation of the deflection along the micro-beam. This linear differential 
equation may be solved using Galerkin method in which φ(x) can be 
expressed as:
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Where ψj(x) is the jth shape function satisfying the boundary 
conditions of the micro-beam. The primary variable in step i “φi(x)” is 
approximated by truncating the summation series to the finite number, N:
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By substituting Eq. (17) into Eq. (15) and multiplying them by ψr 
(x) as a weight function in the Galerkin method, and integrating the 
outcomes from x=0 to 1, a set of algebraic equations will be generated. 
Solving these set of equations in each step, the deflection at any given 
point, under applied voltage can be determined. The pull-in voltage 
of the micro-beam is subsequently obtained in the last step when the 
instability occurs. 

Dynamic analysis

For obtaining the response of the system excited by the time 
dependent voltage, dynamic analysis of the micro-beam has also been 
performed. Applying a minor modification on Eq. (4), by assuming the 
generalized deflections are function of time i.e.,
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and using the Galerkin approximation method, the equation of 
dynamic response will be:

Figure 2:  Mass-spring model of the micro-beam.
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are the effective mass, spring and actuating force matrices, 
respectively q(t) can be obtained from above set of ordinary differential 
equations (Eq. (19)) using an integration scheme.

Results and Discussion
Validation of the numerical method

The convergence of the numerical method and validation of the 
results may be investigated by comparing them with those given by 
Mobki et al. [19], and Osterberg [20]. The considered case studies 
in Osterberg; Medio and Lines [20,21] are fixed-fixed and cantilever 
micro-switches with width of 50 µm, thickness of 3 µm, Young's 
modulus of 169 GPa, G1=1 µm andV2=0V.

Bifurcation analysis

The fixed points for a fixed-fixed micro-switch with L=400 µm, 
G1=3 µm, b=4 µm, h=2 µm and E= 169 Gpa has been obtained. Based 
on Eq. (9), physical fixed points for the micro-switch exist for –s<y<1, 
but mathematically, these points may also exist in the range of 1<y 
or y<-s. At the fixed points, the micro-beam’s velocity is zero, hence 
considering Eq. (9), equilibrium points are obtained by solving the 
following equation [21]:
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The order of polynomial in Eq. (21) is five with respect to y, having 
maximum five real roots. In order to check the stability in the vicinity 
of an equilibrium point(y=yi), the following Jacobian matrix is used [15].
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Where Yi is a fixed point. Eigen vlaues of the Jacobian satisfy
2
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. For λ2<0, it has two pure imaginary roots, 

meaning that the fixed point (yi, V1) is a center point but when λ2>0, 
indicating two real eigenvalues with opposite signs; which means the 
corresponding equilibrium point (yi, V1) is an unstable saddle point. 
Using this method, the stability in the vicinity of each equilibrium 
point can be identified.

Bifurcation analysis for the present micro-switch is accomplished 
for three different cases as following.

Geometrical symmetric micro-switch with balanced electrostatic 
force (P=S=1): Figure 3 depicts bifurcation diagram of a micro-beam 
versus applied voltage V1 as a control parameter in the case of p=s=1. 
Based on the afore mentioned procedure, stability of each branch in 
Figure 3 can be distinguished (in this paper dashed and continues 
curves represent unstable and stable branches for bifurcation diagram, 
respectively). 

In Figure 3 by increasing the control parameter V1, three physical 
fixed points get closer together and for V1=8.97V, i.e., pull-in voltage, 
they coalesce and change to one unstable saddle node. This condition 
represents subcritical pitchfork bifurcation [1], for the presented MEM 
switch where p=s=1.

Figures 4-7 present motion trajectories of the presented micro-
switch for different values of the applied voltage V1 with different 
initial conditions. As shown in Figures 4-6, in each case, there is a 
physical region of periodic set of center point which is bounded with 
heteroclinic orbit (black bold curve). Figures 4-7 show that with 
increasing the applied voltage, the physical region of the periodic set is 
contracted and when the applied voltage is equal to the pull-in voltage, 
this physical region of the periodic set vanishes, rendering the system 
unstable for any initial condition (In this paper, continues and dashed 
curves represent periodic and unstable orbits for phase diagrams 
respectively).

Geometrical non-symmetric micro-switch with balanced 
electrostatic force (p=s ≠ ζ; ζ ≠ 1): Bifurcation diagram of a micro-
switch in the case of p=s=2 is shown in Figure 8. In the corresponding 
bifurcation diagram, a transcritical bifurcation occurs due to an 
exchange of stability between the trivial (y=0) and nontrivial branches 
in V1=10.33V (primary pull-in). For this bifurcation no fixed points 
appear or disappear, only their stability properties change [22]. 

Furthermore, by increasing the controlling parameterV1, the 
distance, between two nontrivial physical fixed points, is decreased 
and for V1=11.04V they meet together in a saddle node bifurcation 
(secondary pull-in). For this case there is no physically stable branch, 
after pull-in voltage. But as shown in this figure, for the applied 
voltage10.33<V1<11.04, there is a physically stable branch after pull-in 
voltage. This phenomenon can be observed in the capacitive micro-
beam suspended between two conductive plates in the condition of p=s ≠1.

Figures 9 and 10 shows bifurcation diagrams for the micro-switch 
in the case of p=s=3 and p=s=4 respectively. As shown in these figures, 
the stable branches appear after primary pull-in voltage. For the case 
of p=s=3 and p=s=4, the mentioned branches can be observed in the 
ranges of 11.09<V1<13.02 and 11.49<V1<14.75 respectively. With 
comparison of Figures 8-10 with each other, it may be noted that with 
increasing of the parameter p, the mentioned stable branch is extended, 
for the case of p=s and G2>G1.

Figures 11-16 present motion trajectories of a micro-switch with 
p=s=2 (Figure 8) for different values of the applied voltageV1, with 
different initial conditions. As it is seen in Figures 12 and 13, there are 
physical region of periodic set of center point and a region of repulsion 
of unstable saddle node in each diagram. It must be noted that the 
substrate position acts as a singular point and velocity of the system 
near this singular point tends to infinity. The region of periodic set of 
the physical center point is bounded by a bold closed orbit (homoclinic 
orbit). Depending on the location of the initial condition, the system 
can be stable or unstable. Similar to the previous case, Figures 11-13 
shows that with increasing the applied voltage, the physical region of 
the periodic set is contracted and when the applied voltage equals to the 
primary pull-in voltage (Figure 14), there is no region of periodic set 
and the system becomes unstable for any initial conditions.

Figures 15a and 15b shows phase diagrams of the micro-switch for 
the case of 10.33<V1<11.04. As shown in these figures, physical region 
of the periodic set exists in V1=10.8V and disappears in V1=11.04V 
(Figures 16a and 16b). This condition represents the saddle-node 
bifurcation in V1=11.04V (secondary pull-in), which is shown in Figure 8. 
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Figure 3:  Equilibrium points of the micro-beam versus applied voltage (V1) 
(p=s=1, Vpill–in=8.9V).

Figure 4: Phase diagram for the micro-switch when p=s=1 and
 
V1=0V.

Figure 5: Phase diagram for the micro-switch when p=s=1 and V1=3V.

Figure 6: Phase diagram for the micro-switch when p=s=1 and V1=6V.

Figure 7: Phase diagram for the micro-switch when p=s=1 and V1=8.97V.

Figure 8: Equilibrium points of the micro-beam versus applied voltage V1 
(p=s=2).
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Figure  9:  Equilibrium points of the micro-switch versus applied voltage V1 
(p=s=3).

Figure 10:  Equilibrium points of the micro-switch versus applied voltage V1 
(p=s=4).

Figure 11:  Phase diagram for the micro-switch when p=s=2 and V1=0V.

Figure 12: Phase diagram for the micro-switch when p=s=2 and V1=3.

Figure 13: Phase diagram for the micro-switch when p=s=2 and V1=7V.

Figure 14:  Phase diagram for the micro-switch when p=s=2 and V1=10.33V.
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Figure 15a: Phase diagram for the micro-switch when p=s=2 and V1=10.8V.

Figure 16a: Phase diagram for the micro-switch when p=s=2 and V1=11.04V.

Figure 16b: A detailed closed view of the phase diagram about the fixed 
points when p=s=2 and V1=11.04V.

Figure 15b: A detailed closed view of the phase diagram about the fixed 
points when p=s=2 and V1=10.8V.

It must be noted that in the classic micro-switches the pull-in 
phenomenon is occurred due a saddle node bifurcation, whereas in 
the presented micro-switch in the symmetric case (p=s=1) the pull-
in phenomenon is occurred owing to a pitch fork bifurcation and in 
the non-symmetric cases p=s≠1 this phenomenon is first happened 
primarily due to a transcritical bifurcation (can be called as primary 
pull-in phenomenon) and secondarily due to a saddle node bifurcation 
(can be called as secondary pull-in phenomenon).

In addition, it can be said that the first case p=s=1 can be obtained 
from the second case decreasing the value of the voltages and gap ratios 
(ς). With decreasing the value of (ς) the transcritical and saddle node 
bifurcation points approaches together and at the case when these 
ratios are equal to 1 (ς=1) only one saddle node bifurcation point is 
observed.

Geometrical non-symmetric micro-switch with un-balanced 
electrostatic force (p ≠ s ≠ 1): Figure 17 shows bifurcation diagram 
of the micro-switch in the case of p ≠ s (p=1, s=2). As shown in this 
figure, by increasing the control parameter V1, two physical fixed 
points get close to each other and in V1=7.21V, (pull-in voltage), they 
meet together in a saddle node bifurcation point.

Figures 18-21 shows phase diagram of the micro-switch for 
different values of the applied voltage 1V , with different initial 
conditions. As shown in Figures 18-20 there is a physical region of the 
periodic set of the center point in each diagram. The region is bounded 
by a bold closed orbit (homoclinic orbit). Depending on the location of 
the initial condition in the phase diagram, the system can be stable or 
unstable. Figures 18-21 show that with increasing the applied voltage, 
the physical region of the periodic set is contracted until the applied 
voltage reaches to the pull-in voltage; the region of the periodic set 
vanishes making the system unstable for any initial condition.

Dynamic response
The static bifurcation was investigated in previous subsection, and 

in this part we study the dynamic response of the micro-switch subjected 
to a step DC voltage. The solution of dynamic response is based upon 
Galerkin reduced order method. The physical characteristics of the 
studied fixed-fixed beam are L=600 µm, h=2 µm, G1=2 µm, b=4 µm, 
E=169 Gpa. The static pull-in voltage for this micro-switch in the case 
of p=0 is 10.54 V whereas for the dynamic case is 9.62 V, which is 91.3% 
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Figure 19: Phase diagram for the micro-switch when p=1, s=2 and V1=2.5V.

Figure 20: Phase diagram for the micro-switch when p=1 , s=2 and V1=5V.

 

Figure 21: Phase diagram for the micro-switch when p=1, s=2 and V1=7.2V.

Figure 17: Equilibrium points of the micro-switch versus applied voltage V1 
(p=1, s=2, Vpull–in=7.21).

Figure 18:  Phase diagram for the micro-switch when p=1, s=2 and V1=0V.

of the static case. The obtained percentage is in good agreement with 
the reported results in Mobki et al.; Seydel [13,23]. Figure 22 shows the 
time history of the center deflection of the micro-beam subjected to 
9.61V and 9.62V applied DC voltages, respectively. As shown in these 
figures, the beam is in its stable condition under 9.61V and starts to 
vibrate after application of this voltage, however, 9.62V applied voltage 

leads to instability in the mentioned beam and the dynamic pull- in 
phenomenon occurs.

For micro switches, with p ≠ 0, the dynamic pull-in condition may 
be different from reported results [13,23]. In micro-switches with p ≠ 
0, the dynamic pull-in voltage may be equal or less than the static one. 
This condition occurs because of the application of two electrostatic 
forces with opposite directions. In addition to applied voltage, the 
parameter s can be effective on the dynamic response of the micro-
switch.

Figure 23 shows the magnitude of dynamic pull- in voltages versus 
s (1<s<10) for p=0.5, 0.75, 1. As shown in this figure, with increasing of 
parameter s, for any value of p, the dynamic pull-in voltage approaches 
to 9.62, which agrees with the result [13,23]. On the other hand, with 
decreasing of the s, the dynamic pull-in voltage increases. As shown 
in this figure for p=1 and s=1.61 the dynamic pull-in voltage reaches 
to the static one. This condition for p=0.75 occurs whens=1.19. But 
as shown in this figure, for p=0.5 dynamic pull-in voltage is less than 
the static one for every magnitude of the s. for this case, maximum 
value of dynamic pull-in voltage is 10.07 V, which is occurred in s=1. 
It must be noted that the dynamic pull-in voltage cannot be more than 
the static one. In exact word, based on reported results of refs [13,23] 
and obtained results of this paper, it can be said that dynamic pull-in 
voltage is in the range of 0.9Vs-pull-in ≤ Vd-pull-in ≤ 1Vs-pull-in, which Vs-pull-in 
and Vd-pull-in represent static and dynamic pull-in voltages, respectively. 
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So for p=1 in range of s ≤ 1 and p=0.75 in range of s ≤ 1.19, dynamic 
pull-in voltage is the same with static pull-in voltage.

The time history and phase portrait of the micro-beam with s=2 
and p=1 and various step DC voltages is shown in Figure 24. As shown 
in Figure 24a the response of the micro-beam to DC voltage lower than 
10.34V is periodic but for higher than this value, the response is non-
periodic (unstable). This condition represents pull-in condition. As 
shown in this figure, with increasing of applied voltage from pull-in 
value, pull-in time is decreased. Figure 24b shows a metamorphosis of 
how a periodic orbit approaches to homoclinic orbit at dynamic pull-in 
voltage (V=10.34V). Indeed, the periodic orbit is ended at dynamic pull-
in voltage where a homoclinic orbit is formed. In other words, when 
the applied voltage approaches the dynamic pull-in voltage, the periods 
of the closed orbits tend to infinity. It can be said that, the homoclinic 
bifurcation happened, when the periodic orbit collides with a saddle 
point at dynamic pull-in voltage. It must be noted that the scenario 
of instability in the case of applying step DC voltage is different from 
its static application. As Figure 17 shows, when applied DC voltage 
approaches the static pull-in voltage, the system tends to an unstable 
equilibrium position by undergoing to a saddle node bifurcation. A 
saddle node bifurcation, which is seen in the static application of the 
DC voltage, is a locally stationary bifurcation. This kind of bifurcation 
can be analyzed based on locally defined eigenvalues. In addition to 
local bifurcations, periodic orbits encounter phenomena that cannot 
be analyzed based on locally defined eigenvalues. Such phenomena 
are global bifurcations [24]. Furthermore for DC step excitation 
voltages lower than 9.2 V, the response is linear and the trajectories in 
the phase plane have symmetric forms. Increasing the voltage of the 
step excitation the trajectories in the phase plane shows a symmetric 
breaking for voltages between 9.2 and 10.33 V.

Conclusion
The governing equation to analyze the dynamic motion of the 

micro-beam suspended between two conductive plates and subjected 
to electrostatic forces was presented. Due to the nonlinearity of this 
equation, it was solved using SSLM and Galerkin weighted residual 
method. The bifurcation behavior of the micro-switch under various 
conditions and excited voltages and stationary electrodes distances 
from the micro-beam were obtained using a modified mass-spring 
model. By solving the equation of the static deflection, fixed points of 
the micro-switch was determined, for three different cases of p=s=1, 
p=s ≠ 1 and p ≠ s ≠ 1. It was shown that, the pull-in phenomena were 
occurred by undergoing to a pitchfork and a saddle node bifurcation in 
the cases of p=s=1 and p ≠ s respectively. For these cases it was shown 
that, there are five fixed points in range of 0<V<Vpull-in, and also it was 
shown that this number decreases to three fixed points for pull inV V − . 
Also was shown that for the electro-statically balanced case p=s one 

of the fixed points is a trivial solution. For the case when p=s≠1it was 
shown that primary and secondary pull-in phenomena are observed. 
In this case the primary pull-in phenomenon is due to a transcritical 
bifurcation and the secondary one is due to a saddle node bifurcation. 
Furthermore it was shown that, a stable center point exists between 
these unstable fixed points. The length of the stable branch between 
these unstable fixed points is increased with simultaneously increasing 

 

Figure 22:  Dynamic response of the fixed-fixed micro-switch in the case of p=0 
subjected to step-wise DC voltage. (a) Time history of the micro-beam (V=9.61V); 
(b) Time history of the micro-beam (V=9.62V).

Figure 23:  s vs. V1 for the micro-switch.

Figure 24a: Time history of the micro-switch, when s=2 and p=1.

Figure 24b: Phase portrait and symmetry breaking of the micro-switch, when 
s=2 and p=1.
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the voltages and gap ratios (ς). In another word the case of p=s=1 is a 
special case of the second one when these ratios are equal to 1 and in 
this case two bifurcation points join together and only one saddle node 
bifurcation is observed. 

In the case of applying step DC voltage, the results show that, 
contrary to the classic micro-switch, for presented micro-switch, the 
ratio of the dynamic pull-in voltage to the static one is not a constant 
value and located in the range of 0.9 to 1. In another word when the 
system is in the electro-statically balanced case (p=s) and exist the 
trivial solution, as there is no inertial forces in the system, the static and 
dynamic pull-in values are equal.
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