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Introduction
In [1] Kider started the study of a notion of standard fuzzy metric 

space that constitutes an interesting modification of the notion of 
metric fuzziness due to George and Veeramani [2]. In this paper we 
extend the notion standard fuzzy metric space to a standard fuzzy 
quasi-metric space [3]. On the other hand, it was presented in [4] an 
example of a standard fuzzy metric space that is not completable, also it 
has been obtained an internal characterization of completable standard 
fuzzy metric spaces. taking these results into account and the fact that 
the concept of bicompletion provides a theory of completion to quasi-
metric spaces in the classical sense [5]. It seems natural and interesting 
to discuss the problem of characterizing standard fuzzy quasi-metric 
spaces that are bicompletable. The main purpose of this paper is to 
solve this problem. Following the modern terminology of [5]  by a 
quasi-metric on a set X we mean a function d : XX [0, )→ ∞  such that 
for all x, y, z ∈  X.

(i) d(x,y)=d(y,x)=0 if and only if x=y

(ii) d(x, y) d(x, z) (z, y)≤ +

Each quasi-metric d on X generates a T0-topology which
has a base the family of dϒ Open balls {B (x) : X, 0}ε ε >  where 
B (x) {y X : d(x, y) }ε = ∈ < ε .

Standard Fuzzy Metric Space
Definition 1.1: A binary operation : [0,1] × [0,1] → [0,1] is a 

continuous t-norm if * satisfies the following conditions [1]:

1- * is associative and commutative.

2- * is continuous.

3- a * 1=a for all a ∈  [0,1].

4- a * b ≤ c * d whenever a ≤ c and b ≤ d where a,b, c,d ∈  [0,1].

Remark 1.2: For any r1 > r2 we can find r3 such that r1* r3 ≥ r2 and 
for any r4 we can find an r5 such that r5* r5 ≥ r4 where r1,r2,r3,r4,r5 
∈(0,1) [2]. 

We introduce the following definition.

Definition 1.3: A triple (X,M,*) is said to be standard fuzzy metric 
space if X is an arbitrary set, is a continuous t- norm and M is a fuzzy 
set * on X2 satisfying the following conditions [1]: 

(FM1) M(x,y) > 0 for all x, y ∈  X 

(FM2) M(x,y)=1 if and only if x=y 

(FM3) M(x,y)=M(y,x) for all x, y ∈  X 

(FM4) M(x,z) ≥ M(x,y) M(y,z) for all x, y and z ∈  X 

(FM5) M(x,y) is a continuous fuzzy set

Example 1.4: Let X= N, and let a * b=a.b for all a, b ∈ [0,1] [1].

x if x y
yDefine M(x,y) =
y if y x
x

 ≤

 ≤

for all x, y N . 

Then (N, M,) is a standard fuzzy metric space.

Example 1.5: Let X= R and let a b=a.b for all a, b ∈  [0,1] [1].

Define 
1M(x, y)

e | x y |
=

−
 for all x, y R∈

Then (R, M,) is a standard fuzzy metric space.

Definition 1.6: Let (X,M) be a standard fuzzy metric space then M 
is continuous if whenever xn→x and yn→y in X then M(xn,yn) →M(x,y) 
that is n n nlim M(x , y ) M(x, y)→∞ =  [1].

Definition 1.7: Let (X,M) be a standard fuzzy metric space .Then 
B(x,r) ={y∈X: M(x,y)>1-r} is an open ball with center x∈X and radius 
r, 0<r<1 [1].

Proposition 1.8: Let B(x,r1) and B(x,r2) be two open balls with 
same center x in a standard fuzzy metric space (X,M,).Then either [1]

B(x,r1) ⊆  B(x,r2) or B(x,r2)⊆  B(x,r1) where r1,r2∈(0,1).

Definition 1.9: A subset A of a standard fuzzy metric space (X,M,) 
is said to be open if given any point a in A there exists r, 0<r<1 such that 
B(a,r) ⊆  A. A subset B is said to be closed if Bc is open [1].
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Definition 1.10: Let (X,M,*) be a standard fuzzy metric space and 
let A ⊂  X then the closure of A is denoted by A A or CL(A) and is 
defined to be the smallest closed set contains A [1].

Definition 1.11: A subset A of a standard fuzzy metric space 
(X,M,*) is said to be dense in X if A = X [1].

Theorem 1.12: Every open ball in a standard fuzzy metric space 
(X,M,*) is an open set [1].

Theorem 1.13: Let (X,M,) is a standard fuzzy metric space. 
Define M {A X : x AΓ = ⊂ ∈  if and only if there exists 0<r<1 such that 
B(x, r) A}⊂  then MΓ  is a topology on X.

Theorem 1.14: Every standard fuzzy metric space is a Hausdorff 
space.

Definition 1.15: A sequence (xn) in a standard fuzzy metric space 
(X,M,*) is said to be converge to a point x in X if for each r ,0<r<1 there 
exists a positive number N such that M(xn,x)>(1-r) , for each n ≥ N .

Theorem 1.16: Let (X,M,) be a standard fuzzy metric space then 
for a sequence (xn) in X converge to x if and only if n nlim M(x , x) 1→∞ =  

Definition 1.17: A sequence (xn) in a standard fuzzy metric space 
(X,M,) is Cauchy if for each r, 0 < r < 1, there exists a positive number 
N such that M(xn,xm) > (1-r), for each m, n ≥ N.

Proposition 1.18: Let (X,d) be an ordinary metric space and let a 

b=a.b for all a,b [0,1]∈  Define d
1M (x, y)

1 d(x, y)
=

+
 then (X,Md,*) is a 

standard fuzzy metric space and it is called the standard fuzzy metric 
induced by the metric d [1].

Proposition 1.19: Let (X,d) be a metric space and let (X,Md,*) be 
the standard fuzzy metric space induced by d. Let (Xn) be a sequence in 
X. Then (Xn) converges to x∈X in (X,d) if and only if (Xn) converges 
to x in (X,Md,*).

Proposition 1.20: Let (X,d) be a metric space and let Md(X,Y)=
1

1 d(x, y)+
 . Then (Xn) is a Cauchy sequence in (X,d) if and only if (Xn) 

is a Cauchy sequence in (X, Md,*) [1].

Definition 1.21: Let (X,M,*) be a standard fuzzy metric space. A 
subset A of X is said to be F-bounded if there exists 0<r<1 such that, 
M(x,y)> 1- r, for all x, y∈A [1].

Proposition 1.22: Let (X,d) be a metric space and let Md(X,Y) 

= 1
1 d(x, y)+

 then a subset A of X is F-bounded if and only if it is 

bounded [1].

Definition 1.23: A standard fuzzy metric space (X,M,*) is complete 
if every Cauchy sequence in X converges to a point in X [1].

Definition 1.24: Let (X,Mx,*) and (Y,MY ,*) be standard fuzzy metric 
spaces and A ⊆  X. A function f:A→Y is said to be continuous at a∈A, 
if for every 0< ε <1, there exist some 0<δ <1, such that MY (f(x),f(a))> 
(1- ε) whenever x∈A and MX (x,a)> (1-δ ). If f is continuous at every 
point of A, then it is said to be continuous on A.

Theorem 1.25: Let (X, MX,*) and (Y,MY ,*) be standard fuzzy metric 
spaces and A⊆X. A function f:A→Y is continuous at a∈A if and only 
if whenever a sequence (Xn) in A converge to a, the sequence (f(Xn)) 
converges to f(a).

Theorem 1.26: A function f:X→Y is continuous on X if and only if 
f-1 (G) is open in X for all open subset G of Y.

Theorem 1.27: A mapping f:X→Y is continuous on X if and only if 
f-1 (F) is closed in X for all closed subset F of Y [1].

Lemma 1.28:  Let A be a subset of a standard fuzzy metric space 
(X,M,*) then a A∈  if and only if there is a sequence (an) in A such that 
an → a [2].

Theorem 1.29: Let A be a subset of a standard fuzzy metric (X,M,) 
then A is dense in X if and only if for every x∈X there is a∈A such that 
M(x,a) 1- ε  for some 0< ε <1 [3].

Definition 1.30: Let (X,Mx,*) and (Y,MY ,*) be any two standard 
fuzzy metric spaces. A mapping f:X→Y which is both one-to-one and 
onto is said to be a homeomorphism if and only if the mapping f 
and f-1 are continuous on X and Y, respectively. Two standard fuzzy 
metric spaces X and Y are said to be homeomorphic if and only if there 
exists a homeomorphism of X onto Y, and in this case, Y is called a 
homeomorphic image of X [4].

Remark 1.31: If X and Y are homeomorphic, the homeomorphism 
puts their points in one-to-one correspondence in such a way that their 
open sets also correspond to one another. For standard fuzzy metric 
space X and Y, let X Y means that X and Y are homeomorphic. It is 
easily verified that the relation is reflexive, symmetric and transitive.

Definition 1.32: A mapping f from a standard fuzzy metric space 
(X, MX,*) into a standard fuzzy metric space (Y,MY ,*) is an F-isometry 
if 

MY(f(x),f(y))=MX(x,y) for all x, y∈X. 

It is obvious that an F-isometry is one-to-one and uniformly 
continuous. X and Y are said to be F-isometric if there exists an 
F-isometry between them that is onto. An F-isometry is necessarily a 
homeomorphism but the converse is not true [4].

Proposition1.33: Let (X,d) be a metric space and let (X,Md ,*) be 
the induced standard fuzzy metric space . Let (Y) be another metric 
space and let (Y,Nd ,*) be the induced standard fuzzy metric space. Let 
f:X→Y be a mapping then f is isometry if and only if f is F-isometry [4].

Theorem 1.34: Let A be a dense subset of a standard fuzzy metric 
space (X,M,*). If every Cauchy sequence of point of A converges in X 
then (X,M,*) is complete.

Proof: Let (Xn) be a Cauchy sequence in X, since A is dense then 
for every Xn∈X

there is an ∈A such that M( Xn,an)>(1- s) for some 0<s<1 by

Theorem 1.29 Then by Remark 1.2 there is (1- ε) ∈(0,1) such that

(1- s) * (1- s)> (1- ε).

Since (Xn) is Cauchy so (an) is Cauchy so an→x by assumption 

Now M( xn,x)≥  M(xn ,x) * M(an ,x)≥  (1- s) * (1- s) > (1- ε) 

Hence xn→x

Definition 1.35: Let (X,M,*) be a standard fuzzy metric space. 
A completion of (X,M,*) is a complete standard fuzzy metric space 
(Y,N,*) such that (X,M,*) is F-isometric to a dense subset of Y.

In [4] it was presented the following example of a standard fuzzy 
metric space 
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That is not completable.

Example 1.36:

Let a b=max {0, a + b -1} for all a, b∈ [0,1] . Now let { Xn: n=3, 4, 

5,… , ∞ } and {yn : n=3,4,…, ∞ } be two sequences of distinct 
points such that A∩ B=φwhere A= {Xn : n ≥ 3} and B={ yn: n ≥ 3}. Put 
X=A B, define M : X x X→ [0,1] as follows :

M(Xn,Xm)=M(yn , ym)=1- [
1

n m∧
 - 

1
n m∨

] 

Where n m∧ =min{n,m} and n m∨ =max{n,m}. 

M(Xn , Ym)=M(ym ,Xn)= 1
n

+ 1
m

It was shown that (X,M,*) is a standard fuzzy metric space and 
(X,M,*) is not completable.

Definition 1.37: A standard fuzzy metric space (X,M,*) is called 
completable if it admits a completion.

Theorem 1.38: Every completable standard fuzzy metric space 
admits a completion.

Standard Fuzzy Quas-Metric Space
Definition 2.1: The triple (X,M,*) is called a standard fuzzy quasi-

metric space where X is a nonempty set, * is a continuous t-norm and 
M is a fuzzy set on X x X satisfying the following conditions:

(1) For all x, y∈X, M(x,y) > 0 

(2) M(x,y)=M(y,x)=1 if and only if x=y 

(3) M(x,y) * M(y,z) ≤  M(x,z) for all x, y, z∈X 

(4) M is a continuous fuzzy set

Propostion 2.2: 

If (X,M, *) is a standard fuzzy quasi-metric space then define 

M-1: XxX→[0,1] by : M-1 (x,y)=M(y,x) for all x, y∈X. Then 

(X,M-1,*) is a standard fuzzy quasi-metric space.

Proof: 

(1) M-1 (x,y)> 0 since M(y,x)> 0 for all x, y∈X 

(2) M-1 (x,y)=1 if and only if M(y,x)=1=M(x,y) ⇔  y=x 

(3) M-1 (x,y)* M-1 (y,z)=M(y,x) * M(z,y) 

= M(z,y) * M(y,x) 

≤M(z,x)=M-1 (x,z)

(4) M-1 is continuous since M is continuous. 

Therefore (X, M-1, *) is a standard fuzzy quasi-metric space

Proposition 2.3: 

Let (X,M,*) be a standard fuzzy quasi-metric space. Define 
G:XxX→[0,1] by: G(x,y)=min{M(x,y), M-1 (x,y)}. Then (X,G,*) is a 
standard fuzzy space. We shall refer to (X,G, *) as the standard fuzzy 
metric induced by (X,M,*).

Proof: 

It is sufficient to show that G(x,y)=G(y,x) for each x, y∈X. 

If G(x,y)=M(x,y) then G(y,x) must equal to M-1 (y,x) but 

M-1 (y,x)=M(x,y) that is G(x,y)=M(x,y). 

Hence G(x,y)=G(y,x) 

Similarly if G(x,y)=M-1 (x,y) then G(x,y)=G(y,x)

Therefore (X,G, *) is a standard fuzzy metric space

Proposition 2.4: 

Let (X,M,*) be a standard fuzzy quasi-metric space. Then mΓ = {A 
⊂  X : a∈A ⇔  ∃  r, 0< r <1, such that B(a,r) ⊂  A} is a topology on X.

Proof: The proof is similar to the proof of Theorem 1.13, hence is 
omitted [5].

Example 2.5: 

Let (X,d) be an ordinary quasi-metric space and let Md be the 

function defined on X X to [0,1] by: Md (x,y)= 1
1 d(x, y)+

Then for each continuous t-norm *, (X, Md,*) is a standard fuzzy 
quasi-metric space,which is called the standard fuzzy induced by the 
quasi-metric d. Furthermore, it is easy to check that (Md)

-1=Md-1 and 
Gd=Mds where d-1 (x,y)=d(y,x), ds (x,y)=max {d(x,y), d-1 (x,y)} Gd 
(x,y)=min{Md (x,y),Md

-1 (x,y)}

Definition 2.6: A standard fuzzy quasi-metric space (X,M,*) is 
called bicomplete if (X,G,*) is a complete standard fuzzy metric space.

Definition 2.7: Let (X,M,*) be a standard fuzzy quasi-metric space. 
A bicompletion of (X,M,*) is a bicomplete standard fuzzy quasi-metric 
space (Y,N,*) such that (X,M,*) is F-isometric to a dense subset of Y.

Lemma 2.8: Let (X,M,*) be a standard fuzzy quasi-metric space. 
Denote by S the collection of all Cauchy sequence in (X,G,*). Define a 
relation on S by (xn) ( nx′ ) if and only if lim G(xn, nx′ )=1, where 
by lim G(xn, nx′ ) we denote the lower limit of the sequence (G(xn, nx′ )) 
i.e G(xn, nx′ )=supkinfn≥ k G(xn, nx′ ) Then



is an equivalence relation 
on S.

Proof:

1- 


is reflexive because G(Xn ,Xn)=1 for all n∈N so (Xn)   (Xn)

2- If (Xn)  (yn), it immediately follows that (yn) (Xn) because

G(Xn , yn)=G(yn, Xn) for all n∈N , So that

Lim G(yn, Xn) Lim=G(Xn , yn)=1

3- is transitive, suppose that (Xn)   ( yn) and (yn) 


 (Zn) . We 

shall prove Lim G(Xn ,Zn)=1. Since (Xn)   (Yn) then G(Xn , yn)=1.

Also (Yn)   (Zn) so Lim G(yn, Xn)=1 for all n∈N.

Now G(Xn ,Zn) ≥  G(Xn ,Yn) *G(yn, Zn)

Hence Lim G(Xn ,Zn)=1

Lemma 2.9: Define Ms ((Xn),(yn))=lim M(Xn,yn) for all (Xn), (yn)∈S 
where : SxS→[0,1]. Then Ms satisfies 1, 3 and 4 of Definition 2.1.

Proof: 

1- Ms ((Xn), (yn)) > 0 because M(Xn, yn) >0 so, lim M(Xn, yn) >0. 

3- Let (Xn), (yn),(Zn)∈S and put α= Ms ((Xn),( yn)),β =Ms ((yn),( Zn)) 



Citation: Kider JR (2015) Bicompletable Standard Fuzzy Quasi-Metric Space. J Appl Computat Math 4: 204. doi:10.4172/2168-9679.1000204

Page 4 of 5

Volume 4 • Issue 1 • 1000204
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

and γ = Ms ((Xn),( Zn)). We shall show that *α β ≤ γ

If=0 or=0 the conclusion is obvious. So we assume that 0 

and β =0. Choose an arbitrary ε∈  (0, min { }
2
αβ ). Then 

s n nM ((X ), (y ))α −ε <  and s n nM ((y ), (z ))β− ε <

Furthermore, there exists such that for all k k Nε≥  

s n n k kM ((x ), (y )) M(x , y )− ε < And s n n k kM ((y ), (z )) M(y , z )− ε <

Then 
s n n s n n

k k k k

k k

( 2 )*( 2 ) [M ((x ), (y )) ]*[M ((y ), (z )) ]
M(x , y )*M(y , z )
M(x , z ) for all K Nε

α − ε β− ε ≤ − ε − ε

≤
≤ ≥

Therefore k N k k

n n

( 2 )*( 2 ) inf M(X ,z )

lim M(X , Z )
ε≥α − ε β− ε ≤

≤ = γ

By continuity of *, it follows that *α β ≤ γ
4- Ms is continuous because M is continuous

Notation 2.10:

We denote the quotient s/


 by X  and [(Xn)] the class of the 
element (Xn) of S.

Lemma 2.11:

If ( )nX Y  and n(y ) (b )n Then s n n s n nM ((X ), (y )) M ((a ), (b ))=

Proof:

s n n s n n s n n s n n

s n n

M ((X ), (y )) M ((x ), (a ))*M ((a ), (b )*M ((b ), (y ))
M ((a ), (b ))

≥

=

Thus s n n s n nM ((X ), (y )) M ((a ), (b ))≥  Now

s n n s n n s n n s n n

s n n

M ((a ), (b )) M ((a ), (b ))*M ((x ), (y )*M ((y ), (b ))
M ((x ), (y ))

≥
=

So, 
s n n s n nM ((a ), (b )) M ((x ), (y ))≥

Therefore s n n s n nM ((x ), (y )) M ((a ), (b ))≥

Definition 2.12:

For each [( xn)], [(yn)] XÎ   define M ([( xn)],[( yn)])=Ms(xn),( 
yn)). Then M is a function from XxX  to [0,1] and it is well defined by 
Lemma 2.11. Also we define T:X→ X such that for each x∈X, T(x) is 
the class of constant sequence x, x, …………… . 

Now, from the above construction we obtain the main result in this 
section.

Theorem 2.13: 

Let (X,M,*) be a standard fuzzy quasi-metric space.

(a) (X,M,*) is a standard fuzzy quasi-metric space 

(b) T(X) is dense in (X,M,*)

(c) (X,M,) is F-isometry to (T(X), M,*) 

(d) (X,M,*) is bicomplete 

Proof (a):

M satisfies conditions 1, 3 and 4 of Definition 2.1 as an immediate 

consequence of Lemma 2.9. Now, let (Xn), (Yn)∈S such that

M([x ],[(y )])n n
 if n n(z ) [(y )]∈  it follows that from Lemma 2.11 

that s n nM ((z ), (y )) 1  The same argument shows that n n(z ) [(x )]∈  

implies that s n nM ((z ), (x )) 1=  We conclude that M([x ],[(y )]) = 1n n
  

if and only if n n[(x )] [(y )]=  Hence (X, M,*)   is a standard fuzzy quasi-
metric space.

Proof (b):

Let (xn)∈S and 0< < 1. Since (xn) is Cauchy sequence in (X,M,*) 
then there is

Nε  such that M k N(x , x ) (1 )
2ε

ε
> −  for all k Nε≥

Thus ([X ],T(x )) M (( ), () )n n s n NM x T x
d d

=

 n k n k Nsup inf M(x , x )
ε>=

 1 1
2
ε

≥ − > − ε

We have shown that T(X) is dense in (X, M,*) 

Proof (c): 

This is almost obvious because for each x, y∈X, we have 
(Tx,Ty) M(x, y)M =

Proof (d):

Let 1
n([x ].[x ]) min{M([(x ),[(x )]),M ([(x ),[(x )])}n n n n nG -=  

Let (X )n
  be a Cauchy sequence in (X,G,*) then there is an 

increasing sequence (nk) in N such that k(X ,X ) 1 2n mG -> -    for all n, m 

≥  nk Since T(X) is dense in (X,G,*)  then for each k N∈  there is 

ky X∈  such that k(X ,T(y )) 1 2nk kG -> -   for all k N∈ We show that (yk) is 
a Cauchy sequence in (X,G, *). To this end, choose 0 1< ε <  Take j N∈  
such that (1-2-j)*(1-2-j)*(1-2-j)>(1- ε ) Then for each k, m j≥  we have

k (k^m)

j j j

(y y ) M(T(y ),T(y ))

M(T(y ),X )* (x ,T(y ))

(1 2 )*(1 2 )*(1 2 )
(1 2 )*(1 2 )*(1 2 ) (1 )

k m k m

k nk nm m
m

M

M

e

- - -

- - -

=

³

³ - - -

³ - - - > -



  



And consequently (yk) is a Cauchy sequence in (X,G,*). Therefore 
y XÎ 



 where [(y )]ky =  Finally, we prove that (X )n
  converges to y  

in (X,G,*)

Indeed, as in part (c) choose 0 1< ε <  Take j N∈
j j j(1 2 )*(1 2 )*(1 2 ) (1 )− − −− − − > − ε

Since (yk) is a Cauchy sequence in (X,G,*)  the proof of part (b) 

shows that there is k j≥  such that j(y,T(y )) 1 2kG -> -



Then for kn n≥  we obtain 

(y, x ) G( ,T(y ))*G(T(y ),X )*G(X ,X )n k k nk nk nG y³     

  

j k k

j j j

(1 2 )*(1 2 )*(1 2 )*
(1 2 )*(1 2 )*(1 2 ) (1 )

− − −

− − −

≥ − − −

≥ − − − > − ε

We conclude that (X, ,*)M   is bicomplete

Definition 2.14: A standard fuzzy quasi-metric space (X,M,*) is 
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called bicompletable if it admits a bicompletion

Theorem 2.15: Let (X,M,*) be a standard fuzzy quasi-metric space 
and let (Y,N,*) be a bicomplete standard fuzzy quasi-metric space. If 
there is an F-isometry mapping f from a dense subset A of X to Y then 
f has a unique extension f *: X→Y.

Proof: We consider any x∈X but X= A so x∈ A  then there is a 
sequence ( Xn) in A such that (Xn) converges to x by Lemma 1.28. Then 
(Xn) is Cauchy. 

Since f is F-isometry (f(Xn)) is Cauchy in Y but Y is complete hence 
there is y∈Y such that (f(Xn)) converges to y. Now we define f* (x)=y.

We now show that this definition is independent of the particular 
choice of the sequence in A converging to x .Suppose that (Xn) in A 
converges to x and (zn) in A converges to x. Then (vm) converges to 
x where (vm)=(x1 ,z1 x2,z2 , ,…). Hence (f(vm)) converges and the two 
subsequence (f(xn)) and (f(zn)) of (f(vm)) must have the same limit. This 
prove is uniquely defined at every x∈X. Clearly (x)=f(x) for every x∈
A so that is an extension of f.

Theorem 2.16: Let (X,M,*) be a standard fuzzy quasi-metric space 
and let (Y,N,*) be a bicomplete standard fuzzy quasi-metric space .If 
f is an F-isometry mapping from a dense subset A of X to Y then the 
unique extension f*:X→Y is an F-isometry.

Proof:

Let x, y∈X then there exists two sequences (xn) and (yn) in A such 
that xn→ x and yn→ y. Choose an arbitrary 0< ε < 1. Now:

M(x, y) M(x, y)ε + > . Furthermore, it follows that (xn) and (yn) 
are Cauchy sequences in A so (f*(xn)) and (f*(yn)) are Cauchy sequences 
in Y. But Y is complete hence (f*(yn)) converges to (y) and (f*(xn)) 
converges to f*(x). Then there is a positive integer N such that

n nM(x, x ) (1 ),M(y , y) (1 )> − ε > − ε

N(f*(xn), f*(x))>(1- ε) and N(f*(yn),(y))>(1- ε) for all n≥N

Thus we have

n n n n

n n

M(x, y) M(x, y)
M(x, x )*M(x , y )*M(y , y)
(1 )* N(f*(x ), f*(y ))*(1 )

ε + >
≥
≥ − ε − ε

But

n n n nN(f*(x ), f*(y )) N(f*(x ), f*(x))* N(f*(x), f*(y))* N(f*(y ), f*(y))
(1 )* N(f*(x), f*(y))*(1 ) for all n N

≥
≥ − ε − ε ≥

Therefore M(x, y) (1 )*[(1 )* N(f*(x), f*(y))*(1 )]*(1 )ε + > − ε − ε − ε − ε

By continuity of * and * it follows that M(x,y)≥  N( (x), (y))

A similar argument shows that N( (x), (y)) ≥  M(x,y) For all x, y∈X

We conclude that f* is an F-isometry from (X,M,*) to (Y,N,*)

Theorem 2.17: Every bicompletable standard fuzzy quasi-metric 
space admits a unique [up to F-isometry] bicompletion.

Proof:Let (Y,M1,*) and (Z,M2,0) be two bicompletions of (X,M,*) 
then we will prove that (Y,M1,*) and (Z,M2,0) are F- isometric. Since (Y, 
M1,*) is a bicompletion of (X,M,*) then there is an F-isometry f from 
(X,M,*) to a dense subset of (Y, M1,*). By Theorem 2.15 and Theorem 
2.16 f admits a unique extension f* onto (Y, M1,*) which is also an 
F-isometry. Similarly is an isometry extension (X,M,*) onto (Z, M2,0).
To prove that and are F-isometric it remains to see that and are onto we 
will show that is onto. Indeed given y∈Y there is a sequence (xn) in X
such that (xn) →y. Since is an F-isometry (xn) is a Cauchy sequence, so it 
converges to some point x∈X. Consequently f* (x)=y. Similarly we can 
prove that is onto. Hence f* and f are F-isometric.

Now (Y, M1,*) is F-isometric to (X,M,*) and (X,M,*) is F-isometric 
to (Z, M2,0). Hence (Y, M1,*) is F-isometric to (Z, M2,0). 
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