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Introduction
Finite mixture (or mixing) distributions refer to composite 

distributions constructed by mixing a number (K) of component 
distributions. Estimation of mixture distributions is a classical statistical 
problem which has been studied for over 100 years. The first account of 
mixture data being analyzed was documented by Pearson [1] in 1894. 
Pearson analyzed data of 1000 crabs, consisting of ratios of forehead to 
body length, from the Bay of Naples by deriving a series of equations 
using Methods of Moments in order to estimate parameters denoting 
crab characteristics in the case where the number of components is 
two (K=2). The word mixture is used because the density function 
of a random observation is a mixing of several (distinct) component 

density functions of the form 
1
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and ηi>0 for all i=1, 2,…, K, and fi(x), i=1,…, K being distinct densities 

with known form but each contains one or more unknown parameters. 
Each observation comes from one of the K (distinct) component 
distributions with unknown membership status. The aim of mixture 
modeling is to estimate the parameters of each component density, fi, 
as well as the mixing parameters, ηi. This problem can also be regarded 
as a missing data problem, as the group membership or the component 
distribution from which an observation is generated is not known. 
We would not only like to be able to estimate the parameters from a 
mixture, but also to gain an understanding of estimation performance 
over a wide range of settings. Mixtures have been used to analyze data 
arising in Hydrology [2], Economics [3], Ecology [1], Bioinformatics 
[4], as well as many other fields [5]. Partial mixtures, for which group 
membership is known for specific subjects in the data set, have also 
been considered [6].

Several estimation methods for normal mixtures have been 
proposed in the literature. Among them, the ordinary maximum 
likelihood estimation method (MLE) appears to be a straightforward 
choice, as the likelihood for the mixture is easy to establish. However, 
directly calculating the MLE via optimizing the likelihood for a mixture 
of normal distributions is difficult and numerical algorithms can lead 
to computational issues such as non-convergence, as noted in Xu 
and Knight [3]. Hosmer [6] developed an estimation method for the 
case K=2, which can be viewed as a special case of the well-known 

Expectation-Maximization (EM) algorithm for computing the MLE in 
missing data problems [7]. He found that the MLE may not perform well 
with regards to bias in the small sample case, especially when the two 
distributions are poorly separated. Leytham [2] corroborated Hosmer’s 
work in regards to the estimation of the means and variances in normal 
mixtures through simulation, but claimed that estimation of quantiles 
for normal mixtures may be approximately unbiased. Moreover, results 
regarding the MLE for normal mixtures are inconsistent in the literature. 
Some researchers report unbiased estimation via the MLE [8], but 
others conclude otherwise [2,3]. Mixtures of normal distributions may 
have a model identifiability issue when K is unknown a priori and the 
likelihood can be unbounded for some special cases [9,10]. Moreover 
the EM algorithm may be converging to a local maximum of the 
likelihood and may then yield biased estimation for model parameters 
of interest. In response to the unbounded likelihood of normal mixtures, 
alternative methods such as the Moment Generating Function (MGF) 
method [11], the Discrete Empirical Characteristic Function method 
(DECF) [12], and the Continuous Empirical Characteristic Function 
method (CECF) [3] have been proposed. They can be viewed as special 
cases of Generalized Methods of Moments (GMM) [10]. Limited 
simulation studies have provided some numerical evidence for the 
merit of these methods compared to MLE [3]. The question is whether 
this set of GMM methods performs better than the MLE in general.

Our study of mixture distributions is motivated by empirical 
analysis with progression marker data in Huntington Disease (HD). 
HD is an autosomal dominant neurodegenerative disease caused by the 
trinucleotide cytosine-adenine-guanine (CAG) expansion in the gene 
of the protein huntingtin. Clinical symptoms of HD include progressive 
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Abstract
Estimating parameters in a mixture of normal distributions dates back to the 19th century when Pearson originally 

considered data of crabs from the Bay of Naples. Since then, many real world applications of mixtures have led to 
various proposed methods for studying similar problems. Among them, maximum likelihood estimation (MLE) and the 
continuous empirical characteristic function (CECF) methods have drawn the most attention. However, the performance 
of these competing estimation methods has not been thoroughly studied in the literature and conclusions have not 
been consistent in published research. In this article, we review this classical problem with a focus on estimation bias. 
An extensive simulation study is conducted to compare the estimation bias between the MLE and CECF methods over 
a wide range of disparity values. We use the overlapping coefficient (OVL) to measure the amount of disparity, and 
provide a practical guideline for estimation quality in mixtures of normal distributions. Application to an ongoing multi-site 
Huntington disease study is illustrated for ascertaining cognitive biomarkers of disease progression.
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motor dysfunction, cognitive decline, and psychiatric disturbance [13]. 
Individuals who have a CAG repeat of length 36 or greater are referred 
to as at-risk of HD, and individuals who are at-risk of HD but have not 
yet received the HD motor diagnosis are described as being prodromal-
HD (prHD). As the disease progresses, prHD individuals exhibit 
impairments noted above, often with daily functioning deterioration 
as a result, and patients with larger CAG repeats often deteriorate at 
much faster rates than those with smaller CAG repeats. Although 
the CAG expansion is vital for determining the at-risk status of an 
individual, it is estimated that fewer than 5% of those at-risk of having a 
CAG expansion length of  36 or greater (i.e., having at least one parent 
diagnosed with HD in their lifetime) are willing to undergo the genetic 
testing to ascertain their at-risk status. It is reported that those who do 
seek testing do so in order to determine how to make future choices 
regarding family lives and careers. Among the risks of a positive gene test 
are suicides, genetic discrimination, and stress or other psychological 
disturbance [14]. As a result, at-risk status information is not always 
known, and in the past, researchers have used proxies for at-risk status. 
For example, Langbehn et al. [15] used the information that at least one 
parent was diagnosed with HD as a proxy for at-risk status. However, 
using such information as a proxy can result in biased estimation and 
invalid inference for understanding disease progression in HD. We 
believe that discovering critical HD progression biomarkers to serve as 
a proxy for the at-risk status of HD for individuals who are unwilling 
to undergo gene testing is important, because these individuals can 
receive assistance in dealing with progression, such as counseling and 
therapy to avoid the negative impacts mentioned above (suicide, genetic 
discrimination, etc.) associated with a positive result from the gene test 
for HD, and also because of the surprisingly low (5%) prevalence of 
at-risk individuals being willing to undergo genetic testing. The task 
is to study the distributions of potential HD progression biomarkers 
for both HD at-risk (prHD) and healthy control cohorts when the 
information of CAG is unknown, either because of stigmas associated 
with a positive gene test, or because the information was too expensive 
for collection.

In this article, we review the existing methods for estimating 
normal mixtures and conduct an overarching numerical experiment 
to examine their estimation performance with focus on comparing 
the bias between the MLE via EM algorithm and CECF method. In 
addition to the numerical experiment, we apply the methods to HD data 
from the PREDICT-HD study. Intuitively, the estimation of a mixture 
distribution should be largely influenced by the disparity between the 
individual component distributions. We use the overlapping coefficient 
(OVL) [16] to define a disparity index for quantifying the difference 
between the two component distributions, and we study the estimation 
performance over a wider range of this disparity index than considered 
by previous authors. We aim to provide a practical guide for the validity 
of the methods in terms of estimation bias in relation to the disparity 
index.

The rest of the paper is organized as follows. Section 2 provides 
an overview of the competing methods proposed in the literature 
and provides a disparity index to quantify the difference between 
two distributions. Section 3 presents an extensive simulation study 
comparing the performance of the MLE via the EM algorithm and 
the CECF method under various settings, along with the index values. 
Section 4 applies this index to PREDICT-HD data to ascertain HD 
cognitive biomarkers as potential proxy variables for HD at-risk status. 
Section 5 gives our concluding remarks and some guidance regarding 
analyzing normal mixtures.

Overview of the Methods for Estimation of a Normal 
Mixture

In this section, we provide an overview of the estimation methods 
mentioned in Section 1, specifically in the case that the data come 
from a mixture of two component normal distributions. Suppose we 
observe a random sample of continuous outcomes Y1, Y2,…,Yn that 
are distributed according to a normal mixture of ( )2

1 1N ,σµ  and 
( )2

1 2N ,σµ . Let R1 and R2 denote the two latent groups, Di=1[Yi ∈ 
R2] the indicator for outcome Yi coming from Group 2 for i=1, 2,…, 
n, and η=P[Yi ∈ R2], the probability that Yi comes from Group 2. In 
the mixture problem, the information of group membership D1, D2,…, 
Dn is unknown and η, the mixing parameter, must also be regarded as 
unknown in the analysis. For the two component normal mixture, the 
probability density function (PDF) for Yi, i=1, 2,…,n is:

fyi (y)=ηf2(y)+(1−η) f1(y) i=1, 2,…,n		   	                (1)

where
2
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1σ  and 2

2σ  bounded below by a small constant ξ > 0.

MLE via the EM algorithm

Although the likelihood for the unknown parameter θ=(η, µ2, µ1, 
2
2σ , 2

1σ ) can be easily established for the observed data with the PDF 
given in (1), the numerical algorithm for computing the MLE is not 
stable, as demonstrated in Xu and Knight [3]. In a mixture setting, we do 
not observe the complete data, (Yi, Di), for each subject, as component 
membership (Di) is missing for all individuals under study. This means 
that mixture problems can be considered missing data problems. Since 
this is a missing data problem, the EM algorithm is a natural alternative 
for computing the MLE. To apply the EM algorithm, the “complete” 
data likelihood is formed as if Di are observed. It turns out the log 
complete likelihood is a linear function of unobserved data Di for i=1, 
2,…,n. Hence, the conditional expectation of each latent observation 
Di, given the observed data and current estimate of unknown 
parameters, needs to be evaluated and then be substituted into the (log) 
complete likelihood for Di. The EM algorithm is particularly effective 
for this situation, because both the E-step and the M-step have explicit 
solutions as given by Leytham [2] and Nityasuddhi and Bohning [8]. 
We briefly present their solutions here. Given a current estimate of 
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choosing an initial value,  (0) ,θ  procedure can be easily implemented 
and forced to stop when the L2-distance of the full vector of parameters 
in adjacent iterations is sufficiently small, say less than 10-6.

The CECF method

Motivated by the estimation method involving minimizing a distance 
between the empirical characteristic function and the population-
based characteristic function originally proposed by Heathcote [17], Xu 
and Knight [3] developed the CECF method. For observed continuous 
outcomes y=(y1, y2,…,yn), they consider minimizing

2( , ) ( , ) ( , ) ( )θ θ
+∞

−∞
= −∫ nc C y r C r G r dry  		                (2)

where ( )n 1
C , exp( ) /

=
=∑n

ij
r iry ny  denotes the empirical characteristic 

function, C (θ, r)=E(exp(irY)) the characteristic function, and G(r) a 
weight function. Specifically, for a normal mixture,

2 2 2 2
2 2 1 1( , ) exp( 2) (1 )exp( 2).θ η µ σ η µ σ= − + − −C r i r r i r r  

Therefore, the choice of G(r)=exp(-br2) makes (2) integrable and 
results in an explicit function of unknown parameter θ and the tuning 
parameter b. Heathcote [17] did not consider the optimal choice of 
b, and instead set it to 1, as was commonly done in the past for this 
type of problem. For a given value b, the minimization problem (2) is 
straightforward. Xu and Knight [3] chose the optimal b by iteratively 
solving for the θ value that minimizes (2) at a given b and updating the 
value b at the value which minimizes the trace (or determinant) of the 
resulting variance matrix for the current estimate of θ. This procedure 
continues until the change in the optimal θ values is sufficiently small. 
They demonstrated, in a limited simulation study, that the CECF method 
is comparable to the standard MLE in terms of estimation efficiency. 
They also showed that when the two component distributions have the 
same mean, the MLE procedure leads to numerical nonconvergence 
but the CECF is still a numerically valid method. In fact, we believe the 
MLE procedure was probably not implemented effectively in Xu and 
Knight [3]. Our numerical experiment showed that the MLE method 
works well for Cases D1 and D2 considered in Xu and Knight [3], if the 
EM algorithm is adopted to compute the MLE.

The DECF method

Similar to the CECF method, the DECF method considers 
minimizing the distance between sample quantities and population 
analogs over a fixed set of grid points, r=(r1, r2..., rm). That is, the 
unknown parameter θ is estimated by minimizing

2

1
( , ) ( , ) ( , )θ θ

=

= −∑
m

n i i
i

e C r C ry,r y 		                (3)

where Cn(y, ri) and C (θ, ri) are the same as defined for the CECF 

method. The performance of the DECF methods depends on the 
choice of grid points r, both the number and location of the nodes, 
ri, i=1,…, m. Work has been done to show that as the grid becomes 
finer and more extended, the DECF becomes more efficient [10] and 
the DECF method is actually a special case of GMM. Multiple authors 
[10,12] have noted that the estimation efficiency of the DECF could 
be increased by rescaling the weight matrix used by GMM (the weight 
matrix is the identity matrix in the presentation above). The CECF 
method is generally preferred over the DECF, as the distance is defined 
over the whole continuum of r values in (−∞, ∞) and hence, it does not 
require specification of the grid points r.

The MGF method

The MGF method developed in Quandt and Ramsey [11] is very 
similar in nature to the DECF method. The only difference is that 
the moment generating function is used to replace the characteristic 
function of the DECF method. That is, the unknown parameter θ is 
estimated by minimizing

2
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and their location must be made to facilitate the use of this method. 
Moreover, the possible non-existence of the moment generating 
function for fat-tailed distributions (i.e., Cauchy) makes the MGF 
method less desirable than the DECF method in practice [12].

A disparity index

For a mixture distribution, estimation quality largely depends on 
the difference between the component distributions. If the distributions 
have a large overlap it will be difficult to identify the group membership 
of observations and to estimate each component’s parameters. 
Therefore, it is highly desirable to define an index which measures the 
difference between the two latent distributions in order to develop a 
guideline regarding estimation quality for a mixture distribution.

For normal mixtures, Hosmer [6] defined an index,

2 1

2 1min( , )
µ µ
σ σ
−

=H

to measure the separation between the two normal distributions. This 
measure, however, cannot capture divergence of the two latent normal 
distributions due to a difference in variance alone. The simulation study 
conducted in Hosmer [6] only considered the performance of MLE for 
the case of µ1 ≠ µ2. Whenever µ1=µ2, H ≡ 0 regardless of the variances. 
For the case of σ2>σ1, with σ2 increasing, it will be shown via simulation 
that estimation quality improves, eventually resulting in negligible 
bias. However, the value of H will not change in this situation, thus, 
H does not properly index the observed improvement in estimation 
performance. As a result of these observations, the proper term for 
describing the difference between two normal distributions that make 
up the mixture distribution is “disparity”. The disparity between two 
distributions not only accounts for mean separation, but also for 
differences in variability. One measure that considers both the means 
and the variances is Nityasuddhi’s D [8], which is defined as,
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parameters are given in Table 1 and they characterize the amount of 
disparity due to mean and variance differences in various scenarios. 
Figure 2 provides a visual display of the two component distributions 
for the cases given in Table 1 with the shading depicting distribution 
overlap. It is worth noting that our study covers a much broader range 
of disparity values than any other studies conducted in the literature 
[3,6,8].

For each case listed in Table 1, we conducted a Monte Carlo 
simulation study with 1000 trials. The estimation bias and Monte Carlo 
Standard Deviation (MCSD) were calculated based on the results from 
the 1000 trials and reported in Tables 2-4. Because the estimation bias 

 

where 1 2( ) 2µ µ µ= +  and 2 2 2
1 2( ) 2σ σ σ= + . However, this index can 

yield similar values for two opposing cases in which estimation quality 
will be very different. For instance, similar D values may result due to 
a difference in means, while the variances are the same, or due to a 
difference in variances, while the means are the same. That is to say, 
the same D value may be observed when only the variances differ, or 
when only the means differ. Our simulation shows that much smaller 
differences in means are necessary for estimation to have negligible 
bias, while differences in variances must be larger for estimation to have 
negligible bias. Thus, two different underlying parameter values may 
yield the same Nityasuddhi’s D value, even if estimation performance 
varies substantially in both cases.

Ideally, a good disparity index should always have a large value 
when estimation quality is good, and a small value when estimation 
is bad. Intuitively, the shared (or overlapping) area under the two 
normal distributions is key to determining the estimation quality, as 
the observations from this area obscure their group membership.

Distributions with little overlap tend to be easily separated and 
result in parameter estimation with small bias. However, for mixtures 
where the component distributions have large overlap, severe bias 
might result. Inman and Bradley [16] have studied the OVL for the case 
of normal distributions and derived an explicit formula to calculate its 
value,

1 2
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OVL  (5)

In (5), Φ denotes the cumulative distribution function of the 
standard normal distribution, τ1 and τ2 are given by

and 

2
2 2 2 2 2 1/22
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2 2 2
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σ σ
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−
 

We propose the use of DI=1−OVL as a disparity index. Note that 
DI satisfies our requirements specified in the above paragraph. Namely, 
large values of DI (large disparity) reflect cases where estimation 
quality is good, and small values of DI (small disparity) reflect cases 
where estimation quality is poor. This index does not suffer from the 
sub-optimal properties of the indices mentioned above, as it allows for 
variances alone to contribute to the disparity between the two normal 
distributions. Two examples of normal mixture distributions, one with 
large disparity (DI=0.8) and one with small disparity (DI=0.1), are 
shown in Figure 1.

Simulation Study
We conduct a comprehensive simulation study to examine the 

estimation performance of the methods discussed above with focus 
on the estimation bias. As the CECF, DECF, and MGF methods are 
very similar in nature and the CECF has the merit of not requiring the 
identification of the optimal number and locations of the grid points, 
we only include the CECF in the study and compare it to the MLE 
(via the EM algorithm). DI is used to quantify the amount of disparity 
between the two component distributions. For simulations, the model 

OVL = 0.9 OVL = 0.2

Figure 1: OVL Example Plots-the shaded portion depicts the overlap: the left 
panel corresponds to a small disparity of DI=0.1; the right panel to a large 
disparity of DI=0.8.

Case A1
DI = 0.1

Case A2
DI = 0.3

Case A3
DI = 0.55

Case A4
DI = 0.8

Case B1
DI = 0.1

Case B2
DI = 0.3

Case B3
DI = 0.55

Case B4
DI = 0.8

Case C1
DI = 0.1

Case C2
DI = 0.3

Case C3
DI = 0.55

Case C4
DI = 0.8

Figure 2: Overlaps of the two distributions under the simulation settings-the 
graphs are not on the same numerical scale.

Case DI η μ2 μ1
 

2
2σ

2
1σ

A1 0.1 0.5 1.25 1 1 1
A2 0.3 0.5 1.77 1 1 1
A3 0.55 0.5 2.51 1 1 1
A4 0.8 0.5 3.56 1 1 1
B1 0.1 0.5 1 1 1.5 1
B2 0.3 0.5 1 1 3.6 1
B3 0.55 0.5 1 1 13.2 1
B4 0.8 0.5 1 1 101 1
C1 0.1 0.5 1.1 1 1.48 1
C2 0.3 0.5 1.5 1 3.22 1
C3 0.55 0.5 2.2 1 11.5 1
C4 0.8 0.5 6.55 1 18.0 1

Table 1: Simulation Settings-the model parameters used in the simulation study.
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2 2 2 2 2 1 22
1 2 2 1 1 2 1 2 2 1 2

1
1 2 2

2 1

[( ) ( ) log( )]σµ σ µ σ σ σ µ µ σ σ
στ

σ σ

− − − + −
=

− 



Citation: Lourens S, Zhang Y, Long JD, Paulsen JS (2013) Bias in Estimation of a Mixture of Normal Distributions. J Biomet Biostat 4: 179. 
doi:10.4172/2155-6180.1000179

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 5 of 8

Volume 4 • Issue 5 • 1000179

and standard deviation for the variance parameters are very sensitive 
to the actual values, relative bias and relative MCSD for the variance 

parameters are reported in the tables. Relative bias is defined as the bias 
divided by the value of the parameter being estimated. Relative MCSD 

Bias (MCSD)
MLE method CECF method

Case n η μ2 μ1
 

2
2σ

2
1σ

η μ2 μ1
 

2
2σ

2
1σ

A1 100 0.013  0.521  -0.519  -0.374  -0.383  -0.031  0.461  -0.363  -0.398  -0.352
(0.299)  (0.718)  (0.664)  (0.424)  (0.443)  (0.327)  (0.636)  (0.570)  (0.586)  (0.562)

DI=0.1 200 0.016  0.394  -0.436  -0.275  -0.301  -0.008  0.434  -0.312  -0.338  -0.357
(0.283)  (0.644)  (0.614)  (0.414)  (0.412)  (0.341)  (0.558)  (0.510)  (0.549)  (0.510)

500 0.060  0.254  -0.441  -0.143  -0.266  -0.007  0.325  -0.313  -0.321  -0.309
(0.268)  (0.508)  (0.590)  (0.396)  (0.393)  (0.357)  (0.538)  (0.518)  (0.493)  (0.583)

A2 100 0.017  0.320  -0.343  -0.321  -0.327  -0.010  0.186  -0.183  -0.336  -0.301
(0.359)  (0.759)  (0.699)  (0.476)  (0.493)  (0.336)  (0.660)  (0.668)  (0.628)  (0.988)

DI=0.3 200 0.032  0.228  -0.258  -0.212  -0.221  0.002  0.117  -0.134  -0.285  -0.261
(0.301)  (0.727)  (0.644)  (0.443)  (0.524)  (0.349)  (0.621)  (0.594)  (0.587)  (0.698)

500 0.055  0.131  -0.236  -0.106  -0.173  0.001  0.078  -0.091  -0.257  -0.255
(0.280)  (0.701)  (0.608)  (0.413)  (0.448)  (0.367)  (0.540)  (0.569)  (0.519)  (0.510)

A3 100 -0.007  0.196  -0.117  -0.202  -0.156  -0.009  0.063  -0.040  -0.228  -0.169
(0.293)  (0.776)  (0.689)  (0.508)  (0.538)  (0.316)  (0.698)  (0.679)  (0.635)  (0.709)

DI=0.55 200 -0.012  0.171  -0.079  -0.127  -0.077  0.005  0.013  -0.062  -0.146  -0.136
(0.290)  (0.740)  (0.638)  (0.479)  (0.490)  (0.325)  (0.645)  (0.646)  (0.629)  (0.599)

500 -0.025  0.131  -0.026  -0.088  -0.023  0.008  0.003  -0.035  -0.098  -0.100
(0.278)  (0.605)  (0.557)  (0.407)  (0.414)  (0.301)  (0.552)  (0.560)  (0.493)  (0.474)

A4 100 -0.005  0.021  -0.007  -0.040  -0.024  -0.007  -0.014  0.038  -0.005  0.041
(0.177)  (0.473)  (0.485)  (0.492)  (0.501)  (0.210)  (0.509)  (0.518)  (0.680)  (0.708)

DI=0.8 200 -0.005  0.021  0.005  -0.013  0.009  -0.011  0.014  0.028  -0.013  0.046
(0.130)  (0.342)  (0.345)  (0.361)  (0.373)  (0.151)  (0.356)  (0.376)  (0.459)  (0.502)

500 -0.001  0.004  0.003  -0.002  0.011  -0.007  0.011  0.019  -0.010  0.040
(0.082)  (0.206)  (0.211)  (0.219)  (0.230)  (0.095)  (0.224)  (0.240)  (0.267)  (0.301)

Table 2: Comparison of estimation bias and standard deviation between MLE and CECF-Case A.

Bias (MCSD)
MLE method CECF method

Case n η μ2 μ1
 

2
2σ

2
1σ

η μ2 μ1
 

2
2σ

2
1σ

B1 100 -0.038 0.005  -0.038  -0.287  -0.326  0.022  0.005  -0.471  0.055  -0.493
(0.286)  (1.283)  (0.590)  (0.463)  (0.403)  (0.341)  (1.073)  (0.590)  (0.678)  (0.424)

DI=0.1 200 -0.011  -0.045  -0.035  -0.211  -0.288  0.061  0.030  -0.497  0.076  -0.488
(0.290)  (1.199)  (0.567)  (0.459)  (0.379)  (0.356)  (0.973)  (0.569)  (0.527)  (0.433)

500 -0.028  -0.070  -0.082  -0.132  -0.164  0.071  0.007  -0.490  0.097  -0.431
(0.279)  (1.143)  (0.444)  (0.513)  (0.338)  (0.373)  (0.899)  (0.523)  (0.497)  (0.452)

B2 100 -0.035  -0.072  -0.001*  -0.135  -0.081  0.032  -0.009  0.017  -0.098  -0.283
(0.276)  (1.595)  (0.414)  (0.514)  (0.589)  (0.315)  (1.287)  (0.467)  (0.686)  (0.634)

DI=0.3 200 -0.030  0.043  -0.004  -0.010  -0.024  0.062  0.019  -0.002  -0.016  -0.251
(0.244)  (1.218)  (0.267)  (0.436)  (0.521)  (0.304)  (0.973)  (0.348)  (0.652)  (0.618)

500 -0.001  -0.012  0.001*  0.033  -0.022  0.062  -0.010  0.001  0.011  -0.176
(0.185)  (0.414)  (0.147)  (0.266)  (0.370)  (0.255)  (0.515)  (0.228)  (0.436)  (0.481)

B3 100 -0.007  -0.002  0.013  -0.001*  0.024  0.010  -0.017  0.019  -0.010  -0.066
(0.137)  (0.865)  (0.227)  (0.313)  (0.619)  (0.146)  (0.922)  (0.229)  (0.382)  (0.560)

DI=0.55 200 -0.001  0.013  0.004  0.003  0.006  0.013  0.010  0.005  -0.012  -0.050
(0.089)  (0.385)  (0.155)  (0.203)  (0.359)  (0.097)  (0.424)  (0.165)  (0.243)  (0.390)

500 0.001  0.009  0.004  -0.007  0.004  0.006  0.003  0.004  -0.014  -0.020
(0.055)  (0.243)  (0.095)  (0.123)  (0.195)  (0.060)  (0.269)  (0.099)  (0.141)  (0.225)

B4 100 -0.003  0.015  0.008  -0.024  -0.006  0.003  0.053  0.008  -0.050  -0.021
(0.067)  (1.458)  (0.172)  (0.215)  (0.323)  (0.075)  (1.856)  (0.182)  (0.305)  (0.349)

DI=0.8 200 0.001*  0.042  0.001*  -0.011  -0.006  0.002  0.048  0.001*  -0.024  -0.008
(0.047)  (0.997)  (0.123)  (0.160)  (0.227)  (0.049)  (1.238)  (0.131)  (0.215)  (0.249)

500 0.001*  0.028  0.002  -0.011  0.003  0.001  0.019  0.003  -0.016  0.003
(0.031)  (0.623)  (0.080)  (0.099)  (0.136)  (0.032)  (0.775)  (0.086)  (0.134)  (0.152)

Table 3: Comparison of estimation bias and standard deviation between MLE and CECF (0.001* denotes values less than 0.001)-Case B.
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for the MLE if sample size is greater than or equal to 200. But the 
estimation bias for the smaller variance is still relatively large for the 
CECF. When DI ≥ 0.55, the estimation bias is virtually negligible for all 
the model parameters under both methods, but the MLE is apparently 
preferred over the CECF as it has smaller MCSD. The estimation bias of 
the mixing parameter η is relatively small for the MLE, even in the case 
of small disparity. As the disparity increases, the MLE works better than 
the CECF, in terms of having smaller MCSD. However, estimation of 
the mixing parameter is highly variable (under both methods) in cases 
with small disparity (DI ≤ 0.3).

Table 4 summarizes the simulation results for Case C with sample 
sizes 100, 200 and 500, respectively. When both means and variances 
are allowed to vary between the two component distributions, the 
simulation results are similar to Case A. That is, in the small sample 
or small disparity cases (n=100, 200 or DI=0.1, 0.3), the CECF tends to 
have smaller estimation bias for the means but larger bias for variances. 
When the amount of disparity is large (DI ≥ 0.55), the MLE is clearly 
the winner between the two competing methods.

As a concluding remark for the simulation study, the MLE may be 
generally preferred over the CECF when a variance difference is the 
source of the disparity between the two distributions or when DI is 
large, say greater than or equal to 0.55. However, use of the MLE in 
cases where DI is less than 0.55 requires caution, particularly when the 
disparity between the distributions is purely due to a separation of the 
means. Though the CECF is an alternative method for estimating the 
means with less bias than the MLE when separation of the means is 
the source of small disparity between the distributions, it still results in 
biased estimation for the means when DI is small. In general, the MLE 
is a better method for estimating the variances than the CECF, as it 
results in less estimation bias as well as smaller standard error.

is defined in an analogous manner. For example, if the bias and MCSD 
are 0.05 and 1.50, respectively, and the parameter value is 2, then the 
relative bias is 0.025 and relative MCSD is 0.75. It is worth noting that 
for approximately 5% of the trials for cases with the least disparity, the 
EM algorithm for the MLE did not lead to numerical convergence, 
while the CECF method did not have any numerical problems. When 
this occurred, data were regenerated and the simulation continued until 
1000 trials were completed. This convergence issue was not observed 
in cases with at least moderate disparity between the two component 
distributions.

Table 2 summarizes the simulation results for Case A with sample 
sizes 100, 200 and 500. It appears that there is substantial bias in 
estimating both mean and variance parameters using the MLE when 
DI is less than or equal to 0.55. When DI ≤ 0.55 CECF has smaller bias 
in estimating the means but larger bias in estimating the variances 
compared to the MLE. Particularly, for the case of DI=0.55, the 
estimation of µ2 for MLE and the estimation of 2

1σ  for CECF are still 
noticeably biased even when n=500. When there is a large amount of 
disparity between the two component distributions, for instance when 
DI=0.8 in our study, both MLE and CECF work very well. However, 
the MLE method outperforms the CECF method with regards to both 
estimation bias and standard error. This is not surprising, as the MLE is 
the efficient estimation method when it works.

Table 3 summarizes the simulation results for Case B with 
sample sizes 100, 200 and 500, respectively. In this scenario, the bias 
in estimation of the means is small and for the most part negligible 
for all cases for the MLE, but it is not the case for the CECF when 
DI=0.1. Clearly when DI=0.1, the MLE outperforms the CECF, but 
both methods are too biased in estimating the variances to be useful 
in practice. When DI=0.3, the estimation bias appears to be acceptable 

Bias (MCSD)
MLE method CECF method

Case n η μ2 μ1
 

2
2σ

2
1σ

η μ2 μ1
 

2
2σ

2
1σ

C1 100 -0.038  0.136  -0.109  -0.309  -0.341  0.019  0.033  0.043  -0.280 -0.497
(0.293)  (1.310)  (0.610)  (0.470)  (0.396)  (0.339)  (1.089)  (0.604)  (0.671)  (0.415)

DI=0.1 200 -0.014  0.092  -0.092  -0.207  -0.280  0.070  0.028  -0.001*  -0.247  -0.492
(0.291)  (1.169)  (0.530)  (0.470)  (0.382)  (0.347)  (0.944)  (0.576)  (0.517)  (0.420)

500 -0.016  0.100  -0.124  -0.121  -0.171  0.064  0.003  0.017  -0.242  -0.415
(0.276)  (1.107)  (0.448)  (0.500)  (0.338)  (0.372)  (0.923)  (0.513)  (0.468)  (0.486)

C2 100 -0.061  0.453  -0.049  -0.197  -0.076  0.015  0.287  0.007  -0.149  -0.262
(0.280)  (1.509)  (0.412)  (0.464)  (0.565)  (0.322)  (1.311)  (0.457)  (0.681)  (0.626)

DI=0.3 200 -0.045  0.413  -0.022  -0.068  -0.033  0.040  0.306  -0.033  -0.117  -0.230
(0.265)  (1.230)  (0.277)  (0.438)  (0.522)  (0.305)  (0.981)  (0.349)  (0.523)  (0.585)

500 -0.032  0.204  -0.008  0.004  0.003  0.032  0.186  -0.028  -0.040  -0.141
(0.209)  (0.674)  (0.176)  (0.291)  (0.391)  (0.262)  (0.711)  (0.229)  (0.401)  (0.469)

C3 100 -0.010  0.158  0.003  -0.030  0.027  -0.001*  0.251  -0.006  -0.057  -0.013
(0.148)  (0.459)  (0.237)  (0.292)  (0.625)  (0.167)  (1.115)  (0.233)  (0.409)  (0.606)

DI=0.55 200 -0.002  0.064  -0.011  -0.004  0.004  0.003  0.088  -0.010  -0.014  -0.005
(0.095)  (0.458)  (0.157)  (0.198)  (0.373)  (0.116)  (0.607)  (0.167)  (0.278)  (0.429)

500 -0.001*  0.022  -0.001*  -0.008  0.004  -0.003  0.033  0.001  0.004  0.018
(0.058)  (0.253)  (0.099)  (0.122)  (0.210)  (0.062)  (0.308)  (0.103)  (0.163)  (0.253)

C4 100 -0.023  0.308  0.027  -0.100  0.055  -0.022  0.203  0.025  -0.158  0.040
(0.079)  (0.950)  (0.183)  (0.249)  (0.400)  (0.097)  (1.179)  (0.194)  (0.343)  (0.433)

DI=0.8 200 -0.011  0.164  0.007  -0.044  0.028  -0.012  0.124  0.010  -0.078  0.020
(0.056)  (0.648)  (0.124)  (0.179)  (0.257)  (0.067)  (0.838)  (0.135)  (0.272)  (0.294)

500 -0.006  0.079  0.005  -0.026  0.022  -0.008  0.092  0.006  -0.054  0.026
(0.034)  (0.386)  (0.080)  (0.107)  (0.148)  (0.043)  (0.557)  (0.089)  (0.179)  (0.180)

Table 4: Comparison of estimation bias and standard deviation between MLE and CECF (0.001* denotes values less than 0.001)-Case C.
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Application to the PREDICT-HD Data
The PREDICT-HD study is an ongoing observational study of 

prHD participants at 32 sites in the United States, Canada, Australia, 
Germany, Spain and the United Kingdom [18]. Comprehensive 
longitudinal data have been collected, including more than 80 variables 
from over 1300 research participants who underwent genetic testing for 
the HD mutation. As mentioned in the introduction, if an individual’s 
CAG repeat length is greater than or equal to 36, this individual is 
considered at-risk for HD and is referred to as prodromal-HD (prHD) 
if no HD diagnosis is received.

We apply the DI to the PREDICT-HD data with the aim of 
identifying possible sensitive cognitive biomarkers that may distinguish 
between prHD (case) individuals and healthy controls (control), 
particularly when CAG repeat length is masked or unknown. If CAG 
repeat length is not observed for individuals under study, then the 
observed data are a mixture from the control group and the case group. 
The size of the study sample and the longitudinal nature of the study 
may facilitate opportunities to discover disease biomarkers whose 
progress may indicate an individual’s at-risk status without knowledge 
of their CAG repeat length. We focus on the following five cognitive 
measures: Symbol Digit Modalities Test (SDMT), Stroop Color Test 
(STROOP-C), Stroop Word Test (STROOP-W), Trail Making Test A 
(TRAILS-A), and Trail Making Test B (TRAILS-B).

SDMT [19] involves a simple substitution task to pair specific 
numbers with given geometric figures within a fixed amount of time. 
Individuals with cerebral dysfunction usually perform poorly on the 
SDMT, which is indicated by a smaller value of this measure. The task 
of the Stroop tests [20] is to look at pages of colored words, reading 
words or naming colors as quickly as possible within a fixed amount of 
time. A smaller value of these measures indexes the individual’s speed 
of processing. The Trails A test [21], a measure of speeded attention, 
requires individuals to draw the lines connecting the numbers 1,2,3,4 
etc. in order until reaching the end. The Trails B test [21] asks individuals 
to draw the lines connecting the numbers 1,2,3,4 etc. and the letters 
A,B,C,D etc. in alternating order. The total time (in seconds) needed to 
complete each of these tasks is recorded. A larger value is indicative of 
cognitive slowing and difficulty shifting cognitive sets.

The PREDICT-HD study has collected these cognitive measures 
longitudinally for both prHD individuals and healthy controls. Having 
at-risk information allows us to estimate the group characteristics (µ2, 
µ1, etc.) and their corresponding DI values empirically. This gives us a 
better idea of the amount of disparity between the two distributions 
that is indicative of estimation quality. For this analysis, denote R1 and 
R2 the two latent groups with R1 representing the control group and 
R2 the prHD group. The parameters of interest are: θ=(η, µ1, µ2, 

2
1σ , 

2
2σ ), and parameters with subscript 2 correspond to the prHD group, 

while those with subscript 1 correspond to the control group. Since 
PREDICT-HD records CAG length, we can estimate the means and 
variances using their sample estimates and substitute them into (5) to 
obtain an estimate of OVL, OVL* and calculate the DI by DI*=1−OVL*. 
The results are summarized in Table 5.

Table 5 presents the characteristics of the two cohorts and their 
corresponding DI* for the five cognitive measures mentioned above at 
two age windows: 40-42 and 50-52. We considered the 40-42 age window 
and 50-52 age window so that we could determine whether the ability 
to estimate parameters for prHD and control individuals changed over 
time (average age of HD onset is approximately 40). We anticipated 
that there would be more disparity between the prHD and control 

groups by age 50-52, as prHD individuals will have had more time to 
progress, which would be reflected by higher DI values and thus, better 
estimation performance. Based on the simulation results presented 
above, it appears that only the Trails-B measure in the age window 50-
52 may have a chance of providing a reasonable estimate of the model 
parameters when the genetic information of CAG repeat length is 
unknown or not considered, because the disparity for Trails-B in the 
50-52 window is the largest (DI*=0.465). To estimate all parameters, 
including means/variances/the mixing proportion, we then apply both 
the MLE (via the EM algorithm) and the CECF methods to the Trails-B 
data, as if CAG repeat length were not observed, and compare their 
performance in light of our simulation results presented above. These 
estimates are summarized in Table 6. This real data example resembles 
the simulation scenario C3 with sample size around 100 where the 
estimation is less biased for the CECF method. In this setting, we can 
only compare our results with the empirical estimates given in Table 
5, since we do not know the true parameter values. The empirical 
estimates serve as a reference for comparison as they are asymptotically 
efficient. Indeed, the CECF method yields closer estimates than the 
MLE method when inspecting the values given at the bottom row of 
Table 5. Nevertheless, the resulting estimates for the mixing parameter 
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Figure 3: The distributions of Trails-B scores.

Cognitive Variables Sample Sizes 
(n1, n2)

 
1µ̂ 2µ̂ 1σ̂ 2σ̂ DI*

At 40-42 Age Window:
SDMT  (31,231)  56.48  52.03  9.59  12.45  0.192
STROOP-C  (31,229)  85.77  78.54  9.19  14.84  0.308
STROOP-W  (31,230)  104.29  98.88  15.42  19.05  0.153
TRAILS-A  (20,153)  20.45  26.29  6.39  10.92  0.343
TRAILS-B  (20,151)  48.05  66.81  19.33  36.06  0.370

At 50-52 Age Window:
SDMT  (65,183)  54.54  48.11  7.76  11.88  0.308
STROOP-C  (65,183)  82.11  71.90  10.96  13.02  0.336
STROOP-W  (65,183)  105.63  90.88  16.16  16.00  0.354
TRAILS-A  (42,103)  25.10  29.96  6.20  11.56  0.344
TRAILS-B  (41,104)  54.34  78.70  18.39  43.38  0.465

Table 5: Characteristics of the Five Cognitive Measures in the PREDICT-HD 
Study.

Methods

 
η̂  

1µ̂ 2µ̂ 2σ̂ 1σ̂

MLE 0.26 55.87 118.05 13.83 51.14
CECF 0.31 53.96 96.95 14.15 43.37

Table 6: Estimates of Model Parameters in TRAILS-B at Age Window 50-52 for the 
PREDICT-HD data.
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This is mainly due to the fact that the estimation standard error is quite 

the two distributions, the methods may yield reasonable estimates for 
the mean and variance parameters but could have difficulty correctly 
estimating the mixing parameter. Both methods largely overestimate µ2, 
and slightly underestimate σ1. The histograms and density estimations 
for TRAILS-B data at the two age windows are plotted in Figure 3. It 
appears that the assumption of normal mixture is not unreasonable 
when ignoring some outliers in both groups and the two underlying 
distributions are not very separated. The poor estimation result given 
in Table 6 is anticipated based on the simulation results, as DI that 
is associated with the results shown in Table 6 is only 0.465 and the 
sample size is 145.

Final Remarks
Estimation of normal mixtures is a classical problem that has been 

widely researched. While the MLE and the CECF appear to be the most 
popular methods, their estimation properties have not been extensively 
studied. This is probably due to the well-known fact that the normal 
mixture can be an ill-posed model when the disparity between the 
component distributions is small [1,21]. In this article, we utilize the 
OVL to quantify the disparity between the two distributions and then 
empirically examine when the methods can lead to reasonable estimates 
of the model parameters. The results provide an instructive guideline 
regarding the use of these methods. Generally speaking, when there is 
enough disparity, the MLE is still a more favorable method in practice, 
particularly when a difference in variances is the major source of the 
disparity between the two component distributions. When a difference 
in means is the major source of the disparity, the MLE may not lead to 
estimation with negligible bias if DI is small, and in this case, the CECF 
may be a reasonable alternative.

Our simulation study implies that neither the MLE nor the CECF 
method will yield a satisfactory outcome with regards to accurately 
estimating parameters for prHD individuals and healthy controls based 
on cross- sectional cognitive measures in PREDICT-HD data, as the 
DI values for these measures are too small at the times considered. 
The amount of overlap present led to the CECF and MLE largely 
overestimating the mean for prHD individuals and underestimating 
the amount of variability in the control group, relative to the empirical 
estimates when the at-risk status is known. Since HD is a progressive 
disease, investigating the disparity between longitudinal trajectories of 
these cognitive measures between the prHD and healthy control may 
provide a better indication on how well the model parameters can be 
estimated. A future research direction is to develop an index which 
measures the disparity between the two groups based on longitudinal 
data. Latent class modeling of generalized linear mixed-effects models 
could be used for the groups’ longitudinal trajectories, in order to 
identify sensitive cognitive markers for indirectly ascertaining at-risk 
status in similar cohorts.

Acknowledgement

This research was supported by grants NS040068 and 5R01NS054893 from 
the National Institutes for Health, National Institute of Neurological Disorders and 
Stroke, and a grant A3917 from CHDI Foundation, Inc. We would also like to thank 
an anonymous editor whose insightful comments help improve the presentation of 
this manuscript from an earlier version.

References

1. Karl Pearson (1894) Contributions to the mathematical theory of evolution.
Philos Trans Royal Soc London 185: 71-110. 

2. Leytham KM (1984) Maximum likelihood estimates for the parameters of
mixture distributions. Water Resour Res 20: 896-902 

3. Xu D, Knight J (2011) Continuous empirical characteristic function estimation of 
mixtures of normal parameters. Econ Rev 30: 25-50. 

4. Dai H, Charnigo R (2010) Contaminated normal modeling with application to
microarray data analysis. Can J Stat 38: 315-332. 

5.	

6. David W. Hosmer Jr (1973) A comparison of iterative maximum likelihood
estimates of the parameters of a mixture of two normal distributions under three 
different types of sample. Biometrics 29: 761-770. 

7. Dempster AP, Laird NM (1977) Maximum likelihood from incomplete data via
the em algorithm. J Royal Stat Soc 39: 1-38.

8. Nityasuddhi D, Bohning D (2003) Asymptotic properties of the em algorithm
estimate for normal mixture models with component specific variances. Comput 
Stat Data Anal 41: 591-601.

9. Chen J, Li P (2009) Hypothesis test for normal mixture models: The em
approach. The Annals of Statistics 37: 2523-2542. 

10.	Yu J (2004) Empirical characteristic function estimation and its applications.
Econ Rev 23: 93-123. 

11.	Quandt RE, Ramsey JB (1978) Estimating mixtures of normal distributions and 
switching regressions. J Am Stat Association 73: 730-738. 

12.	Tran K (1998) Estimating mixtures of normal distributions via empirical
characteristic function. Econ Rev 17: 167-183. 

13.	A novel gene containing a trinucleotide repeat that is expanded and unstable on 
huntington’s disease chromosomes. Cell 72: 971-983. 

14.	Walker FO (2007) Huntington's disease. Lancet 369: 218-228.

15.	Langbehn DR, Paulsen JS; Huntington Study Group (2007) Predictors of
diagnosis in Huntington disease. Neurology 68: 1710-1717.

16.	Inman HF, Bradley EL (1989) The overlapping coefficient as a measure of 
agreement between probability distributions and point estimation of the overlap 
of two normal densities. Communications in Statistics - Theory and Methods
18: 3851-3874. 

17.	Heathcote CR (1977) The integrated squared error estimation of parameters.
Biometrika 64: 255-264. 

18.	Paulsen JS (2010) Early detection of huntington’s disease. Future Neurology
5: 85-104. 

19.	

20.	Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp
Psychol 18: 643-662. 

21.	Reitan RM (1958) Validity of the trail making test as an indicator of organic brain 
damage. Perceptual and Motor Skills 8: 271-276.

large for   and implies that when there is quite a bit of overlap between 

Everitt B, Hand DJ (1981) Finite Mixture Distributions. Chapman and Hall, USA.

Smith A (1982) Symbol digit modalities test (sdmt) manual (revised). 
Psychological Services, Los Angeles, USA.

Western 

are far from the sample proportion 104ˆ 0.717
145

η = =  for both methods. 

η̂

http://www.jstor.org/discover/10.2307/90649?uid=3737496&uid=2129&uid=2&uid=70&uid=4&sid=21102967823267
http://onlinelibrary.wiley.com/doi/10.1029/WR020i007p00896/abstract
http://www.tandfonline.com/doi/abs/10.1080/07474938.2011.520565#preview
http://onlinelibrary.wiley.com/doi/10.1002/cjs.10053/abstract
http://www.jstor.org/discover/10.2307/2529141?uid=3737496&uid=2129&uid=2&uid=70&uid=4&sid=21102967823267
http://web.mit.edu/6.435/www/Dempster77.pdf
http://dl.acm.org/citation.cfm?id=639261
http://arxiv.org/abs/0908.3428
http://www.tandfonline.com/doi/abs/10.1081/ETC-120039605?journalCode=lecr20#preview
http://www.jstor.org/discover/10.2307/2286266?uid=3737496&uid=2129&uid=2&uid=70&uid=4&sid=21102967823267
http://www.tandfonline.com/doi/abs/10.1080/07474939808800410#preview
http://www.ncbi.nlm.nih.gov/pubmed/8458085
http://www.ncbi.nlm.nih.gov/pubmed/17240289
http://www.ncbi.nlm.nih.gov/pubmed/17502553
http://www.tandfonline.com/doi/abs/10.1080/03610928908830127#preview
http://www.jstor.org/discover/10.2307/2335691?uid=3737496&uid=2129&uid=2&uid=70&uid=4&sid=21102967823267
http://psycnet.apa.org/index.cfm?fa=search.displayRecord&uid=1936-01863-001
http://psycnet.apa.org/psycinfo/1960-00397-001

	Title

	Corresponding author
	Abstract
	Keywords
	Introduction
	Overview of the Methods for Estimation of a NormalMixture
	MLE via the EM algorithm
	The CECF method
	The DECF method
	The MGF method
	A disparity index

	Simulation Study
	Application to the PREDICT-HD Data
	Figure 1

	Figure 2

	Figure 3

	Table 1

	Table 2

	Table 3

	Table 4

	Table 5

	Table 6

	Acknowledgement
	References



