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Introduction
Adjusting for an intermediate variable is a common analytic 

strategy in estimating a direct effect [1-4]. Even if the total effect is 
unconfounded, the direct effect is not identified when unmeasured 
variables affect the intermediate (mediator) and outcome variables. 
The total and direct effects can be formalized most readily by 
representing the problem nonparametrically in terms of directed 
acyclic graphs and counterfactual notation [5,6]. For example, in 
the context of randomized trials (Figure 1), the total effect of binary 
randomized treatment R on outcome Y is obtained without regard to 
intermediate D as simply the contrast between E[Y | R = 1] and E[Y 
| R = 0]: i.e., the intention-to-treat (ITT) effect. However, the salient 
scientific question of interest often involves not the total effect of R 
on Y, but rather only the portion of that effect that is not transmitted 
through the influence of R on intermediate D: i.e., the direct effect.

In many epidemiological and clinical studies in which investigators 
are interested in the direct effect, some factors that confound the 
relationship between the intermediate and outcome variables are 
present. Such factors are often unmeasured or not controlled for. If no 
control is made, the direct effect will not generally be estimated in an 
unbiased manner [7]. Thus, it is important to conduct a bias analysis 
for the direct effect, in the presence of unmeasured confounding 
between the intermediate and outcome variables.

Here, we focus on the application of the principal stratification 
approach for estimating the direct effect of a randomized treatment. 
Using this approach, we develop the bounds and a simple method 
of sensitivity analysis for the principal stratum direct effect (PSDE), 
which is the difference between expectations of potential outcomes 
within latent subgroups of subjects for whom the intermediate 
variable would be constant, regardless of the randomized treatment 
assignment. For example, the PSDE is closely related to issue of 
inference with a surrogate marker, where a good surrogate outcome 
serves as a mediator of treatment effect, leaving little effect of the 
treatment to directly impact the true outcome of interest though 
other channels [8]. Although bounds on the PSDE have been presented 
[9,10], we develop the bounds with narrower width by adding a 
plausible assumption in some situations. The methods of sensitivity 

analysis have been also presented [11-13], but the methods require 
some functional model, and use somewhat complex formulae and 
calculations. Here, we develop a simple method that is much easier 
to use formulae.

We require the monotonicity assumption, a standard assumption 
often used in the literature of causal inference [14,15], and introduce 
sensitivity parameters that are defined as the difference in potential 
outcomes with the same value of the intermediate variable between 
subjects who are assigned to the treatment group and those who 
are assigned to the control group. The remainder of this manuscript 
is organized as follows. We review the PSDE in the next section. In 
the third section, we introduce sensitivity parameters, and propose 
the bounds and a method of sensitivity analysis on these bases. The 
developed bounds and sensitivity analysis are applied to a randomized 
trial for coronary heart disease (CHD) in the fourth section. The last 
section discusses some implications of the developed approach.

Definitions and Assumptions
Potential outcome and principal stratification

We assume a deterministic potential outcomes framework [16-
18]. Let YR=r and DR=r denote the respective values of the potential 
outcome and mediator that would have been observed if the 
treatment R had been set. We require the consistency assumption; 
this assumption is that YR=r = Y, i.e., that the value of the potential 
outcome that would have been observed if the treatment r had 
been equal to the value of the observed outcome when actually 
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Abstract
In epidemiological and clinical research, investigators often want to estimate the direct effect of a treatment on 

an outcome, which is not relayed by intermediate variables. Even if the total effect is unconfounded, the direct effect 
is not identifi ed when unmeasured variables affect the intermediate and outcome variables. This article focuses on 
the principal stratum direct effect (PSDE) of a randomized treatment, which is the difference between expectations of 
potential outcomes within latent subgroups of subjects for whom the intermediate variable would be constant, regardless 
of the randomized treatment assignment. Unfortunately, the PSDE will not generally be estimated in an unbiased 
manner without untestable conditions, even if monotonicity is assumed. Thus, we propose bounds and a simple 
method of sensitivity analysis for the PSDE under a monotonicity assumption. To develop them, we introduce sensitivity 
parameters that are defi ned as the difference in potential outcomes with the same value of the intermediate variable 
between subjects who are assigned to the treatment and those who are assigned to the control group. Investigators can 
use the proposed method without complex computer programming. The method is illustrated using a randomized trial 
for coronary heart disease. 
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assigned to the treatment r. We further assume the independence 
of treatment assignment. This assumes that YR=r is independent of R, 
and means that the treatment assignment gives no information about 
the distribution of potential outcomes. Note that the independency 
between the potential outcome YR=r and R does not mean that the 
observed outcome Y is independent of R.

Using the principal stratification approach [2,8], four principal 
strata are formulated when the randomized treatment assignment 
and intermediate variable are dichotomous. These four principal 
strata are constructed of the following compliant-mediators, always-
mediators, never-mediators, and defiant-mediators. Compliant-
mediators exhibit positive intermediate behavior when assigned to 
the treatment, but do not exhibit positive intermediate behavior 
when assigned to the control. Therefore, DR=1 = 1 and DR=0 = 0. 
Always-mediators always exhibit positive intermediate behavior, 
regardless of the treatment assignment. Therefore, DR=1 = 1 and DR=0 
= 1. Never-mediators never exhibit positive intermediate behavior, 
regardless of the treatment assignment. Therefore, DR=1 = 0 and DR=0 
= 0. Defiant-mediators do not exhibit positive intermediate behavior 
when assigned to the treatment, but do exhibit such behavior when 
assigned to the control. Therefore, DR=1 = 0 and DR=0 = 1.

The principal stratum direct effect

Under the principal stratification approach, we focus on ITT 
effects in two of the four principal strata formed by the potential 
behavior. In Figure 1, the pathway between R and Y does not include 
D for the always- and never-mediating principal strata because the 
potential level of the mediator is constant within each of these two 
strata. Thus, the separate ITT effect of treatment within the always- 
and never-mediating principal strata is the PSDE [12].

We denote that t takes on the values 1, 2, 3, and 4, corresponding 
to the compliant-mediating, always-mediating, never-mediating, 
and defiant-mediating principal strata, respectively, and C = t 
corresponds to the tth principal stratum. Then, the ITT effect for the 
tth principal stratum is 

ITTt = E[YR=1 | C = t] – E[YR=0 | C = t].

The standard ITT effect over the whole population equals the 
weighted sum of the stratum-specific ITT effects across the four strata, 
with weights corresponding to the probabilities of membership in 
each principal stratum t = Pr(C = t) such that 4

1
1tt




 . Therefore,
4 4

ITT 1 0 ITT
1 1

E[ | ]R R t t t
t t

Y Y C t    
 
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The PSDE corresponds to the weighted sum of the ITT effect 
across the always- and never-mediating principal strata and is 
computed as
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The relationships between t and pr = Pr(D = 1 | R = r) are as 
follows:

p–ppand–p

because the subjects within each principal stratum should be 
homogeneously assigned to R = 0 and R = 1 due to randomization. 
Furthermore, E[Y

R=r
 | D = d, R = r] is translated into the weighted 

sum of E[YR=r | C = t] as follows [12,19]:
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Unfortunately, neither E[YR=r | C = t] nor t can be identified from 
the observed data.

We assume monotonicity, a standard assumption often used in 
the literature of causal inference [14,15]. This assumption is that no 
defiant-mediator exists (i.e., π4 = 0). Then, π1 = p1 – p0, π2 = p0, and 
π3 = 1 – p1. p0 = p1 (π1 = 0) indicates that no compliant-mediator
exists, and the monotonicity assumption does not hold if p0 > p1 
(π1 < 0). From these relationships between πt and pr, the following
relationships between E[YR=r | C = t] and E[YR=r | D = d, R = r] are 
obtained:
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Bias Analysis
We define the D-specific sensitivity parameters as follows:

αd ≡ E[YR=1 | D = d, R = 1] – E[YR=1 | D = d, R = 0],

βd ≡ E[YR=0 | D = d, R = 1] – E[YR=0 | D = d, R = 0],

where d = 0, 1. This definition of sensitivity parameters is an 
extension of an idea of the bias factors introduced in the context of 
randomized trials with noncompliance [20-22]. In these reports, it 
was assumed that the treatment affects the outcome only through 
the mediator: i.e., no direct pathway from R to Y exists in Figure 1, 
and the causal effect of interest was E[YD=1] – E[YD=0]. The bias factors 
were defined as γr  E[YD=1 | D = 1, R = r] – E[YD=1 | D = 0, R = r],
and δr  E[YD=0 | D = 1, R = r] – E[YD=0 | D = 0, R = r].

αd and βd are the difference in potential outcomes with the same
mediator value between subjects who are assigned to the treatment 
group and those who are assigned to the control group. E[YR=r | 
R = 1] = E[YR=r | R = 0] holds because it is assumed that YR=r is 
independent of R, but E[YR=r | D = d, R = 1] = E[YR=r | D = d, R = 

Figure 1: A directed acyclic graph for the mediation process with a measured 
randomized assignment R, a mediator D, an outcome Y, and a set of 
unmeasured variables U.

.



Citation: Chiba Y (2010) Bias Analysis for The Principal Stratum Direct Effect in The Presence of Confounded Intermediate Variables. J Biomet  
Biostatist 1:101 doi:10.4172/2155-6180.1000101

J Biomet Biostat
ISSN:2155-6180 JBMBS, an open access journal

Page 3 of 6

Volume 1• Issue 1•1000101

0] does not hold in general [1]. Then, these sensitivity parameters are
interpreted as biases caused by conditioning on the mediator. αd =
0 and β

d
 = 0 hold conditional on some covariates, if these covariates

include all of the confounders of the relationships between D and Y.

Using these sensitivity parameters, E[Y
R=1

 | C = t] are represented 
by

E[Y
R=1

 | C = 1] = E
01

 – (1 – p
0
)α

0
 / (p

1
 – p

0
) = E

11
 + p

0
α

1
 / (p

1
 – p

0
),   (3)

E[YR=1 | C = 2] = E11 – α1,                                                                                                  (4)

E[YR=1 | C = 3] = E01,                                                                                                         (5)

and E[YR=0 | C = t] are represented by

E[YR=0 | C = 1] = E00 – (1 – p1)β0 / (p1 – p0) = E10 + p1β1 / (p1 – p0),    (6)

E[Y
R=0

 | C = 2] = E
10

,                                                                                                         (7)

E[YR=0 | C = 3] = E00 + β0,                                                                                                 (8)

where Edr = E[Y | D = d, R = r]. By substituting equations (4), (5), (7), 
and (8) into equation (2), the PSDE has the following formula:

0 11 10 1 1 01 00 0

1 0

( ) (1 )( )
PSDE

1
p E E p E E

p p
      


 

                            (9)

We propose bounds on the PSDE using equations (3)–(8) and a 
sensitivity analysis using equation (9).

Bounds

Let (K0, K1) be the finite range of y. Then, –(K1 – K0) ≤ E[YR=1 – YR=0

| C = 1] ≤ K1 – K0 because K0 ≤ E[YR=r | C = 1] ≤ K1. Substituting –(K1

– K0) ≤ E[YR=1 – YR=0 | C = 1] ≤ K1 – K0 into equation (1) gives
3
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[9,10]. From equation (2), bounds on the PSDE become
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In cases of a binary outcome, K0 = 0 and K1 = 1 are applied.

By making two assumptions, we improve inequality (10) to 
bounds with narrower width. Note that the following Assumption 1 
is newly proposed, but Assumption 2 has been presented.

ASSUMPTION 1. The expectation of potential outcomes for 
the compliant-mediators is between the expectations of potential 
outcomes for the always-mediators and never-mediators, which can 
be formalized as

E[YR=r | C = 2] ≤ E[YR=r | C = 1] ≤ E[YR=r | C = 3]
or

E[YR=r | C = 3] ≤ E[YR=r | C = 1] ≤ E[YR=r | C = 2].

Under E[YR=1 | C = 2] ≤ E[YR=1 | C = 1] ≤ E[YR=1 | C = 3], equations 
(3)–(5) yield α0 ≥ 0 and α1 ≥ 0, and similarly, equations (6)–(8) yield α0 
≤ 0 and α1 ≤ 0 under E[YR=1 | C = 3] ≤ E[YR=1 | C = 1] ≤ E[YR=1 | C = 2]. 
Therefore, the signs of α0 and α1 must be the same under Assumption
1. It is readily verified that the converse holds, i.e.,

E[YR=1 | C = 2]  E[YR=1 | C = 1]  E[YR=1 | C = 3] if 0  0 and 1  0,

E[YR=1 | C = 3]  E[YR=1 | C = 1]  E[YR=1 | C = 2] if 0  0 and 1  0.

From equation (3), bounds on E[YR=1 | C = 1] become E11  E[YR=1 |
C = 1]  E01 under 0  0 and 1  0, and E01  E[YR=1 | C = 1]  E11

under 0  0 and 1  0. If the observed data show that E01  E11, 0

 0 and 
1
  0 cannot hold and then E[Y

R=1
 | C = 2]  E[Y

R=1
 | C =

1]  E[YR=1 | C = 3] cannot hold. Consequently, under Assumption 1,

E
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R=1
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11
,

and conversely

E11  E01   0  0 and 1  0, and E11  E[YR=1 | C = 1]  E01.

Likewise, bounds on E[Y
R=0

 | C = 1] under Assumption 1 are as 
follows:

E00  E10   0  0 and 1  0, and E00  E[YR=0 | C = 1]  E10,

E10  E00   0  0 and 1  0, and E10  E[YR=0 | C = 1]  E00.

These bounds provide bounds on the PSDE. If the observed data 
show that E01  E11 and E00  E10, bounds on the PSDE become
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,

and conversely if the observed data show that E11  E01 and E10  E00,
bounds on the PSDE become
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.

Note that the other bounds on sensitivity parameters can be also 
derived from equations (3) and (6) under Assumption 1. When E01  
E11, bounds on 0 and 1 are

1 0
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and when E00  E10, bounds on 0 and 1 are
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Chiba [19] presented the following assumption to derive an  
estimator of the PSDE.

ASSUMPTION 2. The causal effects are the same between 
subpopulations with (D, R) = (d, 1) and (D, R) = (d, 0), which can be 
formalized as

E[YR=1 – YR=0 | D = d, R = 1] = E[YR=1 – YR=0 | D = d, R = 0] for d = 0, 1.

Assumption 2 is equivalent to d = d for d = 0, 1, and holds
under the null hypothesis YR=1 = YR=0. Under this assumption, we can 
obtain ITT1 = ITT2 = E11 – E10 – 1 and ITT1 = ITT3 = E01 – E00 – 0
from equations (2) and (4). Therefore, PSDE = ITTt = ITT for t = 1, 2,
3. 0 = 0 and 1 = 1 are estimated by

0 = 0 = p1(E01 – E11) + p0(E10 – E00),

1 = 1 = (1 – p1)(E11 – E01) + (1 – p0)(E00 – E10).

Note that PSDE = ITTt = ITT for t = 1, 2, 3 is also derived under the
assumption of 

E[YR=1 – YR=0 | D = 1, R = r] = E[YR=1 – YR=0 | D = 0, R = r] for r = 0, 1,

which holds under the null hypothesis YR=1 = YR=0 [19].

Sensitivity analysis

Several approaches may be considered for sensitivity analyses. 
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Sjölander et al. [11] presented a method that was conducted by 
assuming structural regression models for E[YR=r | C = c] and 
estimating the parameters using the expectation-maximization 
(EM) algorithm. Other researchers used Markov Chain Monte Carlo 
techniques to estimate the parameters in the framework of Bayesian 
inference [12,13]. Here, we propose a method without functional 
models or complex calculations. We use equation (9) only for the 
sensitivity analysis. The simplest approach is to vary the values of 1

and 0 within the relevant ranges of these values. Then, our approach
can be regarded as a re-parameterization of their approaches, and its 
advantage is that it is much easier to use the formula in the sensitivity 
analysis.

We can also apply the Monte Carlo sensitivity analysis (MCSA) 
[23-25] using equation (9). For the MCSA, investigators assume prior 
distributions of the sensitivity parameters, and generate a large 
number (L) of estimates of the PSDE by drawing L sets of random 
values from their distributions. Then, a frequency distribution of L 
PSDE is generated, and we obtain the result without incorporating 
the random error of the estimate. To incorporate the random error, 
the distributions of Edr and pr based on the observed data are applied.

If investigators do not have reasonable information about prior 
distributions of the sensitivity parameters, they can use the bounds 
on 1 and 0 introduced here, once their bounds are obtained,
uniform distributions within the ranges can be applied.

Application
Data

We illustrate the proposed bounds and sensitivity analysis using 
data from the Lipid Research Clinics Coronary Primary Prevention 
Trial (LRC-CPPT) [26]. The purpose of that study was to evaluate 
the efficacy of the cholesterol-lowering drug cholestyramine in the 
prevention of CHD in 3806 asymptomatic middle-aged men with 
hypercholesterolemia. In this study, 1888 subjects were randomly 
assigned to receive cholestyramine treatment (R = 0) and 1918 
subjects were randomly assigned to receive a placebo (R = 1). During 
a follow-up period of 1 year, each CHD event was recorded (Y = 0 for 
no event and Y = 1 for an event). At the end of follow-up, cholesterol 
levels were recorded for each subject. We dichotomize cholesterol 
levels as D = 0 for < 280 mg/dL and D = 1 for  280 mg/dL, as in 
previous studies [27–30]. Data from the LRC-CPPT are displayed in 
Table 1 [27]. Note that this example is for illustrative purposes only, 
as the mediator D has been dichotomized and this can give rise to 
misleading influences.

In the LRC-CPPT, the four principal strata are as follows. Compliant-
mediators are subjects whose cholesterol levels were higher than 
280 mg/dL when assigned to the placebo group, but lower than 
280 mg/dL when assigned to cholestyramine treatment. For always-
mediators, regardless of treatment assignment, cholesterol levels 
were always higher than 280 mg/dL. Conversely, for never-mediators, 
regardless of treatment assignment, cholesterol levels were always 

lower than 280 mg/dL (and never higher than 280 mg/dL). In contrast 
to compliant-mediators, defiant-mediators are subjects whose 
cholesterol levels were higher than 280 mg/dL when assigned to 
cholestyramine treatment, but lower than 280 mg/dL when assigned 
to the placebo group.

Bounds

Inequality (10) yielded bounds of –22.39%  PSDE  27.06%. The 
width of the bounds is 49.45%, which is very wide and thus rather 
uninformative.

Although whether Assumptions 1 and 2 hold cannot be confirmed 
from the observed data, it is important to discuss it. In the LRC-CPPT, 
health-minded individuals may tend not to experience CHD and to 
have lower cholesterol levels than people who are not as health-
conscious. Then, always-mediators, who are individuals with high 
cholesterol level regardless of treatment assignment, may mostly tend 
to experience CHD. Conversely, never-mediators, who are individuals 
with low cholesterol level regardless of treatment assignment, may 
mostly tend not to experience CHD. The probability of experiencing 
CHD in compliant-mediators, whose cholesterol levels depend on 
treatment assignment, may be between the probabilities for always- 
and never-mediators. This observation shows that E[YR=r | C = 3] 
 E[YR=r | C = 1]  E[YR=r | C = 2]. Therefore, Assumption 1 may
hold. Investigators may not be able to insist that Assumption 2 holds, 
until the estimate of ITT is 0 or at least close to 0. Even though the
estimate of ITT is close to 0, it may be difficult to insist on that.

Under Assumption 1, d  0, d  0, and E[YR=r | C = 3]  E[YR=r

| C = 1]  E[YR=r | C = 2], because E11 = 10.92% (= 82/751)  E01

= 7.37% (= 86/1167) and E10 = 9.04% (= 33/365)  E00 = 6.37% (=
97/1523). Then, bounds on the PSDE were 1.21%  PSDE  2.75%. 
The width of the bounds has been improved to 1.54%, which yields 
significant information about the PSDE. The result shows that the 
PSDE is positive. Thus, it is concluded that cholestyramine treatment 
prevents CHD for subjects within the always- and never-mediating 
principal strata. Note that the lower bounds on d and d were
–0.87%, –3.64%, –0.87%, and –1.35% for 0, 1, 0, and 1, respectively.

Under Assumption 2, PSDE = ITTt = ITT = 1.87% (95% confidence
interval: 0.17%, 3.58%). Note that 0 = 0 = –0.87% and 1 = 1 =
0.00%.

Sensitivity analysis

While we did not know about the distributions of the sensitivity 
parameters, we assumed that the sensitivity parameters followed 
uniform distributions with ranges obtained under Assumption 2, 
i.e., –0.0364  1  0 and –0.0087  0  0. It was assumed that Edr

and pr followed binomial distributions, with observed numbers and
proportions estimated from the observed data.

We drew 100,000 sets of random values from these distributions, 
and generated a frequency distribution of 100,000 PSDE. The result 
is shown in Figure 2. The 50th percentile of the resulting PSDE 
distribution was 1.98%, (2.5th percentile: 0.15%, 97.5th percentile: 
3.81%), which was larger than ITT. Again, the result shows that the
PSDE is positive.

Discussion
We have proposed the bounds and a simple method of sensitivity 

analysis for the PSDE. To introduce bounds with narrower width, we 
made Assumption 1. The advantages of the proposed bounds are 
that their formulae are simple and the width is narrow. Although the 

Table 1: Defi nite CHD mortality or myocardial infarction events (Y) in the LRC-
CPPT according to randomized cholestyramine treatment group (R) and serum 
cholesterol (mg/dL) at 1 year (D) [27].

Placebo (R = 1) Cholestyramine Treatment (R = 0)

Cholesterol
≥ 280 mg/dL

(D = 1)

Cholesterol
< 280 mg/dL

(D = 0)
Total

Placebo

Cholesterol
≥ 280 mg/dL

(D = 1)

Cholesterol
< 280 mg/dL

(D = 0)
Total

Treatment

Y = 1 82 86 168 33 97 130

Y = 0 669 1081 1750 332 1426 1758
Total 751 1167 1918 365 1523 1888
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bounds have a weakness in requiring some untestable assumptions, 
Assumption 1 is a reasonable assumption in some situations, when 
the observed data shows that E01  E11 and E00  E10, or E11  E01 and
E10  E00.

In this paper, we have discussed randomized trials, where 
treatment is unconfounded. Some researchers may be interested 
in an extension to non-randomized trials, where treatment R is 
confounded. Such an extension can be achieved as follows, if all 
baseline covariates X are measured. In the presence of measured 
covariates X, all formulae in this paper hold by applying the 
expectations and probabilities conditional on X. Then,

ITT2,x = E[Y | D = 1, R = 1, X = x] – E[Y | D = 1, R = 0, X = x] – 1,x,

ITT3,x = E[Y | D = 0, R = 1, X = x] – E[Y | D = 0, R = 0, X = x] – 0,x,

where 

d,x  E[YR=1 | D = d, R = 1, X = x] – E[YR=1 | D = d, R = 0, X = x],

d,x  E[YR=0 | D = d, R = 1, X = x] – E[YR=0 | D = d, R = 0, X = x].

With fixed values of d,x and d,x, we can estimate ITTt after adjusting
for x, for example, using regression analysis. Thus, the covariates-
adjusted version of equation (9) can be obtained because equations 
(1) and (2) is also defined with adjusted ITTt and t. This shows that
our method can be used in the presence of baseline covariates that 
should be adjusted for. In practice, it is very hard that we assume the 
values or distributions of d,x and d,x for all x. To reduce the number
of sensitivity parameters, common d (= d,x) and d (= d,x) for all x
will be applied.

A sensitivity analysis technique for the PSDE has previously 
been developed [11–13]. The technique requires some functional 
models, and use somewhat complex formulae and calculations in the 
sensitivity analysis. An advantage of our approach is that it is much 
easier to use formulae. Applying the MCSA, investigators can use our 
approach without complex computer programming. However, our 
approach has a disadvantage that it assumes monotonicity. In the 
LRC-CPPT, investigators can insist that the monotonicity assumption 
holds, if cholestyramine had beneficial effects for all subjects. In fact, 
however, cholestyramine may be beneficial on average but may be 
harmful for particular individuals. A logical next step in this research 
program would therefore be that the monotonicity assumption is 
relaxed without using complex formulae and calculations.

In this paper, we have discussed the PSDE, which is a causal effect 
that is not affected by intermediate variables. For example, such an 

effect is closely related to issue of inference with a surrogate marker, 
where a good surrogate outcome serves as a mediator of treatment 
effect, leaving little effect of the treatment to directly impact the 
true outcome of interest though other channels. The developed 
bounds and sensitivity analysis for the PSDE will be used in such 
situations, and will further be extended to issue of inference with 
non-compliance and truncation by death.
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Figure 2: Result of the Monte Carlo sensitivity analysis of the principal stratum 
direct effect for the LRC-CPPT [26,27].
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