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Telomeres are Important for Genomic Stability and 
Prevention of Human Diseases

In humans, telomeres are areas of heterochromatin composed 
of TTAGGG repeats located at the ends of linear chromosomes. 
Components of telomeres are TTAGGG repeats [1], nucleosomes 
[2], t-loop [3], and telomere binding proteins [4]. Telomeres have 
three functions: first, telomeres protect the ends of chromosomes and 
facilitate their replication by telomerase; second, telomeres prevent 
recognition of chromosome ends as breaks and suppress DNA damage 
response (DDR) [5,6]; and last, recent work suggests that telomeres 
are emerging as potential sensors of genotoxic stress [7]. Deregulation 
of telomere maintenance, or telomere instability, is directly associated 
with many diseases such as cancer [8], dyskeratosis congenita [9,10], 
idiopathic pulmonary fibrosis [11,12], Coats Plus disease [13], aplastic 
anemia [14], as well as bone marrow failure [15] and premature 
aging syndromes [16]. On a molecular level, telomere instability can 
lead to genomic instability and is associated with genomic defects 
such as telomere shortening, telomere fusions, and chromosomal 
rearrangements [17,18]. Therefore, it is important to understand the 
mechanisms of telomere maintenance and how telomere instability, 
which contributes to human diseases and genomic instability, may arise.

Telomere instability can arise from several mechanisms (Figure 
1A). First, telomeres gradually shorten with each cell division as a part 
of normal cellular aging process due to the end-replication problem 
and telomere end resection [19]. When telomeres become critically 
short, short telomeres are sensed as damaged DNA, inducing cell cycle 
arrest that leads to senescence in normal somatic cells. If the p53 or Rb 
checkpoint pathway is deficient, cells continue to divide and the short 
unstable telomeres induce chromosome end-to-end fusions, leading 
to genome instability that drives oncogenesis. On the other hand, 
after a cell becomes a cancer cell, it needs a mechanism to maintain/
restore telomere length in order to be immortal. To do so, cancer cells 
either express telomerase [20] or initiate a recombination-dependent 
alternative-lengthening-of-telomeres (ALT) pathway [21].

Pathological telomere shortening can arise due to problems with 
telomere synthesis such as defects in telomere replication, extension 
of G-strand by telomerase, and/or C-strand fill-in by DNA polymerase 
(Pol) [22-25]. In addition to telomere shortening, telomere instability 

can also occur when inappropriate secondary structures of telomere 
DNA, such as G-quadruplexes, form. Formation of these structures can 
interfere with telomere DNA synthesis by stalling replication forks at 
the telomeric region [26,27], leading to telomere fragility and possibly 
rapid loss of telomeres or elevated recombination [28–33].

In addition to telomere shortening, telomere instability can also 
result from telomere deprotection induced by deficiency in telomere 
binding proteins due to loss of DDR suppression and increased 
genomic rearrangements [34–36] (Figure 1B). For example, deletion 
of the shelterin TRF1 in mice activated DDR and increased sister-
telomere fusions, chromosome end-to-end fusions, and telomere 
fragility [18]. Furthermore, telomere-induced chromosomal instability 
associated with TRF1 deletion contributed to early developing of skin 
tumorigenesis in a p53-/- background [18]. In addition, deletion of 
another shelterin, Pot1a, in mouse cells resulted in aberrant homologous 
recombination at telomeres and increased various cytogenetic 
abnormalities such as q-q arm chromosomal fusions without telomeric 
signals at fusion sites, isochromatid ring chromosomes completely 
devoid of telomeres, isochromatid ring chromosome without telomeres 
at sites of fusion, chromosomal fragment without telomeres, telomere 
fragments containing leading and lagging telomeric DNA, lagging 
telomeric fragments, and isochromatid breaks [36]. Importantly, the 
genomic instability resulting from Pot1a deletion was associated with 
increased tumorigenicity as Pot1a-/- MEF’s exhibited increased foci 
formation and skin tumor formation in a p53-/- background [36]. 
Furthermore, because DNA damage at telomeres is less likely to be 

Abstract
Telomeres are areas of heterochromatin composed of TTAGGG repeats located at the ends of linear 

chromosomes. They play a critical role in keeping genome stable and preventing premature aging diseases and 
the development of cancer. Characterizing mechanisms of telomere maintenance and understanding how their 
deregulation contributes to human diseases are therefore important for developing novel therapies. A key mechanism 
driving telomere maintenance and replicative immortality in cancer cells is telomere elongation by telomerase, and 
many emerging potential telomere-based therapies have focused on targeting telomerase components. By contrast, 
recent studies on telomere maintenance mechanism suggest that disrupting telomere stability by interfering with 
alternative mechanisms of telomere synthesis or protection may also yield new strategies for the treatment of cancer. 
This review will focus on emerging regulators of telomere synthesis or maintenance, such as G4 telomeric DNA, 
the CST complex, the t-loop, and shelterins, and discuss their potential as targets for anti-cancer chemotherapeutic 
intervention in the future.

Journal of Molecular and Genetic
MedicineJo

ur
na

l o
f M

ole
cular and Genetic M

edicine

ISSN: 1747-0862



Citation: Fadri-Moskwik M, Zhou Q, Chai W (2013) Beyond Telomerase: Telomere Instability as a Novel Target for Cancer Therapy. J Mol Genet Med 
7: 91 doi: 10.4172/1747-0862.1000091

Volume 7(4): 1000091
J Mol Genet Med
ISSN: 1747-0862 JMGM, an open access journal

Page 2 of 6

repaired [37], accumulation of telomere damage can be a source of 
genomic instability in cells.

Molecular Therapies to Directly Regulate Telomere 
Integrity

Because telomere stability contributes to replication immortality in 
cancer cells, targeting telomere stability by interfering with telomere 
synthesis or protection may yield new strategies for the treatment 
of cancer. Molecular targets that play a direct role in maintaining 
telomere integrity are telomere DNA, telomere synthesis, and telomere 
protection (Table 1).

Telomere DNA Targets

G-quadruplex: Human telomere DNA is composed of a long DNA 
strand of guanine-rich tandem-repeat sequences (G-strand), and a 
shorter, complementary cytosine-rich strand (C-strand). Numerous 
proteins bind to telomere DNA and protect telomeres by preventing 
aberrant activation of DNA damage signaling at telomeres. However, 
certain small molecules can compete with these proteins for binding to 
telomere DNA and/or induce G-strand formation of the G-quadruplex 
(G4) secondary structure via Hoogsteen hydrogen bonding [38]. These 
small molecules, or G4 ligands, can disrupt telomere synthesis and 
maintenance by interfering with telomere elongation by telomerase [39] 

Figure 1: Mechanisms of Telomere Instability (A) Molecular targets that directly affect telomere integrity. G4-ligands can bind to telomere DNA and induce 
formation of or stabilize the G-quadruplex structure, which can block telomere DNA synthesis as well as inhibit telomerase extension of telomeres. Telomerase 
inhibitors that target either the hTR or hTERT subunit directly inhibit telomere extension, therefore disrupting telomere maintenance. The CST complex regulates 
C-strand synthesis, defect in which may de-regulate telomerase activity or induce rapid telomere loss when telomerase is inhibited. (B) Shelterins protect 
telomere ends, and drugs that target shelterins may disrupt telomere protection. (C) T-oligos can induce senescence, apoptosis, and autophagy in vitro through 
a to-be-defined mechanism.
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or by exposing telomere ends and activating DNA damage response. 
G4 ligands have shown promising anti-cancer activity in vitro and in 
vivo, leading to a search for small molecules that can selectively interact 
with and stabilize G-quadruplexes (for reviews, see [40,41]). Although 
several classes of G4 stabilizing molecules have been described [42], 
two severe limitations thus far with these compounds are lack of 
potency and relatively poor selectivity for binding to G-quadruplex 
versus duplex DNA [42]. Two newly described quadruplex-binding 
acridine ligands, BRACO-19 and RHPS4, however, can induce rapid 
replicative senescence in cancer cells and activate the same DNA 
damage response that follows DNA double-strand breaks [43]. One G4 
stabilizing molecule, quarfloxin, was tested in phase II clinical trials 
for the treatment of neuroendocrine/carcinoid tumors, however, its 
mechanism of action seemed dependent, not on telomere instability, 
but on inhibition of G-quadruplexes involved in Pol I-dependent 
transcription [44].

Telomere synthesis targets

Telomerase: Telomerase, a ribonucleoprotein DNA polymerase 
that synthesizes telomeres de novo, is over expressed in the majority 
of cancer cells [45]. Telomerase is composed of two core components: 
the reverse transcriptase hTERT and its associated template RNA, 
hTR. Currently, several classes of compounds that target either hTR or 
hTERT are being tested for their ability to inhibit telomerase and limit 
tumor growth. First, the most attractive emerging candidate to inhibit 
hTR, a N3’–P5’ thio-phosphoramidate named GRN163 or Imetelstat, 
competes with telomeric primer binding by hybridizing to hTR 
and inhibiting telomerase activity [46–49]. In vitro characterization 
of Imetelstat showed that it inhibits telomerase, induces telomere 
shortening, senescence, or apoptosis [50], and can reduce tumor growth 
in a DU145 mouse xenograft model of prostate cancer [50]. Excitingly, 
results from clinical trials show evidence for the potential utility of 
Imetelstat for treating hematological cancers and, possibly, a subset of 
patients whose solid lung tumors had short telomeres [51]. By contrast, 
other inhibitors target hTERT. A thymidine analogue, 3'-Azido-2',3'-
dideoxythymidine (AZT) was found in CHO cells to incorporate 
preferentially at telomeres, and its incorporation can be telomerase-
mediated [52]. Although the precise mechanism of action of AZT on 
telomerase remains elusive [52], it is interesting to note that treatment 
with AZT could produce effective inhibition of telomerase activity in 
varied cell lines as well as progressive telomere shortening and cytotoxic 
effects, although such effects are cell line dependent [53]. By contrast, 
another small molecule, BIBR1532, is a non-nucleosidic compound 
that directly binds and effectively inhibits hTERT by interfering with 
its enzymatic processivity [54], thus inducing telomere shortening 
and senescence in human cancer cells in vitro [55]. Compared to 

untreated controls, treatment with BIBR1532 of late-passage, telomere 
shortened, HT1080-derived xenografts in mice reduced initial tumor 
growth and decreased the incidence of tumors larger than 1000 mm3 
[56]. The most recent work on BIBR1532 suggest that BIBR1532 may 
be particularly promising when given in combination with traditional 
chemotherapeutic agents [57,58].

CST complex: Composed of three proteins, Ctc1, Stn1, and Ten1, 
the human and mammalian CST complex binds to telomeres and is 
involved in telomere synthesis. In budding yeast, CST (Cdc13/Stn1/
Ten1) acts as a telomere-capping complex that protects telomeres [59–
61] and regulates telomere extension by telomerase [62]. Although in 
mammals, CST is not needed for telomere capping, the key function of 
mammalian CST is facilitating replication of telomere DNA, mediating 
C-strand fill-in [23,30,63,64], and inhibiting excessive telomerase 
extension of G-strand [65]. Interestingly, mammalian CST is also 
important for protecting the stability of non-telomeric DNA [23,30,63]. 
Such protection may be due to the role of CST in genomic DNA 
replication re-start after hydroxyurea (HU) induced fork stalling [63]. 
Although there are not any current cancer therapies that specifically 
target CST, the recent elucidation of a high-resolution structure of 
human Stn1-Ten1 complex may provide enough data for scientists to 
begin rational drug design of CST-targeting agents [66].

Telomere protection targets

Shelterin proteins protect the ends of telomeres from genomic 
rearrangements: Another strategy to target telomere stability is 
to enhance or reactivate growth suppressive responses induced by 
telomere defects. Composed of the six proteins, TRF1, TRF2, TIN2, 
RAP1, POT1, and TPP1, the shelterin complex binds to telomeres, and 
protects telomeres by repressing DNA damage response at telomeres 
and preventing chromosome fusions [5,6,67]. Loss of shelterins de-
represses DDR and allows non-homologous end joining (NHEJ) of 
chromosome ends, resulting in chromosome end-to-end fusions and 
genomic instability [17,18,35,36].

Targeting shelterin proteins as an approach of cancer therapies 
has emerged recently. For example, one shelterin Pot1 is targeted by 
a berberine derivative, Sysu-00692, which binds to Pot1 and interferes 
with the interaction between Pot1 and telomere DNA as observed by 
chromatin immunoprecipitation (ChIP) in vitro [68]. This compound 
also slightly inhibits telomerase in A549 cells and decreases cell 
proliferation in HL60 and A549 cancer cells [68].

Recent study indicates that another shelterin, TRF2, may be 
a potential target of cancer therapy. The potent anti-tumor drug 
gemcitabine is a nucleoside analogue that is currently approved for 

Target Mechanism Compound Clinical Trial Reference
Telomere DNA inducing the formation of or 

stabilizing G- quadruplex
BRACO-19 No 43 (review)

RHPS4 No 43 (review)
Quarfloxin Yes 44

Telomerase hTR Imetelstat Yes 50, 66-69
Inhibiting hTERT AZT approved for HIV 52, 53

BIBR1532 No 54-58
CST complex Ctc1, Stn1, Ten1 N/A N/A N/A

Shelterins blocking Pot1 binding to telo-
meres stabilizing TRF2

SYSU-00692 No 68
Gemcitabine approved for pancreatic cancer, breast can-

cer, ovarian cancer, and lung cancer
69, 70

T-loop destabilizing t-loop structure t-oligos No 73-83
Post- translational Modifications TRF1-PARsylation PARP inhibitor Yes 88

Table 1: Telomere integrity.
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use against ovarian, breast, NSCLC, and pancreatic cancers. Although 
gemcitabine acts by incorporating into DNA in place of cytosine and 
inhibiting DNA replication, this drug can also induce XPF-dependent 
telomere loss by stabilizing TRF2 [69]. Interestingly, recent work shows 
that metronomic treatment with this drug has anti-angiogenic effects 
in a pancreatic cancer model [70]. However, caution is needed when 
applying drugs targeting shelterin components in anti-cancer therapy, 
because the shelterin proteins are essential for maintaining telomere 
stability in normal cells as well.

T-loops may repress telomere-dysfunction induced foci (TIF) 
formation at telomere ends

The duplex lariat structure of the t-loop forms when the single 
strand 3’ G-overhang invades double-stranded telomeric repeats 
by base pairing with the C-strand and displacing the G-strand [4]. 
TRF2 has been shown in vitro to be sufficient for the formation of 
t-loop [3,71]. Recently, a three-state model of telomere protection 
was proposed [67]. Although hypothetical, according to this model, 
formation of the t-loop conceals linear chromosome ends into the 
telomeric repeats, thereby protecting chromosome ends from being 
recognized as damaged DNA. By contrast, loss of the t-loop would 
result in linearization of chromosome ends, activation of ATM and p53, 
and the formation of foci of aggregated DNA damage proteins. These 
foci, known as telomere-dysfunction induced foci or TIF, contain DNA 
repair factors such as 53BP1, -H2AX, Rad17, ATM, and the Mre11/
Rad50/Nbs1 complex [72]. Thus, loss of the t-loop would result in 
linearization of chromosome ends, initiating DNA damage signaling 
and growth suppressive responses such as cell cycle arrest, senescence, 
or apoptosis in the absence of gross chromosomal rearrangements.

In support of this model, it has been shown that T-oligos, or 
oligonucleotides with homology to the G-rich strand of the t-loop, can 
induce senescence in human fibroblasts in a p53 and Rb dependent 
manner, consistent with telomere loop disruption [73]. Furthermore, 
treatment with T-oligos can induce apoptosis, senescence, or autophagy 
in a variety of cancer cell lines [74–79]. T-oligos can also inhibit 
angiogenesis in melanoma SCID xenografts [80]. Also, pre-treatment 
of cancer cells with T-oligos can confer radiosensitivity upon mammary 
carcinoma cells and in in vivo mouse mammary tumor models [81]. 
Importantly, the helicase WRN seems to play a role in T-oligo induced 
DNA damage response, as T-oligo treated fibroblasts deficient of WRN 
have reduced phosphorylation of p53 and H2AX [82]. Finally, the most 
recent work shows that inhibition of tankyrase can block DNA damage 
induction by T-oligos, suggesting that recruitment of shelterins away 
from telomeres by T-oligos may be needed for T-oligo induced DNA 
damage in MU, PM-WK, and MM-MC melanoma cells [83]. Although 
further work is needed to understand the mechanism of t-loops in 
telomere protection in vivo, these data suggest that T-oligos may 
induce growth suppression and DNA damage response by allowing an 
intermediate state of telomere deprotection.

Molecular Therapies to Regulate Cell Fate in Response 
to Telomere Instability
Telomere-binding proteins as information node between 
telomeres and cell fate decisions

At the interface of cell signaling and telomere regulation, telomere-
binding proteins may integrate cell biological inputs to regulate 
telomere synthesis and protection, functioning as the “information 
node”. As outlined in an excellent recent review [84], telomere binding 
proteins are subject to post-translational modification (PTM) by 

kinases, sumoylases, acetylases, and ubiquitin ligases. Phosphorylation, 
sumoylation, acetylation, or ubiquitination can dynamically regulate 
telomere-binding protein function or activity in response to cellular 
stimuli. Thus, characterization of the PTM’s that regulate telomere 
binding protein function or activity may allow scientists to change the 
information at the telomere-cell node to alter cell fate.

Currently, a few PTM’s and their enzymes are known to regulate 
telomere function. First, shelterin components TRF1 and TRF2 are 
known to be phosphorylated, sumoylated, ubiquitinated, poly(ADP-
ribosyl)ated (PARsylated), and methylated by a variety of enzymes 
[84,85]. These PTM’s of TRF1 and TRF2 regulate many aspects of 
TRF1 and TRF2 function at telomeres including telomeric DNA 
binding, TRF1 or TRF2 stability, protein-protein interactions, and 
priming of TRF1 for subsequent PTM's. Importantly, tankyrase, 
the poly(ADP-ribose) polymerase (PARP) that catalyzes TRF1 
PARsylation and releases TRF1 from telomeres [86], is an emerging 
target for cancer therapy [87], and PARP inhibitors are in clinical trials 
for the treatment of cancer [88]. Excitingly, recent work also have 
shown that acetylation of TRF2 by p300 regulates TRF2 stability and 
telomere binding, and that overexpression of an acetyl-defective TRF2 
mutant induces altered telomeres, telomeric DNA damage response, 
and senescence [89]. Another shelterin protein, TPP1, was recently 
shown to be phosphorylated by Cdk1, and this phosphorylation event 
appears to regulate telomerase recruitment to telomeres [90]. Because 
pharmacological inhibitors of many enzymes that catalyze PTM’s are 
commercially available, increased knowledge of the PTM's that regulate 
telomere synthesis and protection may allow scientists to alter the 
telomere status and replicative immortality of cancer cells by inhibiting 
the enzymes that catalyze the PTM's of telomere binding proteins.

Outlook and Conclusions
Telomeres as sensors of genotoxic stress

As telomere based therapies move from bench to bedside, 
understanding the targets and the mechanisms by which new therapies 
act will be important to optimizing their clinical use. Also, as the 
mechanisms that maintain telomere integrity are elucidated, learning 
how cells respond and adapt to changes in telomere status will yield a 
broader perspective on the role of telomeres in replicating cells. For 
example, it was recently shown that DNA damage at telomeric DNA is 
irreparable and causes persistent activation of DNA damage response 
[37]. Furthermore, in ageing and stress-induced senescence, telomeres 
can be preferred targets of DNA damage response [91]. Finally, work 
from the Karlseder lab recently showed that telomere deprotection 
was functionally distinct from genomic DNA damage response 
[92]. Together, these results suggest that, in contrast to genomic 
DNA, telomeres may function as specialized sensors of cellular [67] 
or genotoxic stress [7] that can induce the senescence or inhibit cell 
proliferation [7].

Chemotherapy: beyond telomerase inhibition

A key mechanism driving replicative immortality in cancer 
cells is telomere elongation by telomerase [8], thus many current 
potential telomere based therapies have focused on targeting active 
components of telomerase. As knowledge of the regulation of telomere 
maintenance increases, however, other molecular targets that regulate 
telomere synthesis or cellular response to telomere status have emerged 
as potential regulators of replicative immortality in cancer cells. 
Importantly, these emerging regulators of telomere maintenance, G4 
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telomeric DNA, the CST complex, the t-loop, or shelterins, may be 
potential targets for chemotherapeutic agents for cancer in the future.
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