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Introduction
Functional differential equations with delay have long been studied 

due to their practical applications [1]. For example, early in 1967 Cooke 
[2] mentioned that some population models and infection models obey 
the equation

x′(t)+ax(t − r(x(t)))=0. 				                    (1)

Stephan [3] studied the equation

x′(t)+ax(t − h(t, x(t)))=F(t), 			              (2) 

for some population and infection models. Such type of differential 
equations with state dependent delay unavoidable contains certain 
composition of unknown function. In literature they are called the 
state-dependent delay differential equations (SDDE).

There are many research directions on these equations. For 
instance, Liu and Keiji et al. [4,5] found the analytic solutions of many 
such iterative functional differential equations. The existence and 
uniqueness of solution is one of the major problems. For examples, 
Dunkel [6] worked on x′(t)=f(x(h(x(t)))), and Fiagbedzi and Gebeily 
[7] on

x'(t)= ( )( )( )
1

g x x t

by using Banach or Schauder fixed point theorem. Also great attention 
had been paid to the qualitative properties of these SDDE. For example, 
Stanek [8] proved every solution of x'(t)=x(x(t))+x(t), either vanishes 
identically or is strictly monotonic. Fusco and Guglielmi [9] discussed 
a regularization for discontinuous of SDDE. Hu and Wu [10] developed 
global Hopf bifurcation theory and got periodic solutions of SDDE. 
Eder [11] classified all the solutions of x'(t)=x(x(t)) as four types. In this 
paper, more detailed analysis on Eder’s work. In fact, two types of the 
increasing solutions are identical. In some situations, we had surprising 
non-uniqueness of the solutions.

This paper is organized as follows. We survey Eder’s results and list 
some basic formulas in Section 2. Some new qualitative behaviors are 
given in Section 3. These two sections contain some rigorous proofs not 
mentioned in reference [11]. The final section addresses the conclusion 
and some open problems.

Eder’s Results

x′(t)=x(x(t)) 					    (3)

is a C1 function x : A → R from an interval A ⊂ R.

Remark 1: x(x(t)) is not well-defined, since x: A → R.

Theorem 1: If x(t) is a solution of state-dependent differential 
equation x′(t)=x(x(t)), then x(t) is monotonic increasing or decreasing.

Proof: This is a special case of [12] i.e. x(t) ≥ 0 or x(t) ≤ 0 for x ∈ A.

Theorem 2: For x(t) is a solution of state-dependent differential 
equation of (3) and x(a)=a if

1. x′(a)>0, then there is no c<a such that x′(c)=0 i.e. the solution x(t) 
is strictly increasing;

2. x′(a)<0, then there is no d>a such that x′(d)=0 i.e. the solution
x(t) is strictly decreasing.

Proof: See Eder [11].

Corollary 3: (Eder, Monotonicity of Solutions)

Let x(t) be a solution of (3) in an interval A. Then one and only one 
of the following statements is true:

1. x′(t)=0, ∀t ∈ A;

2. x′(t)>0, ∀t ∈ A;

3. x′(t)<0, ∀t ∈ A.

Remark 2: We give the Theorem 1 and 2 because Eder’s proof
(Lemma 2 [11]) is not strict enough. The lemma 2 has no initial value 
condition. Theorem 1 only guarantee monotonic x(t) ≥ 0 or x(t) ≤ 0 for 
x ∈ A. But Theorem 2 guarantee “strictly” monotonic; Theorem 1 has 
no initial value x(a)=a condition but Theorem 2 has the initial value 
condition. Add the initial value condition x(a)=a in Corollary 3, then 
we have Corollary 4.

Corollary 4: For the initial value problem
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This paper deals with the state-dependent functional differential equations x(x(t)). We give the strict proof of 

qualitative properties that Eder’s case and the solution of the state-dependent differential equation is not unique. In 
some conditions, we also extend Eder’s case.
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( ) ( )( )
( )





′ =

=

x t   x x t

x s   s
 ,

1. If s>0, then x(t) is strictly increasing;

2. If s<0, then x(t) is strictly decreasing;

3. If s=0, then x(t) is a trivial solution for ∀t ∈ R.

Proof: It is easy to prove theorem by using Theorem 2 as x(a)=a.

Lemma 5: (Eder, The interval of right hand side is finite)

Let A=[a, b] be the domain of x(t) in case 1 as the above, then b<∞.

Proof:  Suppose not, for x″(t)=x′(x(t))x′(t)>0, ∃t1>0 such that x(t)>t+1 
for t ≥ t1. So we have x(x(t))>x(t+1) and x(t+1)=x(t)+x′(t)+1/2x′(ξ) ≥ 
x′(t)=x(x(t))>x(t+1) contradiction.

Remark 3: Lemma 5 is a part of Eder’s case 2 in Theorem 2. The 
proof of Eder is not clear. We rewrite the statement and the proof.

Theorem 6 (Eder, Local Existence and Uniqueness)

Given any a ∈ (−1, 1), there is a unique real-valued solution x(t) of 
(3), x(a)=a on an open neighborhood of |t−a|<∈ for small ∈>0.

Proof: See reference [11].

Theorem 7: (Eder, Classification)

Let x: [a, b] → R be an non-extendable solution of x′(t)=x(x(t)). 
Then one and only one of the following statements is true.

1. x(t)=0, ∀t ∈ R : a=−∞, b=∞.

2. x′(t)>0: 0<b<∞ and x(b)=b,

(a) 0<a<1<b and x(a)=a: x has two fixed points;

(b) a=−∞, −∞<x(−∞)<0 and x(x(−∞))=0.

3. x′(t)<0 ∀t :

(a) −∞<a<−1<b<0: x(a)=b : x(b)=a are 2-period point;

(b) a=−∞ and b=∞ : x(−∞)=∞, −∞<x(∞)<0 and x(x(∞))=0.

Remark 5: (1) 2(a) are not exist uniqueness because the solution 
can be extend from left hand side of the fixed point a to −∞, then the 
solution 2(a) becomes the solution 2(b).

(2) If its fixed point of x(s)=s<−1, then case 3a and 3b can be 
combined. If -1<s<0, case 3a does not exist.

Because Eder’s paper did not tell us how to get these results. We 
need some Lemmas to prove the theorem in the next section.

Qualitative Properties
We can discuss the qualitative properties of state-dependent 

differential equations.

Lemma 8: Suppose x(t) is a solution of (3) for all t ∈ (−∞, b] and 
x(a)=a>0, then we have

(i) limt→−∞ x(t)=−A for some fixed number A;

(ii) limt→−∞ x′(t)=0;

(iii) A>0.

Proof: (i) Since x(t) is increasing, we have only two cases. Either 
limt→−∞ x(t)=−∞ or limt→−∞ x(t)=−A. Assume limt→−∞ x(t)=−∞, then we 

have limt→−∞ x′(t)=limt→−∞ x(x(t))=x(−∞)=−∞<0 contradicts to x(t) 
has increasing properties in Lemma 1.

(ii) Because lims→−∞ x(s)=−A, we have |x(s)+A|< 2
ε  for given ε>0, 

let s<min{a−1, a−2 2+ +   +   ε ε   
A a A a,a },

For s<a − 2 
+ 

 ε 
A a

 ⇒ s − a<−2 + 
 ε 

A a

For s − a<0, we have −
2

+ ε  < − 
A a
s a

  		                   (4)

For s<a+2 + 
 ε 

A a   ⇒ s − a<2 + 
 ε 

A a

For s − a<0, we have 
2

+ ε  < − 
A a
s a

  (5) ⇒ − 
2

+ ε  >− − 
A a
s a

By (4) and (5), then we have  2
− − ε

<
−

A a
s a  and t ∈ (s, a)

− + − −′ = ≤ + <ε
− − −

x( s ) x( a ) x( s ) A A ax ( t )
s a s a s a   

(iii) For x(t) is increasing, we have x(−A) ≥ limt→−∞ x(t)=−A. So we 
have 

0=
→∞t

lim  x′(t)=
→∞t

lim x(x(t))=x(
→∞t

lim x(t))=x(-A) ≥ -A

Lemma 9 Suppose x(t) is a solution of (3) for all t ∈ (−∞, ∞) and 
x(s)=s<0, then we have

(i) x′(t)<0 and x′(t)>0;

(ii) limt→−∞ x(t)=∞;

(iii) limt→∞ x(t)=B for some bounded number B;

(iv) limt→∞ x′(t)=0.

Proof: (i) x(t)<0 because Lemma 2 in Section 2 and x″(t)<0 because 
x″(t)=x′(x(t))x′(t)>0.

(ii) For x′(t) is nonnegative, we have x(t) ≥ x(p)+x′(p)(t − p). Let 
p<s.

Because x(t) is increasing, we have x′(p)<x′(s)=s ⇒ x′(p)(−1)>−s; 
Similarly we have 

x′(p−1)(−1)>−s, x′(p−n)(−1)>−s.

For t=p − 1, p − 2,…, p−n, we have 

x(p−1)>x(p)+x′(p)(p−1−p)=x(p)+(−s),

x(p−2)>(p−1)+x′(p−1)(p−2−p+1)=x(p−1)−s>x(p)+(−2s),

 


x(p−n)>x(p)+(−ns) → ∞ as n → ∞ for s<0.

(iii) For (ii) and x(s)=s<0, ∃ е such that x(e)=0 by I.V.T. Because t<e 
and x(t) is decreasing, we have x(t) ≥ x(e)=0. If x(t) is not bounded, then 
we have N>0 and p<e such that x(t)=p as t ≥ N. For x(t) is decreasing, 
we have x′(t)=x(x(t))=x(p) ≥ x(e)=0 for t ≥ N. This is impossible because 
x′(t)<0.

(iv) Let N=max{s+1, s+ 2
ε

 (s−B)}. Because limt→∞ x(t)=B, we have

|x(h)−B|<limt→∞ x(t)= 
2
ε for given ε>0 as h ≥ N ≥ s+1. For h − s ≥ 1 

and h ≥ s+ 2
ε

(s − B), we have  
2 2

− ε − ε
< <

− −
x( h ) B s Band

h s h s
. So we have  
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− − −
≤ + <ε

− − −
x( s ) s x( h ) B B s

h s h s h s

Theorem 10: For x(t) is a solution of  ( ) ( )( )
( )
′



=


=a

x t   x x t

x   a
, 0<a ≤ 1 and z(t)

is a solution of ( ) ( )( )
( )

 ′


′

=

′=

z z
,

z a

t   z t

  a
 0<a′ ≤ 1. If a ≠ a′, then it is 

impossible for x(t) intersect z(t) for max{a, a′}, i.e. the solution of  

( ) ( )( )
( )
′



=


=a

x t   x x t

x   b
, is unique for t>max{a, a′}.

Proof: Without losing generosity, let a<a′. If x(t) intersect z(t) for 
the first time at (c, p), then we have x(c)=z(c)=p<c and x(t)<z(t) for t<c. 
We claim the following statements.

(i) x′(c) ≥ z′(c);

(ii) x(p)<z(p), then substituting state-dependent differential
equation, we have x′(c)=x(x(c))=x(p)<z(p)=z(z(c))=z(z(c))=z′(c) 
contradict to (i).

Back to the proof of i) For x(t) and z(t) are increasing and concave 
up, we have x(c+h)>z(c+h) and x(c−h)<z(c−h). Then we have  

0 0→ →

+ − − + − −′ ′= > =h h
x( c h ) x( c h ) z( c h ) z( c h )x ( c ) lim lim z ( c )

h h

(ii) If x(t) intersect z(t) for the first time at (c, p), then we have
x(c)=z(c)=p<c and x(p)<z(p) for p<c.

Theorem 11: For these state-dependent differential equations 

( ) ( )( )
( )
′



=


=a

x t   x x t

x   a
 and ( ) ( )( )

( )
 ′


=

 =

y y
,

y a

t   y t

  b
  x(t) must intersect y(t) for 

t<min{a, b}, i.e. the solution of 
( ) ( )( )
( )
′



=


=a

x t   x x t

x   b
 is not unique for 

t<min{a, b}.

Proof: Suppose limt→−∞ x(t)=−A and limt→−∞ y(t)=−B. By the Lemma 
1(ii) in Section 3, we have

0=
→∞t

lim x′(t)=
→∞t

lim x(x(t))=x(
→∞t

lim x(t))=x(-A).

Lemma 12: Similarly y(−B)=0. For A ≤ B, x(t) must intersect y(t). 
Suppose A>B, x(t) is not intersect with y(t), then we have y(t)<x(t) for 
all t<a. So we have −B=limt→−∞ y(t)<limt→−∞ x(t)=−A contradiction.

Remark 6: Suppose (α, β) is the intersection point of is the 
intersection point of x(t) and y(t), then the solution of the initial value 
problem x′(t)=x(x(t)), with x(α)=β is not unique for α ≠ β, but the 
solution is unique as α=β.

Conclusions
For the decreasing solution of (3), the proof of case 3 in (Eder, 

Classification) has not been finished. Maybe we need some other 
techniques or tools to finished it. And we suppose the solution of (3) 

exists throughout this paper. Actually, we need to establish the global 
existence and uniqueness theorem for all the cases. Furthermore, 
we hope these techniques can be used to extend other cases of state-
dependent differential equations.
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