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Introduction
In epidemiology, when the study design is appropriate for 

estimating risk, the risk ratio (RR) comparing exposed to unexposed 
is the preferred measure of effect rather than an odds ratio (OR) 
[1]. It is usually appropriate to estimate the RR for cohort, cross-
sectional (where RR is often referred to as a prevalence ratio (PR)), and 
randomized trials study designs [2-7]. In general, if the outcome is rare 
(prevalence <10%), then the RR and OR and their confidence intervals 
(CI) will be similar. However, if the outcome is common, then the OR
can differ substantially from the RR. The OR may be said to under/
overestimate the magnitude of the RR as the RR decreases/increases
from 1.0 and the extent of the difference between the OR and RR
increases as the prevalence increases [8]. Commonality of the outcome 
has become an important consideration in selecting the model to
estimate the RR [2,4].

Two modeling strategies have emerged for estimating the RR of 
common outcomes, direct and indirect. A recent report reviewed 12 
different methods for estimating RR that fall within these two strategies 
[9]. Direct methods model the risk or log of risk (e.g., log-binomial 
model) and recent studies have focused on direct methods because of 
the ease in obtaining the RR and CI. In contrast, indirect RR estimation 
methods often model the log-odds using logistic regression. The RR 
is then estimated using logistic regression by back transforming the 
predicted log-odds to the probability scale [3,10-12] and obtaining 
standardized predicted risks for exposed and unexposed cohorts. 

Bayesian logistic regression (BLR) models have been used in 
epidemiology studies to estimate the OR between exposed and 
unexposed cohorts. The Bayesian paradigm is a flexible framework 
that allows us to easily generate the risks, RR, risk differences, and 

associated posterior distributions. A Bayesian log-binomial model 
has recently been proposed [13] that accounts for the inequality 
constraint on the parameters necessary in a log binomial model. Given 
the familiarity of logistic regression among epidemiologists and the 
popularity of Bayesian analysis, in this report we expand upon existing 
methods and develop a novel BLR modeling approach to indirectly 
estimate the median RR and associated credible interval (CIB) from the 
RR posterior distribution. We compare the Bayesian RR estimates to 
those from several commonly used RR modeling techniques using two 
previously published hypothetical data sets. Our examples illustrate the 
ease of obtaining the RR posterior distribution and the performance 
of the model when adjusting for confounders, including a continuous 
variable.

Models and Methods
Defining risk and odds ratios

The RR is defined as the probability that a subject in the exposed 
group will experience the outcome relative to the probability that a 
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Abstract
Background: For cohort and cross-sectional studies, the risk ratio (RR) is the preferred measure of effect rather 

than an odds ratio (OR), especially when the outcome is common (>10%). The log-binomial (LB) and Poisson models 
are commonly used to estimate the RR; the OR estimated using logistic regression is often used to approximate the RR 
when the outcome is rare. However, regardless of the prevalence of the outcome, logistic regression predicted exposed 
and unexposed risks may be used to estimate the RR. Because maximum likelihood estimation is used to fit the logistic 
model, estimation of the Standard error of the RR is difficult. 

Methods: To overcome difficulty in estimation of the SE of the RR and provide a flexible framework for modeling, 
we developed a Bayesian logistic regression (BLR) model to estimate the RR, with associated credible interval (CIB). 
We applied the BLR model to a large hypothetical cross-sectional study with categorical variables and to a small 
hypothetical clinical trial with a continuous variable for which the LB method did not converge. Results of the BLR model 
were compared to those from several commonly used RR modeling methods.

Results: Our examples illustrate the Bayesian logistic regression model estimates adjusted RRs and 95% CIBS 
comparable to results from other methods. Adjusted risks and risk differences were easily obtained from the posterior 
distribution.

Conclusions: The Bayesian logistic regression modeling approach compares favorably with existing RR modeling 
methods and provides a flexible framework for investigating confounding and effect modification on the risk scale.
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based on the idea of standardization [20]. The weights depend on the 
exposure variable probability and conditional probabilities of exposure 
given the other explanatory variables. The conditional probabilities can 
be estimated by strata defined by the other explanatory variables, and 
or in the case of a large number of strata that may lead to unstable 
estimation, through propensity scores (PS) [21]. A constrained Bayesian 
log-binomial model has been proposed that imposes a constraint of 
the parameters such that, given the data, only combinations of the 
parameters that result in estimates within the defined parameter space 
are accepted in the parameter estimation [13]. 

The Poisson model places no restriction on the sum of the β’s given 
the data, which leads to an often noted limitation of the method that 
estimated probabilities may be greater than 1.0. In addition, because 
Poisson errors overestimate binomial errors when the outcome is 
common, the Poisson model often overestimates the standard errors 
(SE) of the β’s leading to the RR having a CI that is too wide. To adjust 
the SE when using Poisson regression it has been suggested to use a 
robust SE, which leads to CIs that are not as conservative [18, 22, 23]. 

Indirectly estimating the risk ratio using logistic regression

Maximum likelihood estimation is used to fit the logistic regression 
model, and the predicted probabilities from the fitted model are used 
to estimate the RR indirectly. The logistic model is the regression of the 
log of the odds on the explanatory variables: 
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where ηi is modeled as a linear combination of p+1 explanatory 
variables, including an indicator variable for the exposure of interest 
and the intercept, as 
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The natural measure for logistic regression for comparing the 
exposed to the unexposed is the OR, which is readily obtained since 
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The RR is estimated by summarizing risks for the exposed and 
unexposed cohorts after the logistic regression model is fit. Estimating 
risks for the exposed and unexposed cohorts involves summarizing 
risks across strata by exposure cohort. This is often referred to as 
regression standardization in which a standardized risk is computed as 
a weighted average of category specific risks. 

Three methods used for logistic regression standardization are 
conditional, stratification, and marginal [3,6,10]. The conditional 
method requires choosing a standard reference value for each of the 
covariates, and the stratification method requires standard weights 
for each stratum or combination of covariates. To avoid these 
complications and derive an internally adjusted measure, we use the 
marginal method, which is defined as 
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where n is the total sample size of the exposed and unexposed cohorts 

subject in the unexposed group will experience the same outcome, i.e., 

( )
( )
P Outcome | Exposed

RR =
P Outcome |Unexposed

.

An OR is defined as the odds of having the outcome given the 
subject is exposed relative to the odds of having the outcome given the 
subject is unexposed, i.e., 

( ) ( )( )
( ) ( )( )
P Outcome | Exposed 1 - P Outcome | Exposed

OR = 
P Outcome |Unexposed  1 - P Outcome |Unexposed

.

Logistic regression works well if one is interested in the OR but 
the OR may perform poorly as an approximation of the ratio of two 
probabilities  [14]. The assertion that logistic regression performs poorly, 
especially for a common outcome, presumes that the OR is used as 
an approximation for the RR [14,15]. The RR is commonly estimated 
using a direct method and less frequently using an indirect method. 

Direct methods for estimating the risk ratio

The Mantel-Haenszel (MH) method can be used to directly 
estimate the adjusted RR across strata to assess an association between 
outcome and exposure [16]. In addition, the log-binomial and Poisson 
models are commonly used for estimating the RR, likely because of the 
ease of fitting these models in standard software packages and because 
the RR is the natural measure of effect from these models. For both log-
binomial (or log-linear risk) [17] and Poisson models [18], let iy  (0 or 
1) denote the outcome status for the ith subject, 1X (0 or 1) denote the 
exposure status of that subject and let Xi represent the entire set, i.e., 
including the exposure variable, of p explanatory variables. Then the 
probability of the ith subject experiencing the outcome is given by 

 1 21 | , ,..., µ = = i i i pi iP Y X X X ,

where µi is the risk for the ith subject. The log-binomial models the log of 
the risk on the explanatory variables, which includes the intercept, as:

( )i 0 1 1 2 2, ,log  ... .µ β β β β= + + + + =i i p p i iX X X Xβ

Hence, the RR comparing exposed to unexposed, adjusted for the 
explanatory variables, is given by 1βe . 

There may be challenges when using the log-binomial model to 
estimate the RR because when fitting the log-binomial model, especially 
given continuous variables, non-convergence may be an issue when 
the MLE is close to or on the boundary of the parameter space [14]. 
In addition, simulation studies have shown the CI obtained for the 
RR when using the log-binomial model may be too narrow [4,18]. If 
the log-binomial model fails to converge, several methods have been 
proposed to obtain model convergence: COPY [2], Iterative Weighted 
Least Squares (IWLS) truncated algorithm [19], inverse-probability-of-
treatment-weighted (IPTW) [20], and a constrained Bayesian model 
[13]. 

Assuming Y is a binary response variable, the COPY method is 
implemented by making C copies of the data set, with C suggested to 
be 1,000, and appending them to the original data set [2]. In one of 
the copies, the outcome Y is switched to 1-Y for every observation in 
that copy. The log-binomial pseudo-MLE is then estimated by using 
C as the weight when fitting the model to the modified dataset. The 
IWLS truncated algorithm was developed to address the boundary 
issue when the log-binomial model does not converge [19]. The user 
chooses a threshold (T) near 1 that is used in the algorithm, and p 
(predicted risk) is set to min (p, T) at each iteration until convergence. 
The IPTW method also uses a weighted likelihood with a set of weights 
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combined, and the probabilities are estimated from the logistic 
regression model. Hence, this method involves estimating the risk 
of those not exposed as though they were exposed and vice versa. 
Standardizing risks across strata using regression models to obtain 
summarized risks is straightforward [6], but obtaining the CI about 
the standardized RR is challenging due to the difficulty in estimating 
the SE. The bootstrap and the delta method have been employed 
to estimate the CI for the standardized RR obtained using logistic 
regression [10,12,14]. However, these methods can be computationally 
burdensome for the model estimation, require a lot of programming, 
and be analytically complicated. 

Bayesian logistic regression model

The Bayesian modeling framework and current software 
for Bayesian analysis can meet these complex challenges in a 
straightforward manner. Unlike SEs computed or derived for 
maximum likelihood estimates, a Bayesian posterior distribution of 
any statistic or transformation of interest can be readily obtained. Thus, 
we extended the logistic regression model for estimating the RR to the 
Bayesian framework. Using previous notation, the standard Bayesian 
logistic regression (BLR) model includes stochastic, systematic (linear 
predictor), and prior distribution components:
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The prior distribution for β is assumed to be multivariate normal 
with b defined as the vector of means of the coefficients of the p + 1 
explanatory variables and Σ as the p + 1 by p + 1 precision matrix, 
i.e., the inverse of a variance-covariance matrix. Standardized marginal 
risks for the exposed and unexposed cohorts are calculated as before 
and in the Bayesian analysis, the posterior distribution of the indirectly 
estimated RR is obtained by Bayes’ rule as the product of the likelihood 
function and the prior distribution [24]. Bayesian software can be 
used to simulate draws to approximate the posterior distribution of 
model parameters, and from the simulated values, we can estimate the 
posterior distribution of any quantity of interest, including the RR, 
which is a primary motivation for the Bayesian approach. We can also 
easily summarize the mean, median, and credible interval, CIB, e.g., the 
2.5th and 97.5th percentiles of the posterior distribution of the RR, which 
also has the advantage of being interpreted as a probability interval. 

Statistical analysis

We used hypothetical data from two published studies to compare 
the RR and credible intervals estimated using the BLR model with 
those obtained using stratified MH, log-binomial (Bayesian and 
frequentist), and Poisson models. These examples were chosen to 
represent both a simple situation with a large sample size and one 
categorical confounder, and a more complex situation with a small 
sample size, and categorical and continuous confounders that led to 
non-convergence of the log-binomial model. 

We used the following guidelines to fit models when using 
direct modeling methods and for estimating the OR. The logistic 
standardization by the marginal method was calculated using 5,000 
bootstrap samples in SAS 9.3 PROC GENMOD [24, 26]. The standard 
Poisson model was fit by maximum likelihood estimation using 
SAS 9.3 PROC GENMOD [26]. The modified Poisson was fit by the 

generalized estimating equations approach that uses a robust estimator 
of the SE, available in GENMOD. Log-binomial models were also fit 
using GENMOD and, if convergence failed, we used COPY [2], IWLS 
truncated algorithm [19], and IPTW [20]. To implement the COPY 
method, we use weights of 0.999 for the original data for Y and 0.001 
for the 1-Y copy data. To implement the IWLS truncated algorithm 
method, we use a threshold of 0.9999 and p was set to the minimum 
of (p, 0.9999) to compute the working residuals and weights for the 
next iteration. We implemented this procedure using R software [27]. 
To implement the IPTW method, we used both strata and PS defined 
weights. The PS weights were estimated using logistic regression. The 
Bayesian log-binomial model was estimated using SAS 9.3 PROC 
MCMC with boundary constraints defined by the outer range of 
the data and the procedure outlined below for the Bayesian logistic 
regression model [13]. Standard logistic regression was used to estimate 
the OR for comparison with the estimated RR for common outcomes. 

Bayesian logistic regression was implemented using the Bayesian 
option in SAS 9.3 PROC GENMOD with the following guidelines. 
We used non-informative priors for β, one chain of initial parameter 
values, and a burn-in of 5,000 samples determined using the Brooks-
Gelman-Rubin (BGR) convergence criterion [28]. In addition, the 
BGR criterion was used along with plots of the successive samples 
to assess autocorrelation and the chain was thinned at 10 to reduce 
autocorrelation. Each model, after burn-in, used 1,000,000 samples and 
after thinning resulted in a sample of 100,000. The RR was estimated for 
each sample and the posterior distribution of the RR was summarized 
using the mean, median, and 95% CIB. 

Example I: Our first example illustrates that the Bayesian logistic 
regression model provides point estimates of prevalence and prevalence 
ratios on a stratum specific basis as well as for a situation in which there 
is effect modification on the log odds scale but not on the prevalence or 
log prevalence scales. We use data from a hypothetical cross-sectional 
study [5] with a common disease outcome for the exposed and 
unexposed and one confounder (Table 1). The overall prevalence was 
47% with stratum I and II specific prevalence for the exposed (80% and 
60%) and unexposed (40% and 30%), respectively. The crude OR and 
RR are 4.44 and 2.03, respectively. The stratum specific ORs are 6.00 and 
3.50, which indicates effect modification on the OR scale. In contrast, 
there is no evidence of effect modification on the RR scale as the RR is 
2.00 for both strata (Table 1). We illustrate using the Bayesian logistic 
model to determine if there is effect modification on the RR scale given 
effect modification on the OR scale and compare the estimated RR and 
95% CIB to estimates obtained using the other models. 

All models considered, stratified MH, logistic standardization 
marginal, robust and standard Poisson, log-binomial (frequentist and 
Bayesian), and Bayesian logistic, included the exposure and the stratum 
variable. They all estimated the RR to be 2.00 with a 95% CI / CIB of 
(1.86, 2.16), with the exceptions of the frequentist log-binomial (1.86, 
2.15) and standard Poisson (1.79, 2.23). Using our Bayesian logistic 
regression model, we obtained stratum specific predicted median 
probabilities (95% CIB) of disease by stratum for the exposed of 0.80 
(0.76, 0.83) and 0.60 (0.56, 0.64), and for the unexposed of 0.40 (0.37, 
0.43) and 0.30 (0.27, 0.33). Our predicted difference between the RRs 
for strata 1 and 2 is 0.0014 (-0.31, 0.30) for the stratum specific RR 
(Figure 1). This indicates an absence of effect modification on the RR 
scale so a common RR can be estimated across strata. Our model was 
re-run ignoring the effect modification on the logit scale to illustrate the 
differences in predictions. This model has predicted probabilities (95% 
CIB) of 0.76 (0.73, 0.79), 0.64 (0.60, 0.67), 0.42 (0.39, 0.45) and 0.28 



Citation: Rose CE, Pan Y, Baughman AL (2015) Bayesian Logistic Regression Modeling as a Flexible Alternative for Estimating Adjusted Risk Ratios 
in Studies with Common Outcomes. J Biom Biostat 6: 253. doi:10.4172/2155-6180.1000253

J Biom Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 4 of 7

Volume 6 • Issue 4 • 1000253

(0.26, 0.31) and an estimated common RR (95% CIB) = 2.0 (1.85, 2.14), 
which illustrates that in the absence of effect modification on the RR 
scale there is no substantial difference in the RR estimated by ignoring 
the effect modification on the logit scale. All SAS and R programs and 
data for the presented models are provided in the S1 Appendix.

Example II: Our second example illustrates potential differences 
among model results. We use data from a hypothetical study from 
a clinical trial that has categorical and continuous variables [3]. The 
study purpose was to compare new and conventional therapies on 
recovery while controlling for age and extent of disease (EOD) among 
40 subjects (Table 2). Recovery (0 = not recovered and 1 = recovered) 
is the outcome, and therapy group (conventional therapy = 0, new 
therapy = 1) is the exposure of interest. Confounding variables are 
EOD, which is measured as moderate (0) or severe (1), and age (years). 

Subjects that received new therapy were more likely to recover 
(60.0% vs. 25.0%), slightly older (years) (32.2 vs. 30.8), and have a more 
severe EOD (60.0% vs. 45.0%) than those who received conventional 
therapy (Table 2). Subjects having moderate disease or younger age 
(20–29) were more likely to recover (52.6% vs. 33.3% and 53.3% vs. 
36.0%, respectively) (Table 3). The unadjusted OR and RR are 4.50 

and 2.40, respectively (Table 3). Model results (Table 4) illustrate 
several artifacts for models adjusted for the categorical (EOD) and 
continuous (age) confounders. The Poisson models (standard and 
robust SE) estimated two probabilities >1.0. The frequentist log-
binomial model failed to converge and we implemented the COPY, 
IWLS truncated algorithm, and IPTW methods to obtain convergence. 
Using the COPY method, the log-binomial model did converge 
but estimated two probabilities extremely close to the boundary (> 
0.999). In addition, the estimated RR (2.44) using the COPY method 
was virtually unchanged from the unadjusted RR (2.40, Table 3) and 
substantially smaller than the RR estimated using most other methods 
(Table 4). We used a threshold of 0.9999 for the IWLS truncated 
algorithm method and achieved convergence. However, the estimated 

Exposed Unexposed
D=Yes D=No Prevalence D=Yes D=No Prevalence Odds Ratio Risk Ratio

Stratum 1 400 100 0.80 320 480 0.40 6.00 2.00
Stratum 2 300 200 0.60 300 700 0.30 3.50 2.00
All 700 300 0.70 620 1,180 0.34 4.44 2.03
Model Risk Ratio 95% CI
Stratified Mantel-Haenszel 2.00 1.86, 2.16
Logistic Standardization by Marginal Method 2.00 1.86, 2.16
Poisson 2.00 1.79, 2.23
Robust Poisson 2.00 1.86, 2.16
Log-Binomial 2.00 1.86, 2.15
Bayesian Logistic 2.00 1.86, 2.16*
Bayesian Log-Binomial 2.00 1.86, 2.16*

Logistic  4.44† 3.75, 5.25

Notes: *Credible interval, †Odds ratio.
Table 1: Example I: Hypothetical cross-sectional data [5] and the estimated adjusted risk ratio and 95% confidence interval (CI) for each method.

Conventional Therapy New Therapy
Subject Age 

(years)
EOD* Recovery† Subject Age 

(years)
EOD Recovery

1 20 0 1 21 20 0 1
2 23 0 1 22 24 0 1
3 22 0 0 23 28 0 1
4 26 0 0 24 30 0 1
5 29 0 0 25 32 0 1
6 34 0 0 26 33 0 0
7 32 0 1 27 38 0 1
8 30 0 0 28 36 0 0
9 38 0 0 29 24 1 0

10 37 0 0 30 26 1 1
11 38 0 1 31 29 1 1
12 25 1 1 32 34 1 0
13 24 1 0 33 32 1 0
14 25 1 0 34 34 1 1
15 29 1 0 35 33 1 1
16 32 1 0 36 36 1 0
17 34 1 0 37 38 1 0
18 37 1 0 38 39 1 0
19 40 1 0 39 38 1 1
20 40 1 0 40 40 1 1

Mean 30.75 0.45 0.25 Mean 32.2 0.6 0.6

Notes: EOD* is the Extent of disease (0=moderate, 1=severe) and †Recovery (0=not 
recovered, 1=recovered).

Table 2: Example II: Raw data for hypothetical clinical trial [3] comparing the risk of 
recovery in new and conventional therapy groups.

 

Figure 1:  Estimated posterior distribution for the difference between stratum-
specific risk ratios estimated using the Bayesian logistic regression model on 
example I data.  The estimated RR (95% credible interval) was 2.0 (1.8, 2.2) 
for stratum 1 and 2.0 (1.8, 2.3) for stratum 2.
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RR using this algorithm was sensitive to starting values (Table 4). Three 
sets of starting values were chosen by 1) using the fitted values from 
the log-binomial model without age and starting the coefficient for age 
at zero, 2) using log-transformed stratum defined proportions for the 
coefficients for therapy, EOD, and overall (intercept), and starting the 
coefficient for age at zero, and 3) starting all coefficients at zero. For 
the IPTW method we used strata weights defined by age and EOD and 
estimated PS weights by fitting a logistic regression model with therapy 
as the outcome and EOD (categorical) and age (continuous) as the 
predictor variables. The IPTW method converged using both the strata 
and PS weights. The Bayesian log-binomial model converged but the 
parameter space was constrained by using all the outer ranges of the 
data as constraints. 

The Bayesian logistic model, as well as the logistic standardization 
using the marginal method, avoided all of these artifacts and model-
fitting challenges. We obtained the posterior distribution of the RR and 
the 95% CIB, 2.65 (1.31, 6.63) (Figure 2). The stratified MH, logistic 
standardization marginal, Poisson, and robust Poisson produced 
results similar to those of the Bayesian logistic model, with estimated 
RRs (95% CI) of 2.75 (1.11, 6.84), 2.79 (1.32, 6.17), 2.73 (0.95, 7.82), 

and 2.73 (1.27, 5.87), respectively. The log-binomial model estimated 
the RR to be 2.44 (1.09, 5.46), 2.65 (1.03, 6.82), and 2.85 (1.17, 6.91) 
using the COPY and IPTW (strata and PS weights), respectively. The 
log-binomial IWLS truncated algorithm produced estimated RR and 
95% CI for our three sets of starting values of 2.67 (1.29, 5.49), 2.54 
(1.20, 5.41), and 2.50 (1.16, 5.36). Lastly, the Bayesian log-binomial 
RR was 2.67 and 95% CIB (1.11, 6.38). Although the Poisson, robust 
Poisson, logistic standardization marginal, and Bayesian logistic 
models produced similar estimated RR values, their 95% intervals 
were substantially different: (0.95, 7.82), (1.27, 5.87), (1.32, 6.17), and 
(1.34, 6.86), respectively. The standard Poisson model was the only 
model that resulted in a non-significant RR. The log-binomial model 
(COPY and IWLS truncated algorithm methods) and Poisson model 
with robust standard error produced the narrowest 95% CIs. The 
log-binomial (strata, PS weights, and Bayesian) and Bayesian logistic 
methods produced 95% CIs of similar width. 

Results and Discussions 
In epidemiology, the RR comparing the exposed to the unexposed 

is the preferred measure of effect rather than an OR when the study 
design is appropriate for estimation of an outcome risk. Obtaining 
a standardized marginal RR is straightforward using logistic 
regression. However, MLE does not produce a RR CI (11, 12). We 
have demonstrated the ease of using the RR posterior distribution to 
calculate a 95% CIB. We illustrated the feasibility using two examples 
of Bayesian logistic regression as an alternative to standard methods to 
estimate the regression standardized marginal RR and 95% CIB. 

The logistic regression estimated OR should not be considered 

New Therapy Conventional Therapy
Recovered Not Recovered Prevalence Recovered Not Recovered Prevalence Odds Ratio Risk Ratio

Extent of Disease
Moderate 6 2 0.75 4 7 0.36 5.25 2.06
Severe 6 6 0.50 1 8 0.11 8.00 4.50
Age (years)
20-29 5 1 0.83 3 6 0.33 10.00 2.50
30-40 7 7 0.50 2 9 0.18 4.50 2.75
All 12 8 0.60 5 15 0.25 4.50 2.40

Table 3: Example II descriptive statistics for hypothetical clinical trial [3] comparing the risk of recovery in new and conventional therapy groups.

Model Risk Ratio 95% CI CI Width
Stratified Mantel-Haenszela 2.75 1.11, 6.84 5.73
Logistic Standardization by Marginal 
Method

2.79 1.32, 6.17 4.85

Poisson 2.73 0.95, 7.82 6.87
Robust Poisson 2.73 1.27, 5.87 4.60
Log-Binomial Did not converge
Log-Binomial (COPY) 2.44 1.09, 5.46 4.37
Log-Binomialb (IWLS truncated 
algorithm)

2.67 1.29, 5.49 4.20

2.54 1.20, 5.41 4.21
2.50 1.16, 5.36 4.20

Log-Binomial (IPTW strata weights)       2.65 1.03, 6.82 5.79
Log-Binomial (IPTW PS weights) 2.85 1.17, 6.91 5.74
Bayesian Logistic 2.65   1.31, 6.63c 5.32
Bayesian Log-Binomial 2.67   1.11, 6.38c 5.27
Logistic 7.93d 1.55, 40.44 38.89

Notes: IWLS = iterative weighted least squares; IPTW= inverse-probability-of-treatment-
weighted, PS = propensity score.  aThe estimated RR and 95% CI were calculated using age 
in years.  Results were 2.91 (1.22, 6.93) using the two age groups in Table 3.  bThree sets 
of starting values were chosen when using IWLS: 1) using the fitted MLE values for the 
model without age and starting the coefficient for age at zero, 2) estimates from the raw 
proportions and starting the coefficient age at zero, and 3) starting all coefficients at zero. 

cCredible interval and dOdds ratio.  

Table 4: Example II results for hypothetical clinical trial [3] comparing the risk of recovery 
in new and conventional therapy groups.  The risk ratio and 95% confidence interval (CI) 
for recovery adjusted for age and extent of disease was estimated using different models.  

 

Figure 2: Estimated posterior distribution for the risk ratio for recovery 
comparing new therapy with conventional therapy estimated using the 
Bayesian logistic regression model on example II data.  The estimated RR 
(95% credible interval) was 2.65 (1.31, 6.63)
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an approximation to the RR when the prevalence is common [14]. 
However, the logistic regression model itself may be a viable and better 
fitting model than the log-binomial or Poisson models. The RR may be 
obtained using a standardization method coupled with the bootstrap 
or the delta method to obtain the CI [3, 9, 11, 12]. A recent study 

[9] illustrated that the marginal method using logistic regression to 
estimate the RR performed well in simulations that included a single 
binary exposure variable and a single binary confounder variable. 
The standardization method using logistic regression is capable of 
estimating the RR for multiple exposure variables of interest and can 
be easily implemented in SUDAAN [29] for simple random samples as 
well as complex survey data [24]. 

The log-binomial model is often used to directly estimate the RR 
and generally produces an unbiased estimate of the adjusted RR but the 
CI may be too narrow [4, 30, 31]. In addition, while the log-binomial 
model may fail to converge using standard maximum likelihood for 
several reasons [32], convergence may be achieved by using any one of 
several methods (COPY, IWLS truncated algorithm, IPTW) or using 
better coefficient starting values [2, 14]. However, even when reasonable 
starting values or the COPY method are used non-convergence of the 
log-binomial model may remain an issue. Moreover, a simulation 
study comparing several methods for estimating the RR demonstrated 
that the COPY method did not converge for all simulated datasets [9]. 
We illustrated that a viable alternative to the frequentist log-binomial is 
to use a constrained Bayesian log-binomial model [13]. However, if the 
model has many potential predictor variables then determining all the 
outer range constraints may be tedious and the constraints will have to 
be modified when removing variables from the model. 

Our example II used the COPY, IWLS, IPTW, and Bayesian 
methods to fit the log-binomial model and the estimated RR using 
COPY was 2.44, which is lower than the Poisson (2.73), logistic 
standardization marginal (2.79), Bayesian log-binomial (2.67), and 
Bayesian logistic (2.65) models. The IWLS truncated algorithm and 
IPTW (stratified and PS) methods estimated RR as 2.67, 2.65, and 2.85, 
respectively. Simulations have shown the IPTW performs adequately 
but the method is generally limited to studies investigating one exposure 
variable [9]. Our example II illustrates the IWLS truncated algorithm 
performed adequately but estimated parameters were sensitive to 
parameter starting values. Further investigation is warranted into the 
substantial discrepancy between results from the log-binomial model 
using the COPY method and RRs produced by other models as well as 
the sensitivity of the IWLS truncated algorithm to parameter starting 
values. 

 Poisson models using a robust SE generally produced a reasonable 
standard error, but the Poisson model may result in some estimated 
probabilities >1.0 (example II). Estimated probabilities >1.0 may not 
be a concern if the focus of the study is on the RR and not on predicted 
risks, in which case the robust Poisson method is a good alternative. 
Poisson regression’s advantage over log-binomial regression is that 
it is not prone to non-convergence. Moreover, simulations illustrate 
the Poisson model using a robust SE adequately estimates the RR and 
95% CI with relatively low percent relative bias compared with other 
methods. 

We used published data to illustrate the viability of the Bayesian 
logistic regression model using the marginal method to estimate 
the RR and 95% CIB. Although our study is limited in scope to these 
hypothetical data sets, the results are consistent with a simulation study 
that illustrates logistic regression using the marginal method performs 
well in estimating the RR and 95% CI [9]. In addition, Bayesian logistic 

regression provides a flexible framework for obtaining and summarizing 
the RR and other statistics using the posterior distribution. Bayesian 
modeling is becoming more widespread in epidemiology and the ease 
of performing Bayesian analysis within standard software packages is 
increasing. Although beyond the scope of this study future follow-up 
studies using simulation will provide guidance on the performance 
of the Bayesian logistic model or other Bayesian models relative to 
frequentist methods. 

Conclusion
In summary, using logistic regression within the Bayesian 

paradigm allows us to obtain the posterior distribution for the 
indirectly estimated marginal RR as well as other quantities of interest 
that are functions of the adjusted risks. The Bayesian logistic regression 
modeling approach has several practical advantages. A major practical 
advantage of Bayesian modeling is that credible intervals for adjusted 
risks, risk differences, and risk ratios can be interpreted as probability 
intervals. Unlike frequentist confidence intervals, Bayesian credible 
intervals do not rely on large-sample approximations and are therefore 
appropriate for small sample sizes [33]. Another advantage is that 
available prior information about the regression coefficients can be 
incorporated in the Bayesian model. Last, multilevel data or models are 
particularly suited to the hierarchical structure of Bayesian modeling. 
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Supplemental Material 

S1 Appendix.    The SAS programs and data for all models used in Examples I and II are presented.     

Example I 

data temp1; 

input s e response count; 

datalines; 

1 0 1 320 

1 0 0 480 

1 1 1 400 

1 1 0 100 

2 0 1 300 

2 0 0 700 

2 1 1 300 

2 1 0 200 

; 

run; 

 

 

/* Data preparation for robust Poisson SE, creating a subject level variable */ 

data temp2; 

set temp1; 

sub=_N_; 

run; 

 

/* Stratified Mantel-Haenszel*/ 

procfreqdata=temp2; 

table s*e*response / chisqrelriskcmh; 

exactpchior; 

weight count; 

run; 

 

 

/* Logistic Marginal Method */ 

data temp3; 

set temp2; 

do i=1to count; 

output;     

end; 



drop i count sub ;run; 

 

odstraceon; 

sasfile temp3 load; 

procsurveyselectdata=temp3 out=outboot 

seed=017246 

method=urs 

samprate=1 

outhits 

rep=2000; 

strata s; 

run; 

sasfile temp3 close; 

 

procsortdata=outboot; 

by replicate; 

run; 

odstraceoff; 

 

procgenmoddata=outbootdescending; 

by replicate; 

class e s; 

model response = s e / d=b link=logit; 

estimate'Odds ratio for Exposed vs Non-Exposed'e -11 / exp; 

outputout=betaxxbeta=eta; 

odsoutputparameterestimates=parms; 

run; 

odsoutputclose; 

 

 

 

databetax; 

setbetax; 

_NAME_="Estimate"; 

run; 

data estimates; 

setparms; 

by replicate; 

if level1=""then level1="1"; 



keep replicate parameter level1 estimate; 

run; 

 

proctransposedata=estimates out=parms2; 

by replicate; 

id parameter level1; 

run; 

 

data temp4; 

mergebetax parms2; 

by replicate _NAME_;  

if s=1thendo; 

pe0 = 1/(1+exp(-1*(intercept1+s1+e0))); 

pe1 = 1/(1+exp(-1*(intercept1+s1+e1))); 

end; 

if s=2thendo; 

pe0 = 1/(1+exp(-1*(intercept1+s2+e0))); 

pe1 = 1/(1+exp(-1*(intercept1+s2+e1))); 

end; 

 

drop scale1; 

run; 

 

procmeansdata=temp4; 

by replicate; 

var pe0; 

outputout=temp5 mean=pe0; 

run; 

 

procmeansdata=temp4; 

by replicate; 

var pe1; 

outputout=temp6 mean=pe1; 

run; 

 

data temp7; 

merge temp5 temp6; 

by replicate; 

 RR=pe1/pe0; 



drop _type_ _freq_; 

procprint; 

run; 

 

 

 

procunivariatedata=temp7; 

varrr; 

outputout=final pctlpts=2.5, 50.0, 97.5pctlpre=rr; 

procprintdata=final; 

run; 

 

 

/* Standard Poisson Model*/ 

procgenmoddata=temp2; 

class e s; 

model response = s e / d=plink=log; 

estimate'Risk Ratio for Exposed vs Non-Exposed'e -11 / exp; 

freq count; 

outputout=example p=p; 

run; 

 

/* Robust Poisson Model*/ 

procgenmoddata=temp2; 

class e s sub; 

model response = s e / d=plink=log; 

estimate'Risk Ratio for Exposed vs Non-Exposed'e -11 / exp; 

freq count; 

repeatedsubject=sub / type=un; 

outputout=example p=p; 

run; 

 

/* Log-Binomial Model*/ 

procgenmoddata=temp2 descending; 

class e s; 

model response = s e / d=b link=log; 

freq count; 

estimate'Risk Ratio for Exposed vs Non-Exposed'e -11 / exp; 

outputout=example p=p; 



run; 

 

/* Bayes logistic model*/ 

procgenmoddata=temp2 descending; 

class e s; 

model response = s e / d=b link=logit type3; 

freq count; 

bayesseed=1234outpost=bayes_probinitialmlenbi=5000seed=8847563nmc=100000thinning=10; 

run; 

 

procprintdata=bayes_prob(obs=10);run; 

 

data post; setbayes_prob; 

p1=exp(Intercept + s2 + e1)/(1+exp(Intercept + s2 + e1)); 

p2= exp(Intercept + s2 + e0)/(1+exp(Intercept + s2 + e0)); 

p3=exp(Intercept + s1 + e1)/(1+exp(Intercept + s1 + e1)) ; 

p4=exp(Intercept + s1 + e0)/(1+exp(Intercept + s1 + e0)); 

r1= (1500/2800)*p1 + (1300/2800)*p3; 

r2= (1500/2800)*p2 + (1300/2800)*p4; 

RR=r1/r2; 

 

r1_s2= (500/1500)*p1; 

r2_s2= (1000/1500)*p2; 

 

run; 

 

 

*mean estimate; 

procmeansdata=post meanmedianminmax ; 

var RR r1_s2 r2_s2; 

run; 

 

*interval estimate; 

procunivariatedata=post noprint; 

var RR; 

outputout=interval1  pctlpts= 2.5, 97.5pctlpre=lower upper; 

procprintdata=interval1;run; 

 

 



/* Bayes logistic model*/ 

 

procgenmoddata=temp2 descending; 

class e s; 

model response = s|e / d=b link=logit type3; 

freq count; 

bayesseed=1234outpost=bayes_probinitialmlenbi=5000seed=8847563nmc=10000 ;*thinning=10; 

run; 

 

procprintdata=bayes_prob(obs=10);run; 

 

data post; setbayes_prob; 

p_s2e1 = exp(Intercept + s2 + e1 + e1s2)/(1+exp(Intercept + s2 + e1 + e1s2)); 

p_s2e0 = exp(Intercept + s2 + e0 + e0s2)/(1+exp(Intercept + s2 + e0 + e0s2)); 

p_s1e1 = exp(Intercept + s1 + e1 + e1s1)/(1+exp(Intercept + s1 + e1 + e1s1)) ; 

p_s1e0 = exp(Intercept + s1 + e0 + e0s1)/(1+exp(Intercept + s1 + e0 + e0s1)); 

 

RR_s2 = p_s2e1/p_s2e0; 

RR_s1 = p_s1e1/p_s1e0; 

 

Diff = RR_s1 - RR_s2; 

 

run; 

 

*mean estimate; 

procmeansdata=post meanmedianminmax ; 

var RR_s1 RR_s2 p_s1e1 p_s1e0 p_s2e1 p_s2e0 diff; 

run; 

 

*interval estimate; 

procunivariatedata=post noprint; 

var RR_s1 RR_s2; 

outputout=interval1  pctlpts= 2.5, 97.5pctlpre=lower upper; 

run; 

 

odsgraphicson / width=3.25reset=allborder=offoutputfmt=gifimagemap=on; 

odshtmlfile="RR_Thompson.html"style=journal 

gpath="XXX: \Bayesian_Logistic\Document\program\Final" 

; 



proctemplate; 

definestylemystyle ; 

parent=styles.htmlblue; 

stylegraphwalls from graphwalls / frameborder=off; 

end; 

run; 

odshtmlstyle=mystyle; 

procsgplotdata=post noautolegend ; 

density diff / type=kernelscale=percent; 

xaxisvalues=(-1.0to1.0by0.25) label="Difference between Stratum Specific Risk Ratios"; 

yaxisvalues=(0to12by2) label="Posterior  Distribution (Percent)"; 

title; 

run; 

 

odshtmlstyle=htmlblue; 

odsgraphicson / reset=all; 

odsgraphicsoff; 

 

/*Bayes, Lob-Binomial*/ 

 

procmcmcdata=temp1 nbi=5000nmc=1000000thin=10propcov=quanewdiag=(mcseess) outpost=mcmc_outseed=1234; 

parms (alpha0 alpha1 alpha2) -0.5; 

prior alpha0 alpha1 alpha2 ~normal (0,var=10000); 

      p=exp(alpha0+alpha1*s+alpha2*e); 

model y ~binomial(n,p); 

 

run; 

 

data temp2; 

setmcmc_out; 

RR = exp(alpha2); 

run; 

procunivariatedata=temp2; 

varrr; 

outputout=temp3 pctlpts=2.5, 50.0, 97.5pctlpre=rr; 

run; 

procprintdata=temp3; 

run; 

 



/* Logistic Regression Model*/ 

procgenmoddata=temp2 descending; 

class e s; 

model response = s e / d=b link=logit; 

freq count; 

estimate'Odds ratio for Exposed vs Non-Exposed'e -11 / exp; 

outputout=example p=p; 

run; 

 

Example II 

 

data lee; 

input therapy eod age y; 

datalines; 

0 0 20 1 

0 0 23 1 

0 0 22 0 

0 0 26 0 

0 0 29 0 

0 0 34 0 

0 0 32 1 

0 0 30 0 

0 0 38 0 

0 0 37 0 

0 0 38 1 

0 1 25 1 

0 1 24 0 

0 1 25 0 

0 1 29 0 

0 1 32 0 

0 1 34 0 

0 1 37 0 

0 1 40 0 

0 1 40 0 

1 0 20 1 

1 0 24 1 

1 0 28 1 

1 0 30 1 



1 0 32 1 

1 0 33 0 

1 0 38 1 

1 0 36 0 

1 1 24 0 

1 1 26 1 

1 1 29 1 

1 1 34 0 

1 1 32 0 

1 1 34 1 

1 1 33 1 

1 1 36 0 

1 1 38 0 

1 1 39 0 

1 1 38 1 

1 1 40 1 

; 

run; 

 

 

/* Recoding the 0 and 1 for the therapy outcome variable */ 

dataLeeb; 

set lee; 

therapy2=1-therapy; 

eod=1-eod; 

run; 

 

 

 

/* Standard Poisson Model: Example II Table 4 Results */ 

Title1"Standard Poisson Regression using Lee's Data"; 

procgenmoddata=drew descending; 

class therapy eod; 

model y = therapy eod age/ d=plink=log type3 ; 

estimate'New vs Old Therapy' therapy -11 / exp; 

outputout=logit p=p; 

run; 

 

 



/*Stratified MH approach*/ 

procfreqdata=Leeb; 

table age*eod*therapy2*y / listmissingrelriskcmh; 

exactpchior; 

run; 

 

/* Standard Logistic Model */ 

Title1"Standard Logistic Regression using Lee's Data"; 

procgenmoddata=lee descending; 

class therapy eod; 

model y = therapy eod age/ d=b link=logit type3 ; 

estimate'New vs Old Therapy' therapy -11 / exp; 

outputout=logit p=p; 

run; 

 

/* These blocks of code are for estimating the 95% CI using the marginal method 

and logistic regression */ 

/* This is the code for the Logistic RR reaults using bootstrapping */ 

/* Create the bootstrap datasets for Table 4 Lee's data example*/ 

odstraceon; 

sasfile lee load; 

procsurveyselectdata=lee out=outboot 

seed=17246 

method=urs 

samprate=1 

reps=5000 

outhits; 

strata therapy; 

run; 

sasfile lee close; 

 

procsortdata=outboot; 

by replicate; 

run; 

 

 

odstraceoff; 

 

/* Logistic Marginal Regression Model Table 4 Example 



         The marginal estimate for RR comes from the original  

data and CI from the bootstrap samples */ 

procgenmoddata=outbootdescending; 

by replicate; 

class therapy eod; 

model y = therapy eod age / d=b link=logit; 

outputout=betaxxbeta=eta; 

odsoutputparameterestimates=parms; 

run; 

odsoutputclose; 

 

/* Beta linear predictor output, creating _name_ for merging */ 

databetax; 

setbetax; 

_NAME_="Estimate"; 

run; 

 

/* Parameter estimate for estimating the marginal probabilities for therapy new and conventional */ 

data estimates; 

setparms; 

by replicate; 

if level1=""then level1="1"; 

keep replicate parameter level1 estimate; 

run; 

 

proctransposedata=estimates out=parms2; 

by replicate; 

id parameter level1; 

run; 

 

/* Merge data with parameter estimates to estimate p for therapy new and conventional */ 

data temp4; 

mergebetax parms2; 

by replicate _NAME_;  

 

pe0 = 1/(1+exp(-1*(intercept1+therapy0+eod0*(1-eod)+age1*age))); 

pe1 = 1/(1+exp(-1*(intercept1+therapy1+eod0*(1-eod)+age1*age))); 

drop scale1; 

run; 



 

/* creating a dataset to determine if there are any missing y 0 / 1 for the combinations of therapy and eod */ 

procfreqdata=temp4 noprint; 

tables y*therapy*eod / listmissingout=new; 

by replicate; 

run; 

 

procmeansdata=new noprint; 

by replicate; 

outputout=new2 n=total; 

data new2; 

set new2; 

keep replicate total; 

run; 

 

data new3; 

merge new2 new; 

by replicate; 

run; 

 

data temp4b; 

merge temp4 new3; 

by replicate; 

if total ne 8thendelete; 

run; 

 

procmeansdata=temp4b noprint; 

by replicate; 

var pe0; 

outputout=temp5 mean=pe0; 

run; 

 

procmeansdata=temp4b noprint; 

by replicate; 

var pe1; 

outputout=temp6 mean=pe1; 

run; 

 

data temp7; 



merge temp5 temp6; 

by replicate; 

 RR=pe1/pe0; 

 

drop _type_ _freq_; 

*proc print; 

run; 

 

/* The final bootstrap 95% CI, the estimate is 2.79 using the original data */ 

procunivariatedata=temp7; 

varrr; 

outputout=final pctlpts=2.5, 50.0, 97.5pctlpre=rr; 

procprintdata=final; 

run; 

 

 

 

/* Standard Poisson Model */ 

Title1"Standard Poisson Regression using Lee's Data"; 

procgenmoddata=lee descending; 

class therapy eod; 

model y = therapy eod age/ d=plink=log type3 ; 

estimate'New vs Old Therapy' therapy -11 / exp; 

outputout=logit p=p; 

run; 

 

/* Preparing data for Poisson robust SE model */ 

data lee2; 

set lee; 

sub=_N_; 

run; 

 

/* Robust Poisson Model: Matches Lee's Results */ 

Title1"Robust Poisson Regression using Lee's Data"; 

procgenmoddata=lee2; 

class therapy eod sub; 

model y = therapy eod age / d=plink=log ; 

estimate'New vs Old Therapy' therapy -11 / exp; 

repeatedsubject=sub / type=un; 



outputout=pois2 p=p; 

run; 

 

 

 

/* Log-Binomial Model that Doesn't Converge */ 

Title1"Standard Log-Binomial Regression using Lee's Data"; 

procgenmoddata=lee descending; 

class therapy eod; 

model y = therapy eod age  / d=b link=log type3 ; 

estimate'New vs Old Therapy' therapy -11 / exp; 

outputout=logit p=p; 

run; 

 

/* Prepare data for log-binomial COPY method model */ 

DATA ONE; SET lee; W=.9999; 

DATA TWO; SET lee; Y=1-Y; W=.0001; 

DATA THREE; SET ONE TWO; 

run; 

 

 

/*Log-Binomial model using COPY method: Example II Table 4 Results */ 

Title1"COPY Method Log-Binomial Regression using Lee's Data"; 

PROCGENMODDATA=THREE descending; 

WEIGHT W; 

class therapy eod; 

MODEL Y=therapy eod age/D=BIN LINK=LOG 

LRCI; 

estimate'New vs Old Therapy' therapy -11 / exp; 

outputout=logbp=p; 

run; 

 

####R code for Log-Binomial (IWLS truncated with three sets of initial values) 

#loading the data 

 

data<-as.matrix(read.csv("XXX: /Final Manuscript/Final Analysis Programs/Final/Lee_data.csv", header=F)) 



 

x<-data[,1:4] 

y<-data[,5] 

 

#IWLS Method 1, using the fitted coefficient values for the COPY model without age and starting the coefficient of age at 

zero 

 

iter<- 0 

n<-40 

bhat0<-matrix(c(-0.7706,0.9095,-0.5139,0),4)  

 

repeat{ 

iter<-iter+1 

eta<- x %*% bhat0 

etaexp<-exp(eta) 

etaexp[etaexp>= 1] <- 0.9999 

etaexp[etaexp<=0.0001] <- 0.0001 

z0<-eta+(y-etaexp) / etaexp 

w0<-diag(as.vector(t(etaexp / (1-etaexp)))) 

bhat1 <- solve(t(x) %*% w0 %*% x) %*% t(x) %*% w0 %*% z0 

if(all((bhat1-bhat0) ^ 2<=10^-6)){break} 

bhat0<-bhat1 

} 

 

se<-sqrt(diag(solve(t(x) %*% w0 %*% x))) 

 



exp.bhat1<-exp(bhat1) 

exp.se<-exp(se) 

lower<-exp(bhat1-1.96*se) 

upper<-exp(bhat1+1.96*se) 

 

exp.bhat1 

lower 

upper 

 

 

#IWLS Method 2, using the fitted coefficient values for the COPY model without age and starting the coefficient of age at 

zero 

 

#raw proportions  

#Therapy: model p=1, p(recovery=1|therapy=1)=12/20=0.6, ln(p)=beta0+beta1, beta0=ln(p(recovery=1))=ln(17/40)=-

0.85567,  

#beta1=ln(p)-beta0=-1.9861+0.85567=-1.13043 

#EOD:model P=1, when recovery=1, 7/21=p(recovery=1|EOD=1), ln(p)=beta0+beta2, beta0=ln(p(recovery=1))=ln(17/40)=-

0.85567,  

#so ln(7/21)=-0.85567+beta2, beta2=-0.51083+0.85567=0.34484 

#raw proportions 

#bhat0<-matrix(c(-0.85567,0.34484,-1.13043,0),4)  

 

iter<- 0 

n<-40 

bhat0<-matrix(c(-0.85567,0.53063,-0.213812,0),4)  



 

 

repeat{ 

iter<-iter+1 

eta<- x %*% bhat0 

etaexp<-exp(eta) 

etaexp[etaexp>= 1] <- 0.9999 

etaexp[etaexp<=0.0001] <- 0.0001 

z0<-eta+(y-etaexp) / etaexp 

w0<-diag(as.vector(t(etaexp / (1-etaexp)))) 

bhat1 <- solve(t(x) %*% w0 %*% x) %*% t(x) %*% w0 %*% z0 

if(all((bhat1-bhat0) ^ 2<=10^-6)){break} 

bhat0<-bhat1 

} 

 

se<-sqrt(diag(solve(t(x) %*% w0 %*% x))) 

 

exp.bhat1<-exp(bhat1) 

exp.se<-exp(se) 

lower<-exp(bhat1-1.96*se) 

upper<-exp(bhat1+1.96*se) 

 

exp.bhat1 

lower 

upper 



#IWLS Method 3, staring all coefficients at zero 

iter<- 0 

n<-40 

bhat0<-matrix(c(0,0,0,0),4)  

 

repeat{ 

iter<-iter+1 

eta<- x %*% bhat0 

etaexp<-exp(eta) 

etaexp[etaexp>= 1] <- 0.9999 

etaexp[etaexp<=0.0001] <- 0.0001 

z0<-eta+(y-etaexp) / etaexp 

w0<-diag(as.vector(t(etaexp / (1-etaexp)))) 

bhat1 <- solve(t(x) %*% w0 %*% x) %*% t(x) %*% w0 %*% z0 

if(all((bhat1-bhat0) ^ 2<=10^-6)){break} 

bhat0<-bhat1 

} 

 

se<-sqrt(diag(solve(t(x) %*% w0 %*% x))) 

 

exp.bhat1<-exp(bhat1) 

exp.se<-exp(se) 

lower<-exp(bhat1-1.96*se) 

upper<-exp(bhat1+1.96*se) 

exp.bhat1 



lower 

upper 

 

/*IPTW Propensity Score Approach: Estimating weights using logistic regression */ 

procgenmoddata=lee descending; 

class therapy eod; 

model therapy = eod age / d=b link=logit type3 ; 

outputout=logit p=p; 

run; 

 

/* Using the logistic regression results to define the PS weights */ 

data logit2;  

 set logit;  

 if therapy=1then weight=0.5/p;  

  elseif therapy=0then weight=0.5/(1-p); 

run; 

procprintdata=logit2 noobs; run; 

 

/* IPTW PS Approach estimated RR for Table 4 */ 

procgenmoddata=logit2 descending; 

class therapy eod; 

weightweight; 

model y = therapy/ d=b link=log type3 ; 

estimate'New vs Old Therapy' therapy -11 / exp; 

outputout=logit3 p=p; 

run; 

 

 

/* The IPTW Strata Weights Table 4 Method: Weights calculated using crude weights strata */ 

***crude weight, based on P(x1|x2,x3); 

procfreqdata=lee; tables therapy; where age=40 and eod=1;run; 

 

data lee3; 

 input therapy eod age y p_denominatorweight_crude; 

cards; 

0 0 20 1 0.5 1 

0 0 23 1 1 0.5 

0 0 22 0 1 0.5 



0 0 26 0 1 0.5 

0 0 29 0 1 0.5 

0 0 34 0 1 0.5 

0 0 32 1 0.5 1 

0 0 30 0 0.5 1 

0 0 38 0 0.667 0.749625187 

0 0 37 0 1 0.5 

0 0 38 1 0.667 0.749625187 

0 1 25 1 1 0.5 

0 1 24 0 0.5 1 

0 1 25 0 1 0.5 

0 1 29 0 0.5 1 

0 1 32 0 0.5 1 

0 1 34 0 0.333 1.501501502 

0 1 37 0 1 0.5 

0 1 40 0 0.667 0.749625187 

0 1 40 0 0.667 0.749625187 

1 0 20 1 0.5 1 

1 0 24 1 1 0.5 

1 0 28 1 1 0.5 

1 0 30 1 0.5 1 

1 0 32 1 0.5 1 

1 0 33 0 1 0.5 

1 0 38 1 0.333 1.501501502 

1 0 36 0 1 0.5 

1 1 24 0 0.5 1 

1 1 26 1 1 0.5 

1 1 29 1 0.5 1 

1 1 34 0 0.667 0.749625187 

1 1 32 0 0.5 1 

1 1 34 1 0.667 0.749625187 

1 1 33 1 1 0.5 

1 1 36 0 1 0.5 

1 1 38 0 1 0.5 

1 1 39 0 1 0.5 

1 1 38 1 1 0.5 

1 1 40 1 0.333 1.501501502 

; 

run; 



 

/* IPTW PS Strata Weight Table 4 Results */ 

procgenmoddata=lee3descending; 

class therapy eod; 

weightweight_crude; 

model y = therapy/ d=b link=log type3 ; 

estimate'New vs Old Therapy' therapy -11 / exp; 

outputout=logit4 p=p; 

run; 

 

 

/* Code below is for the Bayesian marginal method implemented using GENMOD */ 

/* Analysis for results presented in Table 4 Example II for Bayesian */ 

Datalee4(rename=(age=age0)); 

set lee; 

id = _N_; 

do replicate=1to100000; 

output; 

end; 

procsort; by replicate id; 

run; 

 

 

/* Initial values, only first row, MLE, initial values are used by SAS for computing the posterior 

   The other initial values are for computing the Gelman stat */ 

data bob; 

input intercept therapy0 therapy1 eod0 eod1 age scale; 

datalines; 

3.2293 -2.0701 0 1.0767 0 -0.0984 1.0 

0 0 0 0 0 0 1.0 

1.0 -1.0 0 0 0 0 1.0 

; 

run; 

 

odsgraphicson; 

/* Bayes logistic model for Thompson Example I 

   This is the full saturated model for looking at stratum specific differences 

   We process the stratum specific RR to graph the difference in Figure 1 of the difference */ 

procgenmoddata=lee descending; 



class therapy eod ;*/ param=ref; 

model y = therapy eod age/ d=b link=logit; 

bayesseed=7854outpost=bayes_probinitial=bob nbi=5000nmc=1000000coeff=jeffreys(conditional)  

 thinning=10samp=gamermanplotsdiagnostics=(autocorressgelman(n=3)); 

run; 

odsgraphicsoff; 

 

data lee5; 

set lee4; 

sub=replicate; 

procsort; by replicate; 

run; 

 

databayes_prob; 

setbayes_prob; 

sub=_N_; 

run; 

 

/* Merge the data with the Bayes parameter estimates to estimate the probabilities of new  

and conventional therapy by subject */ 

data post1; 

mergebayes_prob lee3; 

by sub; 

p1=exp(Intercept + therapy0 + eod0*eod + age*age0)/(1+exp(Intercept + therapy0 + eod0*eod + age*age0)); 

p2=exp(Intercept + therapy1 + eod0*eod + age*age0)/(1+exp(Intercept + therapy1 + eod0*eod + age*age0)); 

run; 

 

procsortdata=post1; 

by replicate; 

run; 

 

procmeansdata=post1 noprint; 

by replicate; 

var p1; 

outputout=post1a mean=p1; 

run; 

 

procmeansdata=post1 noprint; 

by replicate; 



var p2; 

outputout=post1b mean=p2; 

run; 

 

data post1c; 

merge post1a post1b; 

by replicate; 

 RR=p2/p1; 

drop _type_ _freq_; 

*proc print; 

run; 

 

/* Median RR and 95% credible interval */ 

procunivariatedata=post1c; 

var RR; 

outputout=final pctlpts=2.5, 50.0, 97.5pctlpre=rr; 

procprintdata=final; 

run; 

 

 

odsgraphicson / width=3.25reset=allborder=off/*outputfmt=gif*/imagemap=on; 

odshtmlfile="RR_Lee.html"style=journal gpath="XXX:\Estimation of RR\IJE Manuscript\Final Manuscript\"; 

 

proctemplate; 

definestylemystyle ; 

parent=styles.htmlblue; 

stylegraphwalls from graphwalls / frameborder=off; 

end; 

run; 

 

odshtmlstyle=mystyle ; 

 

procsgplotdata=post1c noautolegend; 

densityrr / type=kernelscale=percent; 

xaxisvalues=(0.0to10.0by1.0) label="Risk Ratio for New versus Conventional Therapy"; 

yaxisvalues=(0to25by5) label="Posterior  Distribution (Percent)"; 

title; 

run; 

 



odshtmlstyle=htmlblueclose; 

odsgraphicson / reset=all; 

odsgraphicsoff; 

 

 

/*Bayesian Log-Binomial*/ 

 

procmcmcdata=leenbi=5000nmc=2000000thin=10propcov=quanewdiag=(mcseess) outpost=mcmc_outseed=1234; 

parms (alpha0 alpha1 alpha2 alpha3) -0.5; 

prior alpha0 alpha1 alpha2 alpha3 ~normal (0,var=10000); 

      p=exp(alpha0+alpha1*therapy+alpha2*age+alpha3*eod); 

model y ~binary(p); 

run; 

 

 

data post; setmcmc_out; 

 

c1=exp(alpha0+alpha1*0+alpha2*20+alpha3*0); 

c2=exp(alpha0+alpha1*0+alpha2*38+alpha3*0); 

c3=exp(alpha0+alpha1*0+alpha2*25+alpha3*1); 

c4=exp(alpha0+alpha1*0+alpha2*40+alpha3*1); 

c5=exp(alpha0+alpha1*1+alpha2*20+alpha3*0); 

c6=exp(alpha0+alpha1*1+alpha2*38+alpha3*0); 

c7=exp(alpha0+alpha1*1+alpha2*24+alpha3*1); 

c8=exp(alpha0+alpha1*1+alpha2*40+alpha3*1); 

run; 

 

 

data post2; set post;  

if c1>1 or c2>1 or c3>1 or c4>1 or c5>1 or c6>1 or c7>1 or c8>1thendelete; 

run; 

 

*randome select 100000 samples to summarize; 

procsurveyselectdata=post2 method=srsn=100000reps=1seed=1234out=SampleRep; 

run; 

 

data SampleRep2; 

setSampleRep; 

RR = exp(alpha1); 



run; 

 

procunivariatedata=SampleRep2; 

varrr; 

outputout=temp3 pctlpts=2.5, 50.0, 97.5pctlpre=rr; 

run; 

 

procprintdata=temp3;run; 

 

 

/* Standard Logistic Model */ 

Title1"Standard Logistic Regression using Lee's Data"; 

procgenmoddata=lee descending; 

class therapy eod; 

model y = therapy eod age/ d=b link=logit type3 ; 

estimate'New vs Old Therapy' therapy -11 / exp; 

outputout=logit p=p; 

run;  
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