
J Biomet Biostat
ISSN:2155-6180 JBMBS, an open access journal

Journal of Biometrics & Biostatistics - Open Access
Research Article

OPEN ACCESS Freely available online
doi:10.4172/2155-6180.1000103

Volume 1• Issue 1•1000103

Keywords: Bayesian hierarchical model; Power prior; Normalized
power prior; Historical data; Evidence synthesis

Introduction

Investigators conducting new research often have access to data 
from previous studies, and in such cases it is not only scientifically 
reasonable but also statistically advantageous to incorporate this 
information into the current analysis. Consider, for example, the 
common scenario in which a funding agency finances research 
incrementally, first requiring a small pilot or feasibility study before 
funding a more elaborate trial. In such cases, it can be beneficial to 
incorporate the pilot data into the subsequent analysis to increase 
the power to detect treatment effects. One strategy for synthesizing 
results across studies is through a Bayesian modeling approach. 
Because Bayesian methods can incorporate historical information 
through a prior distribution, they provide a natural framework for 
updating information across studies.

There are several advantages to a Bayesian analysis with 
informative priors elicited from historical data. First, informative 
priors can yield estimates consistent with accepted views of effects 
being studied [1]. For example, one might wish to restrict a model 
parameter to a reasonable range (e.g., a non-negative effect for 
smoking) to ensure a result consistent with established findings. 
Second, informative priors can improve the precision of estimates 
and increase the ability to detect treatment effects, even if the 
priors are only used to inform ancillary parameters. And finally, 
informative priors can be used in settings where diffuse priors 
may lead to computational difficulties or even improper posterior 
distributions [2].

While historical priors provide a useful analytic tool, there are 
times when investigators will want to limit the impact of historical 
data on the current analysis. For example, they may question the 
compatibility of the current and historical data, and may therefore 
wish to “downweight” the historical information to reduce its 
impact. Such downweighting may also be required by a regulatory 
agency, such as the US Food and Drug Administration (FDA), that 

wishes to limit the impact of historical information on the analysis 
of a new treatment.

Using an illustrative example, this paper explores common 
Bayesian approaches to incorporating historical information into 
regression models when there is uncertainty about the similarity 
between the current and historical studies. Our example involves 
a pair of studies designed to improve the delivery of care in 
pediatric clinics. New mothers were surveyed during baseline 
and follow-up periods and asked to rate their quality of care in 
a variety of areas; their responses were then aggregated into a 
binary measure representing high- or low-quality care. The aim 
was to evaluate the intervention effect comprehensively across 
both studies. However, while the two questionnaires overlapped 
substantially, they were not identical measures. To express our 
uncertainty about the compatibility of the two studies, we used 
the power prior methodology developed by Ibrahim and Chen [2] to 
mitigate the impact of the historical data in the event that the two 
studies differed in unobservable ways. The power prior introduces 
a parameter that explicitly controls the amount of weight assigned 
to the historical data. The approach has been applied to a variety 
of settings, including analyses involving cure rate models [3], 
environmental quality assessments [4], sample size determination 
[5], clinical trials [6], health-care evaluation [7] and cross-design 
meta-analysis [8,9].
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Abstract
We illustrate how power prior distributions can be used to incorporate historical data into a Bayesian analysis when 
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large datasets and models with several parameters, the NPP may lead to considerably more downweighting than 
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appropriate to assign a0 a fi xed value based on expert opinion about the relevance of the historical data to the current 
analysis. We also extend the power prior to hierarchical regression models that allow covariate effects to differ across 
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In addition, we explore whether the data can determine how 
much weight to assign to the historical data, or whether this impact 
factor should be user-specified. We also propose an extension of 
the power prior to exchangeable hierarchical models. Here, we 
allow the covariate effects to differ across studies but assume that 
they share a common prior distribution. We then use the power 
prior to further attenuate the impact of the historical data in the 
event that the exchangeability assumption is itself too strong.

The remainder of this paper is organized as follows: Section 
2 reviews common specifications of the power prior, explores 
strategies of assigning weights to the historical data, and describes 
the proposed extension to exchangeable hierarchical models; 
Section 3 provides background for the case study and presents 
analyses using the conventional and exchangeable power priors; 
and the final section summarizes the methods and offers guidelines 
for their use in practice.

The Power Prior

The conditional power prior

Let D and D0 denote the data from current and historical 
studies, respectively. Ibrahim and Chen [2] define the power prior 
distribution for a set of parameters  as
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where L(D0| ) denotes the likelihood for the historical study,
a0 is (for now) a fixed, known constant ranging from 0 and 1, g  
     0

0 0 0

a

a L D d      is the normalizing constant, and 0 ( ) the
initial prior assigned to   before observing D0. In many cases, 0

() will be taken to be diffuse to re reflect lack of knowledge about
  prior to observing the historical data. We refer to prior (2.1) as
the conditional power prior, since it is formed by conditioning on
both D0 and the fixed parameter a0. The parameter a0 governs the
impact of the historical data on the current analysis, ranging from
no influence when a0 = 0 to parity when a0 = 1, in which case
(2.1) is just the usual posterior update of   based on D0. We note
also that the power prior will be proper as long as the normalizing
constant is finite.

Given (2.1), Bayes’ theorem implies 
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where L(D|) denotes the current-data likelihood. Note that, at 
this stage of the analysis, a0 and D0 are treated as hyperparameters 
that impact  only through the power prior in (2.1). When a0= 1,
the posterior for  based on both D and D0 can be expressed as
 0 0, , 1D D a             0 0 0,      L D L D L D D  and hence assigning 

a0= 1 is tantamount to pooling the current and historical data and 
basing posterior inference on the aggregated data. Conversely, when 
a0= 0, the historical data are excluded altogether, and the prior for 
 reduces to the initial prior, 0 (). And, when 0 < a0 < 1, the log-
likelihood contributions of the historical subjects are downweighted
by 100 x (1 - a0)%. The parameter a0 can also be viewed as a precision
parameter that inversely affects the heaviness of the tails of the prior
for  (smaller a0 values lead to heavier tails).

For generalized linear models, Ibrahim and Chen [2] recommend 
constructing the conditional power prior as
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where P(yoij|.) denotes the density function for yoij ( j=1,…, n0; 
i=1,…, n);   is a P×1 vector of fixed effect coefficients; b0i is a Nq 

(0,) vector of random effects for the ith historical cluster; x0ij and z0ij

are fixed and random effect covariate vectors; and is a dispersion 
parameter (perhaps known). Here, the power prior is placed on the 
historical likelihood given the random effects, rather than on the 
marginal likelihood formed by first integrating out the subject-
specific effects. As Ibrahim and Chen [2] point out, conditioning 
on the random effects has several interpretive and computational 
advantages, including efficient implementation within a Markov 
chain Monte Carlo (MCMC) algorithm. We refer readers to section 
4 of their paper for further details. Prior specification is completed 
by assuming an initial prior, 0(), for , as well as prior distributions 
for the dispersion parameter  (if unknown) and the random-effect 
covariance matrix .

Joint power priors

The ibrahim-chen joint power prior: Within a Bayesian 
framework, it is natural to express uncertainty about the value of 
a0−and hence about the relevance of the historical data−by placing a 
prior distribution on a0 and allowing the data to help determine its 
most likely value. Doing so defines a joint power prior, (, a0|D0).
Investigators have typically specified this joint power prior in one 
of two ways. Under the first approach, proposed in various articles 
by Ibrahim and Chen [e.g., 10,2,11], the joint prior is specified as
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where (a0) denotes a prior for a0, such as a Be(, ) prior, with
support on [0,1]. We refer to prior (2.4) as the Ibrahim-Chen (IC) 
joint power prior. Chen et al. [10] derive sufficient conditions for 
its propriety, noting that for normal models, prior (2.4) is always 
proper, while for a binomial model with a logit link,  must be 
greater than the rank of the design matrix to ensure propriety.

The corresponding joint posterior is given by 
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However, while this posterior is well defined, our experience 
suggests that the mass of the posterior distribution coalesces near 
zero as the prior variance of a0 increases, effectively excluding D0 

under diffuse priors. In Appendix A, we show that the posterior 
mode occurs at either a0 = 0 or at a0 = 1 under a U[0,1] prior. 
(In most practical situations, the mode occurs at 0.) This result 
is evident in previous applications of the power prior, although, 
with the exception of Duan et al. [4], Duan and Ye [12] and more 
recently Neuenschwander et al. [13], it has not been explicitly 
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noted in the literature. In fact, this tendency for the posterior 
mass to concentrate near zero holds even when D = D0, since a0 
is not affected by the commensurability between the current and 
historical data under the IC power prior.

To illustrate this last point, we conducted a small simulation 
study to examine how the posterior mean of  0 0 0, ,a E a y y  changes 
as (a0) becomes more diffuse. We considered a simple normal model 
with unknown mean,  and known variance 2; that is,  2~ ,y N n   
and  2

0 0~ ,y N n  , where y  and 0y , the current and historical 
sample means, are sufficient statistics for the data. We assumed a 
beta prior for a0 with mean a0 = 0.50 and a diffuse initial prior for
,  0() 1. Under these conditions, the IC joint power prior for  
and a0 takes the form

     02
0 0 00

, , , ,
a

IC a y N y Be a                    (2.6)

with  equal to   to ensure a prior mean for a0 = 0:50. To explore
the impact of sample size on the marginal posterior mean of

 0 0 0, ,a E a y y , we simulated 1, 2, 10 and 100 observations from a
N(0,1) distribution and used these same observations for both D 
and D0 (i.e., the two samples were identical). Below, we report the 
results based on a single simulated dataset from each of the four 
sample size settings. (As an informal check, we simulated datasets 
under different random-number generating seeds, and the results 
were similar in each case.) To examine the impact of increasing 
historical sample size, we inflated D0 by factors of 1, 2 and 5 by 
replicating the current data an appropriate number of times.

Since the joint posterior  0 0, ,  a y y  does not have a 
closed form, we used the Bayesian software package WinBUGS 
[14] to conduct the simulations. We assigned a0 a beta prior with
fixed mean 0.50 and varying prior standard deviations ( 0

 a ) that
reflected increasing degrees of diffuseness. Specifically, we ran the
model under 10 different choices for 0

 a , ranging from 0 to 0.50,
the upper bound for a beta random variable with mean 0.50. We
ran three, initially-dispersed MCMC chains for 30,000 iterations

each, discarding the first 10,000 as a burn-in. MCMC diagnostics, 
such as trace plots and Gelman-Rubin statistics [15], indicated rapid 
convergence and efficient mixing of the chains.

Figure 1(a)-(d) plot  0 0,E a y y  as a function of the 0
 a  under 

various current and historical sample sizes. On the x-axis, we have 
highlighted the value 0.2887, the standard deviation corresponding 
to a U[0,1], or Be(1,1), prior. Figures (a)-(d) show the posterior means 
for current sample sizes n = 1, 2, 10 and 100, respectively. Within 
each figure, we plot  0 0,E a y y  when the historical data are inflated 
by factors of 1, 2 and 5.

The graphs suggest that  0 0,E a y y  is affected by both the prior
standard deviation and the study sample sizes. When the current 
sample size n = 1,  0 0,E a y y  increases as 0

 a  and n0 increase, so 
that when n0 = 5 and 0

 a   0.40,  0 0, E a y y  1. However, as the 
current study sample size n increases,  0 0,E a y y  decreases with 
increasing 0

 a . In fact, even when n = 10 [Figure (c)],  0 0,E a y y

converges rapidly toward zero as 0
 a  increases. This effect is 

even more dramatic when n = 100 [Figure (d)]. Interestingly, 
when n = 1, inflating n0 accelerates the converges to 1, while 
when n  10, increasing n0 accelerates the convergence to 0.
This reflects a somewhat counterintuitive feature of the IC prior 
that, for any realistically sized  0 0, ,n E a y y  approaches zero as n0

approaches infinity, excluding the historical data altogether. In 
order to hold  0 0,E a y y  fixed as n0 increases, 0

 a  must decrease
by a proportionately greater amount. This property contradicts 
what one would expect if a0 accounted for the commensurability 
between the current and historical data. In our simulations, for 
example, D = D0, and so we would expect  0 0,E a y y  to increase as

0
 a  increased, regardless of the value of n. Only a highly informative 
prior distribution bounds the posterior mean of a0 from 0. For most 
applications, this entails choosing 0

 a  small enough to avoid overly 
discounting D0. From a practical standpoint, this is essentially 
tantamount to assigning a0 a fixed value.

The normalized power prior: To avoid potentially excessive 
attenuation of the historical data, Duan and Ye [12] defined a 
normalized power prior (NPP), which is formed by first normalizing 
the conditional power prior (2.1) and then multiplying this 
normalized density by an independent proper prior for a0:
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Where (a0) is a proper distribution with support A  [0, 1] such that
   0

0 0 0( )
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g a L D d      is finite for all a0A. In general, any proper
distribution truncated to A can be used for (a0). If the denominator
in (2.7) is finite for all (a0)   [0, 1], then a natural choice for (a0) is
Be (,). For fixed a0, the NPP reduces to the conditional power prior 
given by expression (2.1).

While the NPP does not follow directly from Bayes’ theorem, 
there is an intuitive rationale behind its construction: a) after 
observing D0, update  using Bayes’ theorem (ignoring a0 for the
moment); b) to downweight D0, introduce a0 and form the conditional 
power prior (2.1); c) to express uncertainty about a0, define a new 
joint power prior by first normalizing (2.1) with respect to  and 
multiplying this expression by an independent initial prior for a0; 
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Figure 1:  0 0,E a y y  as a function of 
0a  under the Ibrahim and Chen (IC) power 

prior for a normal model with unknown mean and known variance. Current 
data sample sizes are (a) n = 1, (b) n = 2, (c) n = 10 and (d) n = 100. Each plot 
presents trends when the historical sample size (n0) is infl ated by factors of 
1 (solid), 2 (dashed) and 5 (dotted). In each plot, identical observations were 
used for both D and D0 (replicates were used to infl ate D0). U [0,1] corresponds 
to the value 0.2887, the standard deviation for a uniform (0,1) random variable. 
As the fi gures indicate, for n ≥ 10,  0 0,E a y y  decreases as 

0a  increases,
effectively excluding D0.
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and finally, d) treat (2.7) as a new prior distribution for analysis of 
the current data, and update (, a0) jointly using Bayes’ theorem.
Under the NPP, the joint posterior for (, a0) is expressed as
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As Duan and Ye [12] note, unlike the IC prior, the NPP obeys the 
likelihood principle, since multiplying L(D0|  )by a factor K does not 
change the posterior. The NPP also has the virtue of “calibrating” 
the current and historical data so that more weight is given to 
D0 when the two samples are similar. As the studies diverge, D0 

is increasingly attenuated. Likewise, as n0 increases, D0 is again 
downweighted, as evidence accumulates to suggest that the 
underlying populations differ. While this is an intuitively appealing 
feature-one would expect D0 to be attenuated as it diverges from 
D -our experience indicates that unless the two studies are nearly 
identical, this attenuation tends to be quite excessive, obviating the 
need for the historical data for most realistically complex models. 
Although the rate of convergence to zero is less precipitous than 
under the IC power prior, it is substantial enough to question the 
general applicability of the NPP.

To illustrate this point, we return to the normal model above. 
Assuming, as above, a beta prior for a0 and a diffuse initial prior for 
, the joint NPP is given by
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As we outline in Appendix B, the marginal posterior for a0 is given 
by 

   2
0 0 0 0

0 0

1 1
, 0, , ,NPP a y y N y y Be a

n a n
   

  
    

   
            (2.10) 

Where  2
0 ,N y y    denotes a normal density with mean  and 

variance  2 evaluated at 1
0.y y  (1Duan et al. [4] derived the 

posterior for the more general case where 2 is unknown.) The 
variance term in equation (2.10) is intuitively appealing since it 
is the sum of the current and historical variances with the latter 
scaled by a0. 

Figures (2) (a)-(d) investigate the impact of sample size on 
 0 0

,E a y y  when 0y y  (i.e., identical current and historical data for 
this special case). As the figures indicate,  0 0

,E a y y  is largely invariant 
to changes in sample size under the NPP. In all cases,  0 0

,E a y y

increases as a function of 0
 a . When 0

 a  is near zero, corresponding to 
a highly informative prior for a0,  0 0

,E a y y  is close to the prior mean 
of 0.50, while under a U[0,1] prior,  0 0

,E a y y   0.57. Interestingly, 
 0 0

,E a y y  does not exceed 0.65 for any of the plots. (This upper 
bound is due in part to the fact that a0 was fixed at 0.50; larger
values of a0 would likely yield larger posterior means.) As n0 is
inflated,  0 0

,E a y y  decreases slightly, but the effect is minimal.

Next, we examined the posterior behavior of a0 under the NPP 
as the effect size 0y y  increases. Figures 3(a)-(d) plot the marginal 
posterior distribution,  0 0

, a y y  , when a U[0,1] prior is assumed for
a0 (i.e., a0 = 0.50 and 0

 a  = .2887), n = n0 = 100, 2 = 1, 
0y = 0 and 

y  ranges from 0 to 0.50, reflecting increasing disparity between the 
studies. When y = 

0y  = 0 the posterior is diffuse with a posterior 
mode at 1, as expected. As the effect size increases, however, the 
distribution converges to zero. When y  = 0.50, the distribution is 
concentrated near 0, with a posterior mode of 0.04, a posterior mean 
of 0.20, and a posterior standard deviation of 0.18.

Figures 4(a)-(b) explore this phenomenon further by plotting 
 0 0

,E a y y  as function of the 0
 a  for increasing effect sizes. Figure 

4(a) presents results for the case where n = n0 = 100, 0y  = 0 and 
y  is allowed to range from 0 to 1.0. Figure 4(b) displays a similar 

graph for sample sizes n = 2,531 and n0 = 895, which conform to the 
sample sizes for the case study presented later.

The results suggest that  0 0
,E a y y  is influenced by both the 

effect size and the study sample sizes n and n0. As the discrepancy 
between y and 

0y  increases, the historical data are substantially 

Figure 2:  0 0,E a y y  as a function of 
0a  under the normalized power prior 

(NPP) when D under the normalized power prior (NPP) when D = D0. Current 
data sample sizes are (a) n = 1, (b) n = 2, (c) n = 10, and (d) n = 100. Each 
plot presents trends when historical sample sizes are infl ated by factors of 
1 (solid), 2 (dashed) and 5 (dotted). The fi gures suggest that, unlike the IC 
power prior, the NPP is relatively invariant to changes in n and n0 when the 
data are identical. 
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Figure 3: The marginal posterior of a0 under the NPP for increasing effect size 
0y y . For each fi gure,   0a  = U (0; 1) (i.e., 0a  = 0.50 and 0a  = .2887), n = 

n0 = 100, 2  = 1, 0y  = 0, and y  takes on four increasing values: (a) y  = 0, (b) 
y  = 0.10, (c) y  = 0.25, and (d) y  = 0.50. As y increases, refl ecting increasing  
disparity between the studies,  0 0

,a y y  converges to 0, thus downweighting
the historical data.
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downweighted, particularly as 0
 a  increases. In Figure 4(a), for 

example, when y  = 0.75 and U [0,1] is assumed for    0 0 0
, , a E a y y

0.10. The trends are even more evident as the sample sizes increase, 
as shown in Figure 4(b).

These results are not necessarily surprising, since simple z-tests 
suggest that the two studies comprise different population means 
when y   0.50 (or  0.25 for Figure 3(b)). We would therefore expect 
some attenuation of D0. That said, given that the current and historical 
samples will almost always differ in some respect, it seems inevitable 
that the NPP will discount D0 to a large extent for reasonably sized 
studies, even if the underlying data-generating process is the same 
for the current and historical studies. In a sense, this is the reverse 
of the classic p-value conundrum, in which clinically inconsequential 
differences become statistically significant as n increases. Under 
the NPP, as the sample sizes increase, potentially minor differences 
between the sufficient statistics can lead to substantial mitigation 
of the historical data. We note, however, that our simulations did 
not consider the case where 2

0  and 2 diverged; future work might 
examine the behavior of the NPP as the current and historical 
variances diverge under a univariate normal model.

Because the NPP accentuates between-study differences as n and 
n0 increase, clinicians must decide whether discrepancies between 
D and D0 are clinically meaningful enough to warrant extensively 
downweighting D0. In many cases, it may be reasonable to override 
empirical differences between studies to avoid overly discounting D0. 
Therefore, as a practical alternative, we recommend conditioning on 
a0 by assigning it a range of fixed values elicited from expert opinion 
about the commensurability of D and D0. We also recommend 
conducting “reference” analyses in which a0 is set to 0 and 1. This 
conditional approach should prove especially useful for moderate to 
large studies, since both the IC and normalized power priors tend 
to assign little weight to the historical data in such situations. The 
conditional approach also extends naturally to complex regression 
models which differ due to departures in ancillary covariates (the 
case study presented in Section 3 is one such example). And finally, 
the conditional approach has the practical advantage of being 
straightforward to implement in standard Bayesian software, since 

it avoids the burdensome integration inherent in the NPP. (To date, 
the NPP has been applied only to basic regression models in which 
the posteriors have closed forms.) Thus, the conditional approach is 
appealing from both an inferential and a computational standpoint. 
For these reasons, we focus on the conditional power prior in the 
application described in Section 3.

Power priors for exchangeable hierarchical models

In the regression setting, investigators may wish to relax 
the assumption of identical fixed effects between the current 
and historical studies, and instead link the two studies using a 
hierarchical modeling structure. Under this scenario, the studies are 
allowed to have distinct fixed-effect parameters,  and 0, which are
assumed in turn to share a common prior distribution according to 
an exchangeability condition. This hierarchical modeling approach is 
commonly used in Bayesian meta-analysis as a flexible alternative to 
assuming identical fixed effects across studies [16,7].

There are times, however, when the exchangeability assumption 
itself is questionable, and in such cases one can use the power prior 
to limit the impact of D0. The conditional power prior can be adapted 
to accommodate the hierarchical nature of the model as follows

        0

0 0 0 0 0 0 0, , , , ,
a

D a L D                    (2.11)

where 0(,0|) denotes the initial joint prior for  and 0 and  
is a vector of hyperparameters. For regression models, a natural 
choice is to assign  and 0 conditionally independent multivariate
normal distributions; that is, 0(, 0|) = Np(|,S) × Np(0|μ,S),
where Np(.|,S) denotes a p-variate normal distribution with mean  
and covariance S. We refer to prior (2.11) as the exchangeable power 
prior (EPP) to distinguish it from the standard application of the 
power prior to models in which the treatment effect is fixed between 
studies. The conditional power prior given in expression (2.3) is a 
special case of the EPP in which (assuming a normal prior) S = 0 and 
 = 0 = .  Strictly speaking, the EPP is a power prior applied to a
hierarchical model with exchangeable cross-study effects; the power 
prior itself has no bearing on the validity of the exchangeability 
assumption. Typically, interest lies in estimating the current model 
parameters () while borrowing historical information in order to 
improve the precision of these inferences. However, depending on 
study aims, the focus could be on other parameters of interest, such 
as the grand mean .

Under the EPP, the models share only hyperparameters , and 
hence a0 controls the impact of D0 vis-a-vis these hyperparameters. 
When a0 = 1, the D and D0 contribute equal weight to the posterior 
for  (and consequently ). When a0 < 1, D0 contributes 100×(1 - a0)
% less information to the log-posterior for , and when a0 = 0, the
historical data are excluded altogether. Because the historical data 
directly affect only , we can expect it to have less impact on the 
posterior of  than the power prior in a non-hierarchical model.

The connection between hierarchical models and the power 
prior has been explored by Chen and Ibrahim [11]. They develop 
expressions for a0 to calibrate the power prior to a corresponding 
hierarchical model. Our focus here is slightly different: we use the 
power prior in conjunction with an exchangeable hierarchical model 
to guard against unreasonably optimistic assumptions about the 
relevance of D0. We stress, however, that using the conditional 
power prior in this context is not tantamount to discounting the data 
twice, since the hierarchical structure and the power prior limit the 
influence of D0 in different ways. The hierarchical structure evaluates 

Figure 4:  0 0,E a y y  as a function of 0a  under the NPP as the current and 
historical data diverge. For fi gure (a), n = n0 = 100; for fi gure (b), n = 2, 536 
and n0 = 895, corresponding to the sample sizes for the case study presented 
later. For both fi gures, 2  = 1, 0y  = 0, 0a  = 0.50, and y ranges from 0 to
1.0, refl ecting increasing disparity between the current and historical data. 
As y  and 0a  increase, the historical data are substantially downweighted.
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the similarities of the data in terms of the adjusted mean outcomes: 
similar population means lead to reduced between-study variability 
and more pooling. The conditional power prior, on the other hand, 
downweights the log-likelihood contributions of D0 by a (fixed) factor 
of a0 regardless of the congruence between the studies.

Application: The Healthy Development Study

Background

To illustrate the use of the conditional power prior, we analyzed a 
pair of studies designed to improve the delivery of preventive care in 
pediatric clinics. The “current” study, called the Healthy Development 
(HD) study, was an 18-month cohort study conducted from June 
2004 to December 2005 [17]. Nineteen clinics from North Carolina 
and Vermont were given training sessions to improve their delivery 
of care in important clinical areas, such as child safety, maternal 
depression and substance-abuse. Seventeen non-randomized 
clinics served as a comparison group. Data were collected using the 
Promoting Healthy Development Survey (PHDS), a clinically validated 
measure of pediatric quality of care [18]. Parents were surveyed 
monthly and asked to rate their care in variety of areas. Due to 
low response during some months, the data were aggregated into 
a baseline period (June 2004-August 2004) and a follow-up period 
(June 2005-December 2005). To assess whether comprehensive, 
standardized care was provided across multiple dimensions of care, 
PHDS total scores were categorized into a binary outcome measure 
identifying patients who received “high quality” care. The primary 
aim was to determine whether intervention clinics showed greater 
improvement in delivering high quality care than comparison 
practices after adjusting for relevant patient and clinic covariates. A 
total of 2,536 surveys were used in the analysis. 

As it happens, the investigators conducted a previous randomized 
quality-improvement trial, called the Partners in Practice (PIP) study 
[19]. The study consisted of 895 surveys in 26 centers (13 intervention 
and 13 control). As with the HD study, the primary outcome for the 

PIP study was a binary measure of quality of care derived from parent 
survey items. However, the PIP study focused more on healthy child 
environments (e.g., exposure to second-hand smoke) and somewhat 
less on maternal psychosocial concerns as in the HD study. Thus, 
while the two study surveys measured overlapping areas of care, they 
were not identical measures. 

To address our concerns about the compatibility of the two 
studies, we used a conditional power prior distribution to incorporate 
the PIP study data into the analysis of the HD study. We present 
results from this analysis in Section 3.3. As a comparison, we also 
applied the EPP approach described in Section 2.3; we present these 
results in Section 3.4.

Separate analysis of current and historical studies

We begin with separate analyses of the HD and PIP studies. 
Figure 5 displays the unadjusted percent of patients receiving high 
quality care in each center, by study group and period, for the PIP 
randomized trial and the HD cohort study. Highlighted in bold are 
the average percents across centers, weighted by center sample size. 
Since the plots indicated extensive between-clinic heterogeneity, 
both at baseline and over time, we proposed the following random 
effects model for the HD study: 

logit    ' '
iPr 1 , ,       j=1,...,n , 1,...,    ij i ij ij iY b x z b i n      (3.1) 

where Yij takes the value 1 if the jth patient in the ith pediatric clinic 
reported that high-quality care was received, and 0 otherwise; xij 
is a 6×1 vector of fixed-effect covariates comprising an intercept 
term, an indicator for study group (1=intervention, 0=comparison), 
an indicator for study period (1 if follow-up, 0 if baseline), the 
period×group interaction, and two dichotomous patient-level 
covariates (mother’s education, coded as 1=high school graduate, 
0=non-graduate, and race, coded as 0=white, 1=other);  is a 6×1 
vector of fixed-effect regression coefficients; bi N2(0,) is a 2×1
vector comprising clinic-specific intercept and slope parameters; and 
zij=(1, study periodij). As a quick check of model fit, we ran a fixed-
effects logistic regression and computed the Hosmer-Lemeshow 
goodness of fit statistic; the p-value was 0.79, suggesting no lack of 
fit.

We proposed a similar regression model for the PIP study: 

logit    ' '
0 0 0 0 0 0 0i 00

Pr 1 , ,       j=1,...,n , 1,..., ,ij i ij ij iY b x z b i n       (3.2)

Figure 5: Percent of patients receiving high quality care at baseline and 
follow-up for each center, by study group and period (weighted averages 
in bold). The fi gures depict heterogeneity in both intercepts and slopes, 
justifying the use of the proposed random effects model.
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PIP Study (n = 895)
HD Study (n = 2; 
536)

Variable Posterior Mean (95% CrI)
Posterior Mean (95% 
CrI)

Intercept -2.27 (3.39, -1.28) -0.54 (-0.90, -0.18)
Study Period -0.47 (-1.69, 0.65) 0.02 (-0.41, 0.46)
Study Group -0.85 (-1.63, -0.08) 0.20 (-0.22, 0.61)
Period × Group 2.02 (0.77, 3.43)* 0.57 (-0:03, 1.17)**
Education (0= < HS, 1= 
≥ HS) -0.03 (-0.77, 0.80) -0.23 (0.44, -0.03)
Race (0=white, 1=other) 0.38 (-0.13, 0.87) 0.08 (-0.15, 0.31)
Random Intercept Variance 1.64 (0.50, 0.70) 0.25 (0.12, 0.47)
Random Slope Variance 2.20 (0.44, 6.25) 0.40 (0.14, 0.89)
Random Effect Covariance -1.30 (-4.04, 0.09) 0.12 (-0.02, 0.31)

Table 1: Posterior means and 95% credible intervals (CrI) for separate 
analyses of PIP and HD studies.

* Pr(β4 > 0|y0) = 1.0
** Pr(β4 > 0|y) = 0.97
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where 0 is a vector of fixed-effect regression coefficients, b0i  ~ N(0,
0) is a vector comprising random intercept and slope parameters
specific to the ith clinic in the PIP study, and x0ij and z0ij are covariate 
vectors defined as in (3.1).

For both models, the intervention effect was measured by the 
period×group interaction term, denoted as 4 for the HD model and
04  for the PIP model. For  and 0, we assumed diffuse N6 (0,103I6)
distributions, and for  and 0 we assumed IW(I2, 2) distributions. The 
analyses were run in WinBUGS [14]. We ran three, initially-dispersed 
MCMC chains for 110,000 iterations, discarding the first 10,000 as a 
burn-in. We retained every fiftieth draw to reduce autocorrelation. 
MCMC diagnostics, such as trace plots and Gelman-Rubin statistics 
[15], indicated rapid convergence and efficient mixing of the chains. A 
similar MCMC procedure was used for each of the analyses presented 
below.

While the directions of the estimates were similar across the 
studies, there were a few key differences (Table 1). In the PIP study, 
parents in the control group were somewhat less likely to receive high 
quality care at follow-up than at baseline (row 2). Meanwhile, parents 
in the control arm of the HD study remained relatively unchanged in 
their probability of receiving such care. Interestingly, parents in the 
PIP intervention arm began the study substantially less likely to receive 
high quality care (posterior mean=-0.85, 95% CrI=[-1.63,-0.08]), even 
though clinics in this study were randomized to study group. On the 
other hand, parents in the HD intervention group were somewhat 
more likely to report receiving high quality care at baseline (posterior 
mean=0.20, 95% CrI=[-0.22, 0.61]). The periodgroup interaction
terms, highlighted in row 4, were used to assess the intervention 
effects. For both studies, the intervention groups demonstrated 
more improvement than the comparison groups, although this effect 
was most notable in the PIP study. The posterior probabilities of a 
positive intervention effect were close to 1 for both studies (see table 
footnotes). There was also more between- clinic variability in the PIP 
study than in the HD study, with a negative covariance between the 
random intercept and slope parameters (last row). Conversely, the 
HD study showed a positive random-effect covariance, although in 
both studies the 95% credible intervals overlapped 0. 

Power prior analysis

Next, we used the conditional power prior approach described 
in Section 2.1 to borrow information from the PIP study while 
simultaneously expressing uncertainty about how much information 
should be shared. As above, we assumed random-effect logistic 
models for Y and Y0, except here we set 0=  and 0 = , thus
allowing the models to share identical covariate effects and variance 
components. We then placed the conditional power prior distribution 
in (2.4) on the fixed effect coefficients, . To complete the prior 
specification, we assumed a diffuse initial prior for  and an IW (I2, 2)
distribution for  . 

Table 2 presents the results when a0 = 1 which, together 
with the separate HD analysis presented in Table 1 (i.e., a0 = 1), 
we considered to be our “reference” analysis. As expected, the 
estimates fall between the estimates for the two separate analyses 
(Section 3.2), reflecting the complete pooling of the two samples. 
There is substantial increase in the adjusted log-odds estimate for 
the interaction, from 0.57 in the separate HD analysis (Table 1, last 
column), to 0.89 for the pooled analysis. The random effect variance 
estimates also fall between those for the two separate analyses. In 
particular, the random effect covariance estimate is 0.06, indicating 
little association between the random intercept and slopes for the 
pooled model.

Next, we assumed a range of values for a0 (a0 = 0.25, 0.50 and 
0.75). Table 3 presents the posterior summaries for the interaction 
term, 4, under the different choices of a0. The entries in the first row
are identical to the results for the separate HD study presented in 
Table 1, while the last row repeats the result from Table 2. As more 
weight is given to D0, there is a noticeable increase in the posterior 
means, reflecting the stronger intervention effect that was observed 
for the PIP study. When a0  0.25, the credible intervals no longer
overlap the null, strongly suggesting a benefit to the intervention.

EPP analysis

We next used the exchangeable power prior to jointly analyze the 
two studies. As in models (3.1) and (3.2), we allowed distinct fixed 
effect parameters,  and 0, with joint prior distribution (,0 ).
Specifically,

Variable Parameter Posterior Mean (95% CrI)
Intercept 1 -0.94 (-1.31, -0.55)
Study Period 2 -0.18 (-0.61, 0.24)
Study Group 3 -0.15 (-0.64, 0.28)
Period × Group 4 0.89 (0.36, 1.47)*
Education (0 = < HS, 1= ≥ HS) 5 -0.26 (-0.44, -0.06)
Race (0=white, 1=other) 6 0.14 (-0.07, 0.34)
Random Intercept Variance 11 0.93 (0.52, 1.52)
Random Slope Variance 22 0.50 (0.19, 0.44)
Covariance 12 0.06 (-0.34, 0.41)
* Pr(4 > 0| y,y0) = 1.0

Table 2: Posterior estimates for power prior model with a0 = 1.

Table 3: Posterior results for the period×group interaction term (β4) under 
various choices for a0.

a0 E(4|y; y0) (95% CrI) Pr(4 > 0| y; y0)
0 0.57 (-0.03, 1.17) 0.97
0.25 0.62 (0.11, 1.18) 0.98
0.50 0.69 (0.15, 1.22) 0.99
0.75 0.78 (0.25, 1.30) 1.0
1 0.89 (0.36, 1.47) 1.0

Variable Parameter Posterior Mean (95% CrI)
Intercept 1 -0.56 (-0.95, -0.15)
Study Period 2 -0.11 (-0.58, 0.34)
Study Group 3 0.16 (-0.33, 0.66)
Period × Group 4 0.74 (0.11, 1.43)*
Education (0 = < HS, 1= ≥ HS) 5 -0.21 (-0.41, -0.02)
Race (0=white, 1=other) 6 0.11 (-0.12, 0.33)
Random Intercept Variance 11 0.35 (0.18, 0.64)
Random Slope Variance 22 0.51 (0.18, 1.10)
Covariance 12 0.06 (-0.20, 0.29)
* Pr(4 > 0|y, y0) = 0.99

Table 4: Posterior estimates for EPP model with a0 = 1.

Table 5: Posterior results for the period×group interaction term (β4) for EPP 
model under various choices for a0.

a0 E(4|y, y0)(95% CrI) Pr(4 > 0| y, y0)
0 0.57 (-0.03, 1.17) 0.97
0.25 0.64 (0.07, 1.23) 0.98
0.50 0.68 (0.12, 1.30) 0.98
0.75 0.71 (0.11, 1.35) 0.99
1 0.74 (0.11, 1.43) 0.99
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where  and 0 are 6 × 1 vectors of fixed-effect coefficients with
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Because our analysis consisted of only two trials, the posteriors of  
and 0 are likely to be affected by the choice of prior for k. Therefore, 
as a sensitivity check, we considered two priors: a diffuse uniform 
prior, which assigns most mass to large between-trial variances; and 
a half-normal with standard deviation 1, which assigns about 5% prior 
probability to k > 2 (i.e., a priori, we assume similar effects for the
two studies). Since the results were similar under both priors, we 
present only the results for the half-normal prior.

Table 4 presents the results for the EPP analysis when a0 = 1, 
which is equivalent to a hierarchical model based on complete 
pooling of the two datasets. As the table indicates, the impact of D0 
is further attenuated relative to the non-exchangeable power prior. 
For example, the posterior mean for 4 is 0.74 (95% CrI= [0.11, 1.43]), 
about halfway between the estimates for the separate HD analysis 
(Table 1, last column) and the non-exchangeable model (Table 3). 
Meanwhile, the posterior estimates for education and race closely 
resemble those for the separate HD analysis, suggesting that D0 
did not have much influence on them. Likewise, the random effect 
variance components are close to the values obtained in the HD 
analysis. This is not surprising given that only one historical study 
was used in this analysis. 

Table 5 provides the posterior estimates for the interaction 
parameter, 4, under various choices of a0. The posterior estimates
increase steadily as more weight is assigned to D0: from 0.57 when a0 
= 0 to 0.74 when a0= 1. However, with the exception of a0 = 0.25, the 
posterior estimates are smaller than under the standard power prior 
(Table 3), confirming that the EPP provides an additional attenuation 
of D0 relative to the conventional approach. The credible intervals 
are also consistently wider under the EPP approach, reflecting the 
added heterogeneity imposed when the assumption of shared model 
parameters is relaxed. Despite this increased variability, when a0 
0.25, the credible intervals no longer overlap 0.

Discussion

Our aim has been to examine approaches to incorporating data 
from prior studies into a current analysis when there is uncertainty 
as to the similarities of the studies. We have emphasized the use 
of power prior distributions for this purpose. The power prior 
has gained increasing attention in recent years as a technique for 
synthesizing results across disparate studies. It avoids having to 
arbitrarily select observations in order to limit the impact of D0 
instead, all historical observations are included in the analysis, but 
each is downweighted equally. For normal models, this is equivalent 
to inflating the posterior variance of the model parameters by 1/a0 
for 0 < a0  1. However, the power prior will have a different impact
on other densities, and therefore it cannot be viewed as a simple 

generalization of the variance-inflation approach to downweighting 
prior information.

In previous studies, investigators have recommended placing 
a prior distribution on the power parameter a0. This approach 
is appealing from a Bayesian perspective, since it allows one to 
express prior uncertainty about a0 and use the data to estimate its 
posterior. We considered two specifications of the power prior in 
which a0 was treated as a stochastic parameter: the Ibrahim-Chen 
(IC) power prior, which normalizes jointly over   and a0 and the
normalized power prior (NPP), which first normalizes with respect 
to  (conditional on a0) and then multiplies this normalized density
by (a0). Under both approaches, for any sizeable n, the posterior of
a0 concentrates near zero as the prior variance for a0 increases. Our 
investigation revealed that the IC prior penalizes the historical data 
even when the current and historical data are identical, unless a very 
informative prior is used to bound a0 away from zero. In contrast, the 
NPP provides a measure of commensurability between the studies, so 
that D0 is substantially downweighted only as the studies diverge. As 
such, the NPP is a sensible methodological extension to the original 
power prior. Nevertheless, even under the NPP, D0 will be heavily 
discounted when there are discrepancies between the sufficient 
statistics of D and D0. Moreover, because the NPP has been formally 
developed only for basic normal and binomial models, it is not clear 
how it would perform in more complex settings. For example, in 
a multiple regression model, would the NPP downweight D0 when 
auxiliary variables differed but the primary treatment effects were 
identical across studies? This is an open area of research. In addition, 
on a final practical note, the NPP is computationally challenging to 
implement due the integration inherent in its construction, requiring 
application of specific numerical integration methods or accurate 
approximations (e.g., the Laplace approximation) for evaluation. See 
Gajewski [20] and Neuenschwander et al. [21] for related comments 
on the computational challenges associated with the NPP. 

An alternative strategy-the one we have adopted in this paper-is 
to assign a0 a range of fixed values from 0 to 1 as part of a sensitivity 
analysis. This approach allows users more control over the impact 
of D0 and is straightforward to implement in standard software 
packages such as WinBUGS. The trade-off is that the fixed approach 
requires external information, such as expert opinion, to determine 
a suitable range for a0. If, for example, investigators question the 
commensurability of the studies, restricting a0 to a “skeptical” range 
(e.g., a0  0.50) may be reasonable. On the other hand, if there is
strong belief in the compatibility of the studies, a more “optimistic” 
range, such as 0.50 to1, can be selected. In this case, a0 = 0.50 could 
serve as the lower reference value. For our study, the credible intervals 
for 4 did not overlap 0 when a0  0.25. Thus, as long as investigators
expressed some optimism about the studies’ compatibility, we 
would infer a positive intervention effect. Conversely, if investigators 
expressed skepticism about the relevance of D0, so that the value a0 
= 0 could not be ruled out, then we might exercise more caution 
when evaluating the efficacy of the intervention. 

More generally, one could take a model averaging approach 
and assign a distribution, (a0), to a0, fit the model conditional on
specific values for a0 and then average inferences across (a0) to
obtain summary values. In the HD application, we effectively took 
(a0) to be a discrete uniform distribution on {0; 0.25; 0.50; 0.75;
1}, although we did not perform model averaging, opting instead
to tabulate the results separately for each value of a0. In a sense, the
IC and NPP priors are attempting to achieve this model averaging in
one step by placing a joint prior on (a0,) and jointly updating the
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parameters. However, as we have seen, these priors tend to lead to 
rapid attenuation of D0, which in many practical situations might be 
considered excessive. 

Both the NPP and the conditional power prior are valid approaches 
depending on study aims. If the aim is to incorporate historical 
information only when D  D0, then the NPP may be a reasonable
choice. The fixed approach, on the other hand, is appealing if one 
wishes to incorporate historical information to aid inferences about 
the current model, or to provide a measure of the comprehensive 
treatment effect across studies, even when D   D0, as long as external 
information suggests that the historical data are relevant the current 
study. The important point, from our perspective, is to understand 
the advantages and limitations to each approach, and to make an 
informed decision according to study aims. 

We have also applied the power prior in the context of Bayesian 
hierarchical models that link the current and historical studies 
through an exchangeability condition. Here, we allocated unique 
parameters to the current and historical likelihoods and assumed 
a common prior distribution. We then used the conditional power 
prior to limit the contribution of D0 to the posterior updates of the 
hyperparameters that link the two models. This exchangeable power 
prior, as we have called it, can prove useful if one has reservations 
about the underlying assumption of exchangeability between studies, 
or if there is some additional skepticism about the compatibility of the 
studies. The results from our case study suggest that this approach 
provides additional attenuation of D0 over and above that obtained 
when the (conditional) power prior is applied to a non-hierarchical 
model. Since our example only involved two studies, inferences 
about between-trial parameters such as  are only weakly informed. 
However, because our focus was on , the small number of historical 
studies was not a major concern.

In general, the methods described here can be extended to 
multiple historical studies, and may provide guidance for cross-
design evidence synthesis using hierarchical models. They may also 
prove useful to regulatory agencies, such as the FDA, who wish 
to incorporate historical data when evaluating the efficacy of new 
medical devices and therapies. Meanwhile, future research might 
focus on applying the NPP to hierarchical regression models, such 
as the one described in our case study, to examine its behavior in 
complex settings.
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