

Balanced Folding Over a Polygon and Euler Numbers

EL-Kholy E* and El-Sharkawey E

Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Abstract

In this paper we introduced a new folding over a polygon we called it balanced folding, then we proved that for a balanced folding of a simply connected surface M there is a subgroup of the group of all homeomorphisms of M that acts 1-transitively on the 2-cells of M. Also we explored the relationship between balanced folding and covering spaces. Finally we obtained a general relation of the Euler number of surfaces which may balance folded over a polygon and we also listed all the possibilities if M is a sphere balanced folded over a triangle and we gave the subgroup mentioned above in each case.

Keywords: Surface; Cellular folding; Singularities; Cayley color graph; 1-Transitive; Universal covering; Euler number

Introduction

Let *K* and *L* be cellular complexes and $f: |K| \to |L|$ a continuous map. Then $f: K \to L$ is a cellular map if

(i) for each cell $\sigma \in K$, $f(\sigma)$ is a cell in L,

(ii) dim $(f(\sigma)) \leq \dim(\sigma), [1].$

A cellular map $f: K \rightarrow L$ is a cellular folding iff

(i) for each i-cell $\sigma^i\!\in\!K,\,f(\sigma^i)$ is an i-cell in L , i.e., f maps i-cells to i-cells,

(ii) if σ contains *n* vertices, then $f(\sigma)$ must contains *n* distinct vertices, [2].

A cellular folding $f: K \rightarrow L$ is neat if $L^n - L^{n-1}$ consists of a single *n*-cell, interior *L*. The set of all cellular folding of *K* into *L* is denoted by *C*(*K*, *L*) and the set of all neat foldings of *K* into *L* by N(*K*, *L*).

If $f \in C(K, L)$, then $x \in K$ is said to be a singularity of f iff f is not a local homeomorphism at x. The set of all singularities of f corresponds to the "folds" of the map. This set associates a cell decomposition C_f of M. If M is a surface, then the edges and vertices of C_f form a graph Γ_f embedded in M [3].

Now there is a graph K_f associated to C_f in a natural way. In fact the vertices of K_f are just the *n*-cells of C_ρ and its edges are the (n-1)-cells. If $e \in C_f$ is (n-1)-cell, then e lies in the frontiers of exactly two *n*-cells σ , $\sigma/$. We then say that *e* is an edge in K_f with end points σ , $\sigma/$. The graph K_f can be realized as a graph \tilde{K}_f embedded in *M* as follows. For each *n*-cell σ , choose any point $\tilde{\sigma} \in \sigma$. If the *n*-cells σ , $\sigma/$ are end points of *e*, then we can join $\tilde{\sigma}$ to $\tilde{\sigma}'$ by an arc \tilde{e} in *M* that runs from $\tilde{\sigma}$ through σ and σ' to $\tilde{\sigma}'$, crossing *e* transversely at a single point. Trivially, the correspondence $\sigma \to \tilde{\sigma}$, $e \to \tilde{e}$ is a graph isomorphism. Figure 1 illustrates this relationship in case n=2.

It should be noted that the graph K_f may have more than one edge joining a given pair of vertices. For instance, consider the cellular folding *f* of the torus into itself with the cellular subdivision shown in Figure 2. The graph K_f has just two vertices but two edges, see Figure 2.

Balanced Folding

Definition 1: Let *M* be a compact connected surface, and P_n a cell complex having *n* 0-cells, *n* 1-cells and just one 2-cell. Again a continuous map $f: M \rightarrow P_n$ is called neat folding if there is a cell decomposition C_f of *M* such that:

(i) *f* is a cellular map of C_f onto $C(P_n)$.

(ii) for each closed cell $\overline{\sigma}$ of C_f , $f|\overline{\sigma}$ is a homeomorphism of $\overline{\sigma}$ onto a closed cell of $C(P_n)$.

To avoid trivial cases, we require that that each 0-cell of M is an end point of more than two 1-cells. Thus the 0-cells and 1-cells of this decomposition form a finite graph Γ_f without loops (but possibly with multiple edges) and f folds M along the edges or 1-cells of Γ_f [4].

Let $f: M \rightarrow P_n$ be a neat folding. Then for any *n*-cells *A* and *B* there is a homeomorphism $f_{AB}: A \rightarrow B$ given by $f_{AB}(a)=b$ iff f(a)=f(b), where $a \in A$ and $b \in B$. We can always extend f_{AB} to a homeomorphism, $\overline{f}_{AB}: \overline{A} \rightarrow \overline{B}$, but there need not exist an extensions to any open neighbourhoods of *A* and *B*. The following two examples explore this fact.

Example 1: Let *M* be a desk in the plane R^2 with the cellular subdivisions shown in Figure 3. Let P_4 be a desk with four 0-cells, four 1-cells and one 2-cell.

Define a map
$$f: M \Rightarrow P_4$$
 by $f(\sigma_i) = \sigma, i = 1, 2, ..., 9$,
 $f(e_{17}^1) = f(e_3^1) = f(e_{16}^1) = f(e_2^1) = f(e_{15}^1) = f(e_1^1) = \overline{e_1}^1$
 $f(e_{20}^1) = f(e_{13}^1) = f(e_6^1) = f(e_{18}^1) = f(e_{11}^1) = f(e_4^1) = \overline{e_2}^1$
 $f(e_{24}^1) = f(e_{23}^1) = f(e_{22}^1) = f(e_{10}^1) = f(e_9^1) = f(e_8^1) = \overline{e_3}^1$
 $f(e_{21}^1) = f(e_{14}^1) = f(e_7^1) = f(e_{19}^1) = f(e_{12}^1) = f(e_5^1) = \overline{e_4}^1$
 $f(e_{11}^0) = f(e_3^0) = f(e_{9}^0) = f(e_1^0) = \overline{e_1}^0$,
 $f(e_{12}^0) = f(e_{4}^0) = f(e_{10}^0) = f(e_{2}^0) = \overline{e_2}^0$
 $f(e_{15}^0) = f(e_{7}^0) = f(e_{13}^0) = f(e_{5}^0) = \overline{e_4}^0$ and
 $f(e_{16}^0) = f(e_{8}^0) = f(e_{14}^0) = f(e_{6}^0) = \overline{e_3}^0$.

Let $A = \sigma_4$, $B = \sigma_7$ be the 2-cells shaded in Figure 3. Then there is a homeomorphism f_{AB} : $A \rightarrow B$ given by $f_{AB}(x,y) = f(x',y')$ iff f(x,y) = f(x',y')

*Corresponding author: EL-Kholy E, Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt, Tel: +20403344352; E-mail: entsar.elkholy@yahoo.com

Received March 23, 2016; Accepted April 06, 2016; Published April 12, 2016

Citation: EL-Kholy E, El-Sharkawey E (2016) Balanced Folding Over a Polygon and Euler Numbers. J Appl Computat Math 5: 296. doi:10.4172/2168-9679.1000296

Copyright: © 2016 EL-Kholy E, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

where $(x,y) \in A$ and $(x,y) \in B$. This homeomorphism has an extension to a homeomorphism $\overline{f}_{AB} : \overline{A} \to \overline{B}$ given by $\overline{f}_{AB}(x,y) = (x',y')$ iff f(x,y)=f(x',y'), where $(x,y) \in \overline{A}$ and $(x',y') \in \overline{B}$. Now consider any open neighbourhoods \tilde{A}, \tilde{B} of $\overline{A}, \overline{B}$ respectively. We see that there is no extension of \overline{f}_{AB} to a homeomorphism $\tilde{f}_{AB} : \tilde{A} \to \tilde{B}$. This is because three 1-cells of A are interior to M, while two 1-cells of B have this property.

Example 2: Let M be a sphere partitioned by the cells shown in Figure 4.

A cellular folding f may be defined from M to a polygon P_3 . The vertices are labelled in such a way that vertices with the same image under f are labelled alike.

Now, it can be checked that a homeomorphism $f_{AB}: A \rightarrow B$, (where A and B are the 2-cells shaded in Figure 4) cannot be extended to a homeomorphism of any neighborhoods \tilde{A}, \tilde{B} of $\overline{A}, \overline{B}$ respectively. This is because the valencies of the vertices of the 2-cell A are 12, 4, 4 while those of B are 12, 8, 4.

Definition 2: We will call a neat folding: $f: M \rightarrow P_n$ a balanced folding if for all 2-cells *A*, *B* and each homeomorphism $f_{AB}: A \rightarrow B$ given by $f_{AB}(a)=b$ iff f(a)=f(b), we can extend f_{AB} to a homeomorphism for any neighbourhoods \tilde{A} , \tilde{B} of $\overline{A}, \overline{B}$ respectively.

We denote the set of all balanced foldings of *M* into P_n by $\mathbf{B}(M, P_n)$.

Example 3: Let *M* be a sphere partitioned by the cells shown in Figure 5. The valencies of the vertices of each 2-cells are 4, 6 and 8.

A neat folding f may be defined from M to a polygon P_3 . The vertices are labeled in such a way that vertices with the same image under f are labeled alike.

If we considered any 2-cells A and B of M (e.g. the shaded 2- cells in Figure 5) then, it can be checked that a homeomorphism $f_{AB}: A \rightarrow B$, (where A and B are the 2-cells shaded in Figure 5) can be extended to a homeomorphism of any neighborhoods \tilde{A}, \tilde{B} of $\overline{A}, \overline{B}$ respectively. This is because the vertices of the 2-cells A and B have the same valencies. It follows that f is balanced.

The Properties of the Graph K_f of Neat Folding

Let $f \in N(M, P_n)$, then K_f has the following special features.

(a) Edge coloring: Let $e_i, e_2, ..., e_n$ be the 1-cells of P_n , we can regard the indices i, i=1, 2, ..., n "colors". Each edge of K_i is mapped by f to one

of these. We may then give K_t an edge-coloring by assigning to each edge *e* of K_i the color *i* of its image $f(e)=e_i$.

(b) Sources and sinks: If A and B are 2-cells of M with a common 1-cell in their frontiers, then A and B are given opposite orientations by f. It follows that each edge of the graph K_f may be oriented in such a way that every vertex is either a source or a sink (where a vertex *u* is a source if all the oriented edges with u as a vertex begin at u, and is a sink if all the edges end at *w*), see Figure 6. For such a graph, every circuit has an even number of edges (and hence of vertices).

(c) Regularity: If $f \in N(M, P_n)$, so that every 2-cell of M is mapped homeomorphically by f onto interior P_{v} , then the graph K_{f} is regular. This follows immediately from the fact that the 1-cells in the frontier of each 2-cell is 1-1 correspondence under f with those of P_n . It is also worth observing that every color *i* occurs once in the set of colored edges at each vertex of K_r . Consequently, the valency of each vertex of K_i is the cardinality of the set of 1-cells of P_i , that is to say, of the set of colors.

The properties of the graph K_{f} we have already discussed suggest that in certain cases the graph K_{f} may be a Cayley color graph. In the following we can show that this is indeed the case for a large class of balanced foldings.

Note first that, for any map $f: M \rightarrow N$, we can associate a group G(f)namely the group of all homeomorphisms $h: M \rightarrow M$ such that *foh=f*. In case $f \in N(M, P_n)$, we may ask whether the induced action of G(f) on the 2-cells of M is transitive. In particular, we ask whether there is a subgroup H(f) of G(f) that acts 1-transitively on the set of 2-cells.

The Action of the Group of Homeorphisms on the 2-Cells

Theorem 1: Let M be a simply connected surface, $f: M \rightarrow P_n$ be a balanced folding then there is a subgroup H(f) of G(f) that acts 1transitively on the set of 2-cells of M. Moreover K_t is a Cayley color graph of the group H(f).

Proof: Let $f \in \mathbf{B}(M, P_n)$. Let A, B be 2-cells of the cell decomposition of M associated by f. Then $f_{AB_{ab}} A \rightarrow B$ extends to a homeomorphism $\tilde{f}_{_{AB}}: \tilde{A} \to \tilde{B}$, where \tilde{A} and \tilde{B} are open neighborhoods of A and B respectively.

Now let C be a 2-cell such that $C \neq A$ and $C \cap \tilde{A} \neq \varphi$. Let $\tilde{f}_{AB}(C) \subset D$. Then there are open neighborhoods \tilde{C} and \tilde{D} of C and D such that f_{CD} extends to a homeomorphism $\tilde{f}_{CD}: \tilde{C} \to \tilde{D}$, where \tilde{f}_{CD} and \tilde{f}_{AB} agree on $\tilde{A} \cap \tilde{C}$. Iterate this procedure to extend f_{AB} to a map $F_{AB}: M \rightarrow M.$

The existence and uniqueness of this extension are guaranteed by the fact that *M* is 1-connected.

Now, to prove that F_{AB} is onto, let $y \in M$ a non-singular point.

Then *y* belongs to a 2-cell σ . Let $B_1, B_2, \dots, B_{k+1} = \sigma$, be a sequence of 2-cells such that B_i , B_{i+1} are contiguous, i=1, 2, ..., k. The sequence B_i ,

 B_2, \dots, B_{k+1} of 2-cells is the image under F_{AB} of a unique sequence A_1 , $A_2, \dots, A_{k+1} = \sigma'$ of 2-cells such that A_i, A_{i+1} are contiguous, $i=1, 2, \dots, k$ and each $F_{A_iB_i} : A_i \to B_i$ extends to a homeomorphism $\tilde{F}_{A_iB_i} : \tilde{A}_i \to \tilde{B}_i$ where $\tilde{F}_{A_iB_i}$ and $\tilde{F}_{A_{i+1}B_{i+1}}$ agree on $\tilde{A}_i \cap \tilde{A}_{i+1}$. Hence $F_{A_{AB}}$ is onto.

We have now shown that F_{AB} is a local homeomorphism of the simply connected manifold M onto itself. In fact, $F_{\scriptscriptstyle AB}$ is a covering map. Thus F_{AB} is a homeomorphism.

The set of all such homeomorphisms is the required group H(f), which by its construction acts 1- transitively on the set of 2-cells.

The relationship of H(f) to the graph K_f is as follows:

Choose some 2-cells A. Thus A is a vertex of K_f . Identify any other vertex (2-cell) B of K_f with the unique element F_{AB} of H(f) such that $F_{AB}(A)=B.$

It follows trivially that the graph K_f is a Cayley color graph of H(f), with generators $f_B = f_{AB}$, where B runs through the set of 2-cells $B \neq A$ having a 1-cell in its common frontier with A.

Note that in general any neat folding f of a surface M to a surface *N*, the set of singularity forms the edges and vertices of a graph Γ_{ϵ} . If *f* is balanced, then the valencies of the vertices are invariant under any of the extended homeomorphisms \tilde{F}_{AB} . In particular, if $f \in \mathbb{N}(M, P_n)$ be such that Γ_{ℓ} is a regular graph embedded in *M*, then $f \in \mathcal{B}(M, P_{\nu})$. Moreover, if M is simply connected, then H(f) will acts 1-transitively on the set of 2-cells of M and K_{f} will be a Cayley color graph of the group H(f).

Example 4: Let $M = S^2 = \{x \in \mathbb{R}^3 : ||x|| = 1\}$, be the unit sphere in the Euclidean 3-space. Let $f: M \to M$, be given by f(x, y, z) = (|x|, |y|, |z|). Then *f* is a neat folding and the graph Γ_f is a regular graph of valency 4, with 6 vertices, twelve 1-cells and eight 2-cells. The image is the positive octant P_3 where $x \ge 0$, $y \ge 0$, $z \ge 0$ see Figure 7a. Since Γ_f is a regular graph, it follows that f is a balanced folding and the graph, which is a Cayley color graph, has the form given in Figure 7b. Hence H(f) is isomorphic to $Z_2 \times Z_2 \times Z_2$ and it acts 1-transitively on the set of eight 2-cells A_1, A_2, \dots, A_n A_{s} .

We now explore the relationship between balanced foldings and covering maps.

Theorem 2: Let $f \in \mathbb{N}(M, P_n)$, and let $p : \tilde{M} \to M$ be the universal covering. Suppose that

 $\tilde{f} = fop \in \mathcal{B}(\tilde{M}, P_n)$ and that $G(p) \triangleleft H(\tilde{f})$. Then there is a subgroup H(f) of G(f), isomorphic to $H(\tilde{f}) / G(p)$, acting 1-transitively on the set of 2-cell of *M* by *f*.

Proof: We first construct the group H(f). Let $\tilde{h} \in H(\tilde{f})$, we now show that \tilde{h} covers a (unique) homeomorphism $h: M \to M$, i.e. $hop = po\tilde{h}$. Let $a \in M$, and let $\tilde{a} \in p^{-1}(a)$. Put $b = p(\tilde{b})$, where $b = h(\tilde{a})$. The point b is independent of the choice of $\tilde{a} \in p^{-1}(a)$. For if $p(\tilde{c}) = a$, and p(d) = d where $d = h(\tilde{c})$, then there is an element $g \in G(p)$ such that $g(\tilde{a}) = \tilde{c}$. Consider $g' = \tilde{h} ogo \tilde{h}^{-1}$. Then $g'(\tilde{b}) = \tilde{d}$. Since $G(p) \triangleleft H(\tilde{f})$, $g' \in G(p)$. Thus $b = p(\tilde{b}) = p(\tilde{d}) = d$.

Now, define $h: M \rightarrow M$ by h(a)=b. Then h is a homeomorphism of M, and, trivially, the set $H(f) = \{h : \tilde{h} \in H(\tilde{f})\}$ is a subgroup of G(f) isomorphic to $H(\tilde{f}) / G(p)$. Thus there is an epimorphism $\theta: H(\tilde{f}) \to H(f)$ given by $\theta(h) = h$.

Secondly, we show that H(f) acts 1-transitively on the set of 2-cells of *M* by *f*. Let *A*, *B* be 2-cells of *M* by *f*. Then there are 2-cells \tilde{A} and \tilde{B} of \tilde{M} by \tilde{f} such that $p(\tilde{A}) = A$ and $p(\tilde{B}) = B$. Let \tilde{h} be the unique

e

element of $H(\tilde{f})$ such that $\tilde{h}(\tilde{A}) = \tilde{B}$ and let $h = \theta(\tilde{h})$. Then h(A) = B, and there is only one such element of H(f).

It should be noted that if $p: \tilde{M} \to M$ is a covering map, and $\tilde{f} = fop$, where $f \in \mathbb{N}(M, P_n)$, then $\tilde{f} \in \mathcal{B}(\tilde{M}, P_n)$ implies that $f \in \mathcal{B}(M, P_n)$.

Example 5: Let $M=P_n(R)$ be the real projective, n-space, and let P_n be the n-polygon $\{t \in R^{n+1} : \sum_{i=1}^{n+1} t_i = 1, 0 \le t_i \le 1\}$. Define $f: M \to P_n$ by $f(\{x\}) = (|x_1|, ..., |x_{n+1}|) / ||x||$. Then \overline{M} may be identified with S^n , and $p: \overline{M} \longrightarrow M$ is given by $p(x) = \{x\}$. In this case $G(p) \cong Z_2$ is generated by the map $g: S^n \to S^n$, g(x) = -x and $H(\overline{f}) \cong (Z_2)^{n+1}$ is generated by the reflexions $g_i: R^{n+1} \to R^{n+1}, g_i(x_1, ..., x_{n+1}) = (x_1, ..., x_{i+1}, ..., x_{n+1})$ and $\overline{f}(x) = (fop)(x) = (|x_1|, ..., |x_{n+1}|) / ||x||$ as above.

Theorem 3: Let \tilde{f} and f be as in Theorem 1 such that $G(p) \triangleleft H(\tilde{f})$. Let γ : $L \rightarrow M$ be a regular covering. Then H(g), where g=foy, acts 1-transitively on the set of 2-cells of L by g.

Proof: Since *M* is simply connected, for any other covering map $\gamma: L \rightarrow M$ there exists a universal covering map $h: M \rightarrow L$ such that $\gamma oh=p$ (Figure 8).

Now $G(p)\cong\Pi_1(M)$ and $G(h)\cong\Pi_1(L)$. Since $\gamma: L \to M$ is regular $\gamma_*\Pi_1(L, \gamma) \triangleleft \Pi_1(M, x)$, where $\gamma(\gamma)=x$. There is isomorphism $\Phi: G(p) \to \Pi_1(M)$ and $\Psi: G(h) \to \Pi_1(L)$ such that following diagram is commutative (Figure 9).

It follows from elementary group theory that, since $\Pi_1(L)$ is embedded in $\Pi_1(M)$ as a normal subgroup, then G(h) is embedded by α in G(p) as a normal subgroup. But $G(p) \triangleleft H(\tilde{f})$ by assumption. Hence $G(h) \triangleleft H(\tilde{f})$ and Theorem 2 can be applied for g, yielding that $G(g) = H(\tilde{f}) / G(h)$ acts 1-transitively on the set of 2-cells of L by g.

Euler Numbers of Balanced Folding onto a Polygon

General considerations

Let $f \in \mathbb{N}(M,N)$, where M and N are surfaces. To avoid too many complications, let us suppose that M is compact, connected and without boundary, and let N be connected.

Since *M* is compact the graph Γ_f is a finite graph. Let Γ_f divides *M* into *k* 2-cells, or faces, $A_1, A_2, ..., A_k$. In this case $f | A_i, i=1, ..., k$ is a homeomorphism onto the interior of *N*.

We can triangulate N by a simplicial complex T_N such that every vertex of the cell decomposition C_f of ∂N is a vertex of T_N . Let T_M be the triangulation of M induced by f.

Consider the faces $A_1, ..., A_k$ and their closures $B_1, ..., B_k$. Thus

 $e(B_i)=e(N), i=1, ..., k$, where e(X) is the Euler number of X. If we now calculate the Euler number e(M) of M using the triangulation T_N , then we can compare e(M) with $\sum_{i=1}^{k} e(B_i) = ke(N)$. We note that for each vertex of Γ_f with valency v exactly v vertices have been counted in the calculation of the Euler number ke(N) of the disjoint union of $B_1, ..., B_n$. Likewise, every edge of Γ_f appears twice in these calculations. Figure 10 which shows the neighborhood of a vertex with valency 4, may help to clarify these remarks.

Page 4 of 5

Thus to obtain e(M) from $\sum_{i=1}^{n} e(B_i)$ we must subtract (v - 1) for each

vertex of Γ_f (of valency v) and add the number of edges of Γ_f . The first of these is *V*-*nk*, where *V* is the number of vertices of Γ_f , and *n* is the number of vertices of ∂N . The second is equal to $\frac{nk}{2}$. We conclude that:

$$e(M) = ke(N) + V - \frac{nk}{2}$$
(1)

The case in which *N* is the disc D^2 , e(N)=1 and each 2-cell *A* of *M* is homeomorphic to D^2 . Thus equation (1) now reduces to

$$2e(M) = k(2 - n) + 2V$$
 (2)

q_1	<i>q</i> ₂	q ₃	k	H(f)
2	2	<i>p</i> , <i>p</i> >1	4p	D _{2n}
2	3	3	24	0
2	3	4	48	Ō
2	3	5	120	Ī

Table 1: Possibilities list.

Balanced folding over a polygon

Equations (1) and (2) can be refined slightly when *f* is balanced. In this case, if we label the vertices of the polygon *Pn* as $V_1, ..., Vn$, then each vertex in the set $f^{-1}(Vj)$ has the same valency $2q_i, j=1, ..., n$.

It follows that $f^{-1}(Vj)$ contains $\frac{k}{2q_j}$ elements. Thus the number of vertices of Γ_i is:

$$V = \frac{k}{2} \sum_{j=1}^{n} \frac{1}{q_{j}}$$
(3)

Hence for a balanced folding over a disc, equation (3) may be reduced to

$$2e(M) = k (2-n) + k \sum_{j=1}^{n} \frac{1}{q_j} = k \left\{ (2-n) + \sum_{j=1}^{n} \frac{1}{q_j} \right\}$$
(4)

Certain cases of equation (4) are of special interest. For instance, let n=3, so that *M* is triangulated by Γ_{ρ} and equation (4) becomes

$$2e(M) = k \left\{ \frac{1}{q_1} + \frac{1}{q_2} + \frac{1}{q_3} - 1 \right\}_{1}$$
(5)
Thus if M is called the standard local test of the called

Thus if M is a sphere, then
$$\frac{1}{q_1} + \frac{1}{q_2} + \frac{1}{q_3} > 1$$
 and $k \ge 4$. The only

possibilities are listed in the following Table 1:

The group H(f) associated with f according to Theorem 1 is shown in column5, and the corresponding triangulation of S^2 are shown in Figures 11a-11d. Note that in Figure 11d we have drawn only one side. The vertices are labeled in such a way that vertices with the same image under f are labeled alike.

References

- 1. Kinsey LC (1993) Topology of surfaces. Springer, New York, USA.
- El-Kholy E, Shahin RM (1998) Cellular folding. J Inst Math and Comp Sci 11: 177-181.
- Robertson SA, El-Kholy E (1986) Topological foldings. Commun Fac Sci Univ Ank Ser 35: 101-107.
- Farran HR, El-Kholy E, Robertson SA (1996) Folding a surface to a polygon. Geometriae Dedicata 63: 255-266.

Page 5 of 5