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Abstract

The gastrointestinal system offers a unique opportunity for observing the interactions between commensals of the microbiome and the host immune system that is
functioning close to these micro-organisms. Bacteriophages are critical to maintenance of homeostasis in this environment, and influence immune responses both
indirectly, through modulation of the bacterial population and directly, through specific interactions with the metazoan host. Understanding these interactions in health and
in human diseases is critical for developing novel treatment. This focused review summarizes the current knowledge in this area.
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Introduction

Bacteriophages (phage), viruses that prey on bacteria, are a major
component of the gastrointestinal microbiome. Phage replication,
simplified, consists of a Iytic cycle-propagation results in bacterial
lysis- or a lysogenic cycle-phage incorporate their genome into the
bacterial host [1,2]. In reality, life cycles are more complex [3] with
phages that are able to undergo lysogeny (temperate) and phages
that are not (non-temperate). Phage life cycle can greatly influence a
bacterial population with shifting to different phases possibly
associated with disease [4]. Phages are also thought to be specific to
their bacterial host, but more recent data suggest some phages may
bind bacteria more promiscuously [5,6] thus expanding the ability of
individual phage to regulate a variety of bacteria. The interactions
that phages have with bacteria in their environment are important for
establishing which phages and bacteria are the dominant community
members and have important downstream effects on metabolism and
overall community structure.

Within the gastrointestinal microbiome, both bacteria and phage
play a fundamental role in the development and maintenance of the
metazoan immune system. From birth, they colonize the
gastrointestinal tract, but the number and diversity of phages
outnumber the bacteria [7,8]. A reversal of this dynamic comes with
age; phage number and diversity lessens and stabilizes while
bacterial numbers and diversity increase. Commensals are of
importance to a healthy immune system as they are required for the

development of IgA producing plasma cells, CD4+ T-cells, isolated
lymphoid follicles, and invariant natural killer T cells [9-12]. Once
established, the microbiome continues to be critical for maintenance
of a healthy gastrointestinal system. Bacterial members provide
protection from invading pathogens by physically blocking access
and secreting soluble factors inhibitory to colonization of pathogens
[13,14]. They process indigestible material and provide metabolites
for the health of the system [15,16], and they can aid in regulating
inflammation [17,18]. Because phage influences the overall bacterial
community structure and composition, they too impact the metazoan
host in ways that are just beginning to be appreciated. In addition to
their indirect effects (via bacteria), phages can directly interact with
Eukaryotic cells of the gastrointestinal system to mediate immune
responses. In this review, we focus solely on phages at the
gastrointestinal epithelium and their relation to immunity.

Phage and Healthy Gastrointestinal
Epithelium

Within a healthy gastrointestinal system, the ratio of free phage to
bacteria is 0.1 to 1:1, lower than that in other environments where
phages reside, such as the ocean [4], suggesting a prevalence of
temperate phages in lysogeny [2,19,20]. The distribution of phages in
the intestine is hypothesized to occur as a gradient with lysogeny
occurring in the lumen and outer reaches of the mucin layer, and lysis
dominating its deeper parts [21]. Bacteria from the phyla Firmicutes
and Bacteroidetes make up about 90% of the bacterial component of
the microbiome [22]. Members of the Firmicutes and Proteobacteria
phyla, also found in the microbiome, harbor the most lysogenic
prophage as compared to members of the Bacteroidetes and
Actinobacteria phyla [23,24]. Lysogeny at such high levels allows for
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phages to take advantage of a thriving bacterial environment while
also allowing for a hidden “stock” of phages that are releasable upon
recognition of particular bacterial signals. Presence of only phages
utilizing lysis within the mucin may represent the advantages of these
phages in binding mucins or other structural proteins. For example,
Barr et al. identified a protein in the capsid of T4, a coliphage, that
binds specifically to mucin [25,26]. This adaptation is beneficial to T4
as it allows for its retention in the mucin despite sloughing, and allows
phage to move using the mucin web so as to increase the likelihood
of encountering its bacterial prey.

Indirect and direct immune regulation

Indirect phage effects on the immune system are mediated by
bacteria via phage-bacterial interactions. Commensal bacteria protect
against pathogens through physical and soluble inhibition, and
phages affect this protection by regulating bacterial abundance and
diversity. Phage-driven lysis releases bacterial epitopes to be
recognized by PAMP (pathogen-associated molecular pattern)
receptors on eukaryotic cells, initiating immune signaling [27]. Both
temperate and non-temperate phages influence bacterial metabolism
resulting in downstream effects on cellular signaling that relies on
bacterial metabolites [28].

Phages may also interact with the immune system more directly.
Environmental sampling by immune cells could capture phage for
processing. Phagocytosis of phage by macrophages and dendritic
cells has been demonstrated. Once phages are intracellular, they are
processed through lysosomal pathways for antigen presentation
[29,30]. Entry of phage into eukaryotic cells is not solely an outcome
of phagocytosis. In healthy subjects, phages have been found
throughout the body displaying their success in overcoming the
epithelial barrier of the gut. Because the tight, intercellular junction
between epithelial cells is limited to molecules under 0.4 nm [31], it is
likely that phage undergo transcytosis. Indeed, Nguyen et al. has
demonstrated the apical to basolateral movement of phages across
several epithelial barriers in an in vitro system [32]. Crossing the
epithelial barrier via transcytosis allows phages to come into direct
contact with immune cells in the submucosal layer, potentially
stimulating immune signaling through a variety of mechanisms [33].

Phage and the Dysbiotic
Gastrointestinal Epithelium

Loss of homeostatic balance among the gut microbial community,
or dysbiosis, occurs in several gastrointestinal diseases including
ulcerative colitis, Crohn’s disease, and small intestinal bowel
overgrowth. There are multiple physiological changes associated with
dysbiosis including substantial changes in mucin secretion,
inflammation, loss of barrier integrity, and increased infiltration of
immune cells. Shifts in the gastrointestinal microbiota during
dysbiosis result in loss of diversity as well as decreases in beneficial
bacteria from the phyla Firmicutes. Concurrently, bacterial blooms of
minor community members or establishment of bacterial pathogens
are associated with increased epithelial inflammation [34,35]. While
the role of phages during dysbiosis is not well understood, their
communities also shift with, most frequently, an increased abundance
of the tailed phages, order Caudovirales. The loss of Firmicutes
bacteria, the main source of lysogeny, may stimulate switching
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among their temperate phages from lysogeny to lysis. This would be
consistent with results seen in patients with irritable bowel disease
(IBD) where the commensal Faecalibacterium prosnitizii is lost from
the microbiome, but phages of these bacteria-found as prophage in
healthy systems-are increasingly extracellular [36,37]. As some
dysbiotic conditions are associated with a decrease or loss of mucin
secretion, it is also possible this allows for phages typically
embedded in the mucin to venture further toward the lumen and
effect the bacterial populations they normally would not have access
to.

Indirect and direct immune regulation

There are a number of mechanisms by which phages may
influence the gastrointestinal immune system during dysbiosis.
Similar to a healthy system, phages have great influence over the
bacterial population in dysbiosis thereby indirectly influencing
immune responses. If temperate phages become more Iytic in the
lumen [4] or if loss of mucin releases previously contained phage
population into the lumen increasing predation, increased lysis of
luminal bacteria would saturate the system with proinflammatory
microbial antigens. Increased bacterial lysis would also affect luminal
metabolic activity such that certain essential nutrients were no longer
being produced for the epithelium to use. For example, with F
prausnitzii, which produces the short chain fatty acid butyrate as a
metabolite. Butyrate helps maintain intestinal homeostasis and has a
beneficial immunomodulatory effect [38]. Thus, if F. prausnitzii suffers
from phage over predation and is lost in IBD, butyrate, a fuel for
colonocytes, is also depleted leaving the intestinal epithelium in a
weakened state.

Breakdown of the integrity of the gastrointestinal epithelial barrier
accompanying inflammation provides ample opportunity for direct
interaction between the immune system and bacteriophage. With
phages able to recognize a variety of bacterial epitopes for binding,
there is likelihood that molecular mimics exist on Eukaryotic cells that
phages can also bind. Porayath et al. demonstrated that phage was
able to bind to heparin and fibronectin, both found in the
gastrointestinal epithelium [39], Lehti et al. showed that phage bound
to the sialic residues on the surface of neuronal cells [40], and Shan
et al. found C. difficile phages adhered to epithelial cells [41].
Additionally, with loss of integrity, the epithelium becomes much more
permeable to larger molecules, including phages, offering an
alternative to transcytosis for phages to move across the barrier. The
combination of increased barrier traversion and influx of immune cells
to the region increases the likely encounters between phages and
immune cells that could ultimately trigger immune signaling.

Conclusion

The gastrointestinal mucosal barrier provides structure for
interaction between microbiome constituents and the metazoan
immune system. The organismal relationships in this space are
critical for localized and systemic health and warrant further
investigation. Bacteriophages have the ability to greatly impact
immune responses in this locale, directly or indirectly, through
regulation of the bacterial population. We are just beginning to realize
the influence of the bacteriophage population, and require more
experimentation using complex populations to clarify how fluctuations
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may maintain health or drive dysbiosis. In this manner, we can see
how elucidation of phage-bacterial interactions may result in novel
therapies for gastrointestinal disorders.
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