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Abstract
The contribution of B lymphocytes and their products to the pathogenesis of inflammatory diseases of the 

central nervous system is still not fully understood. Beside their role as precursors of antibody-secreting cells, B 
cells participate in the regulation of T cell activation through their antigen-presenting capacity, the production of 
cytokines and chemokines and the formation of ectopic germinal centers in intermeningeal spaces. This article 
reviews the current knowledge on B cells within the cerebrospinal fluid in inflammatory diseases affecting the central 
nervous system. Here, we will focus on two prototypical inflammatory diseases of the central nervous system: 
multiple sclerosis, an autoimmune-mediated inflammatory disease, and infection-triggered inflammation in Lyme 
neuroborreliosis.
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Cell Adhesion Molecule 1; VLA-4: Very Late Activation Antigen 4

B cells in Central Nervous System Inflammation
After the differentiation from pro- and pre-B cell precursors 

in the bone marrow, naïve immature B cells migrate to secondary 
lymphoid tissues, predominantly the spleen, in order to emerge 
as CD19+CD20+surfaceIgM-surfaceIgD+ mature naïve B cells 
[1]. Following an antigen-driven germinal center reaction in 
secondary lymphoid organs and stimulation by dendritic cells 
and T cells, B cells get activated and subsequently differentiate 
into CD19+CD20+CD27+CD38+CD138- memory B cells and 
antibody-secreting effector cells, consisting of CD19+CD20-
CD27++CD38++CD138+HLA-DR++ plasma blasts and CD19-
CD20-CD27++CD38+CD138+HLA-DR- plasma cells [2]. Whereas 
plasma blasts are short-lived and disappear quickly after removal of 
their challenging antigen, plasma cells persist for several months to 
years in their specific survival niches, such as inflamed tissue or the 
bone marrow [3]. Different functions and phenotypes of various B-cell 
populations are shown in Figure 1.

B cells are largely absent in the cerebrospinal fluid (CSF) in non-
inflammatory conditions, but accumulate during central nervous 
system(CNS) inflammation [4]. In acute infectious diseases or chronic 
inflammatory disorders, B cells represent up to 30% of all cells in the 
CSF [5-8]. Oligoclonal bands and intrathecal immunoglobulin (Ig) 
synthesis are found in a variety of subacute and chronic infections of the 
CNS, like human T cell lymphotrophic virus-associated myelopathy, 
subacute sclerosing panencephalitis, human immunodeficiency 
virus (HIV) infection of the CNS, neurosyphilis, cryptococcal and 
mumps meningitis and neuroborreliosis [8-10]. In these diseases, the 

intrathecal Ig response is specific to the underlying infectious agent 
[11-15], whereas the target of the intrathecal antibody response in 
multiple sclerosis (MS) is still unknown.

Before we highlight the role of CSF B cells in neurological diseases, 
it is necessary to introduce the reader to the current understanding 
of immune cell trafficking into the brain. Cells of the immune system 
have access to the three distinct anatomical compartments (CSF, 
meninges and brain parenchyma), which are all relevant for CNS 
inflammation [16,17]. Whereas the migration of leukocytes into the 
brain parenchyma occurs at the blood-brain barrier (BBB), a highly 
specialized membrane, the migration of leukocytes into the CSF 
occurs through the choroid plexus into the subarachnoid space which 
contains the CSF, as illustrated in Figure 2. The choroid plexus is a 
specific anatomical structure located in brain ventricles. The CSF is 
secreted by modified epithelial cells of the choroid plexus, which are 
also known as Kolmer cells. In contrast to the BBB, the choroid plexus 
allows immune cells, particularly lymphocytes, an easier passage into 
the CSF [17].Thus, the CSF contains less innate immune cells and more 
lymphocytes than peripheral blood [18]. Trafficking of immune cells 
into the CSF is increased in CNS inflammation and according to the 
hallmark publication of Reiber and Peter in 2001, the total cell count 
in CSF represents the most sensitive parameter for characterization of 
an acute inflammatory disease of the CNS. Whereas in normal CSF 
0–4 leukocytes/μl are observed, CSF leukocyte counts are moderately 
increased in MS and significantly higher in acute infectious brain 
inflammation such as meningitis or meningoencephalitis [19]. In 
summary, inflammatory CNS disorders are characterized by the 
occurrence of intrathecal Ig synthesis and pleocytosis in the CSF. 
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Multiple Sclerosis
MS is the most frequent, chronic inflammatory demyelinating 

disease of the CNS, mainly affecting young adults and characterized by 
a heterogeneous clinical presentation [20,21]. Although, the etiology 
of MS is still unknown, it is widely considered as autoimmune disease 
triggered by environmental factors in genetically susceptible individuals 
[22]. Worldwide, approximately 2.5 million peoplesuffer from MS. 
85-90% of MS patients initially present with relapsing-remitting MS 
(RRMS) characterized by acute relapses followed by complete or 
incomplete remission [21]. The majority of these patients later convert 
to a secondary progressive disease course (SPMS). 10-15% of patients 
suffer from primary progressive MS (PPMS), a malignant disease with 
steady progression from the onset. Current treatments for MS attempt 

to reduce the inflammatory activity by immunomodulation, prevent the 
entry of immune cells into the CNS, deplete specific subsets of immune 
cells or suppress immune responses in an unspecific manner [21]. 
The discovery of intermeningeal ectopic germinal centers, associated 
with B cells and high concentrations of germinal center promoting 
cytokines and chemokines like CxCL-13, suggest the de novo formation 
of ectopic lymphoid structures (neolymphogenesis) within the CNS 
[23-26]. These observations foster the crucial contribution of B cells 
in MS. Although, intensive and controversial research on the role of B 
cells in MS is ongoing for several years [27].

Intrathecal Ig Synthesis in MS
More than 90% of MS patients show a persistent increased 

intrathecal production of Ig, mainly consisting of oligoclonal IgG 
[28]. Oligoclonal IgG bands are restricted to the CSF [29] and 
their presence is an important marker for the diagnosis of MS [10]. 
Additionally, oligoclonal IgM synthesis in the CSF occurs in about 
40% of MS patients [30]. Although many efforts have been made to 
identify the targets of the intrathecally produced antibodies, they are 
still largely unknown [31]. Recently, Owens et al. described that CSF 
IgG antibodies do not target myelin oligodendrocyte protein (MOG), 
myelin basic protein(MBP) and proteo lipid protein(PLP), three of 
the major myelin proteins, and do only weakly react with MS brain 
tissue [32]. In contrast, myelin lipids were identified as main targets for 
oligoclonal IgM bands in more than 70% of cases [33,34] and a higher 
IgM index at clinical onset of MS correlates with faster progression of 
the disease, thereby predicting an aggressive MS disease course [33,35-
37]. Furthermore, a follow-up study showed that the more aggressive 
MS disease course in the presence of lipid-specific IgM bands is 
characterized by the occurrence of more relapses and higher disability 
[34]. Villar et al. [34] found an increased number of persisting IgM 
secreting CD19+CD5+ B cells in the CSF of MS patients with anti-lipid 
IgM oligoclonal bands compared to patients with IgM bands lacking 
myelin lipid specificity. By longitudinal analysis of CSF and serum 
samples from oligoclonal IgM band positive patients with and without 
lipid-specificity, it was shown that lipid-specific oligoclonal IgM 
bands persist for approximately two years, thus indicating a persistent 
immune response. In contrast, oligoclonal IgM bands without lipid-
specificity at disease onset disappeared 18 months later, thus suggesting 
a transient immune response [34]. In summary, intrathecal synthesis of 
immunoglobulins, especially IgG is a useful marker for the diagnosis of 
MS, although the targets of these antibodies are not fully resolved yet. 
Moreover, B cells, plasma cells and excess immunoglobulins are found 
in MS lesions and B cell follicle-like structures in the meninges of MS 
patients have been discovered [23,38,39]. Recent data of successful 
clinical trials using rituximab, a monoclonal chimeric antibody 
targeting CD20, expressed on B cells, support the crucial role of B cells 
in MS pathology, thus indicating B cells as key players in MS disease 
activity [40].

B cells in the CSF of MS Patients 
Whereas there are no differences in the distribution of leukocyte 

subsets in the peripheral blood, impressing variations in leukocyte 
populations in the CSF of MS patients compared to non-inflammatory 
neurological diseases can be monitored [4]. CD19+ B cells, which are 
nearly absent in the CSF of healthy individuals and patients with non 
inflammatory neurological diseases, were shown to accumulate in the 
CSF during CNS inflammation [4,7]. In addition, a more progressive 
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Figure 1: Phenotype and function of different B cell populations.
This illustration shows the four main functions of B cells in immune-mediated 
diseases of the CNS. 
(A) CD19-CD20 low CD27++CD138+long-lived plasma cells and CD19 low 
CD27+CD138+ plasma blasts secrete antibodies that contribute to tissue dam-
age via antibody-dependent cell-mediated cytotoxicity or complement activa-
tion. 
(B) CD19+CD20+ activated B cells are potent APC that mediate cytokine secre-
tion and clonal expansion of cytotoxic T cells.
(C) Production of pro- or anti-inflammatory cytokines by CD19+CD20+ B cells 
may affect the activation of macrophages or T cells. 
(D) Plasma cells, plasma blasts and CD20+ B cells may be involved in de novo 
formation and maintenance of ectopic germinal centers in the intermeningeal 
spaces (neolymphogenesis). 
Abbreviations: APC: Antigen-Presenting Cells; BCR: B Cell Receptor; DC: 
Dendritic Cell; MHC: Major Histocompatibility Complex; TCR: T Cell Receptor.
Illustration modified from Barun and Bar-or [95].
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Figure 2: Transmigration of immune cells across the choroid plexus into the CSF.
Under the influence of chemokines immune cells in the small choroidal capillaries undergo adhesion, rolling and finally diapedesis into the stroma. There, the cells 
might be attracted by additional chemokines, produced by the CSF-secreting epithelial cells of the choroid plexus (Kolmer cells), thus resulting in migration through the 
epithelial cell layer into the ventricle. 
Abbreviation: CSF: Cerebro Spinal Fluid.
Illustration modified from Wilson et al. [17] and Ransohoff et al. [16].

disease course of MS strongly correlates, next to intrathecal IgG 
production and oligoclonal IgM bands, with a preponderance of B cells 
[4,37,41]. As opposed to the peripheral blood, only a small quantity of 
CD19+CD27- naïve B cells is present in the CSF of MS patients [6]. 

In CNS inflammatory conditions, most B cells in the CSF are CD27 
expressing antigen-experienced memory B cells and short-lived 
CD19+CD27++CD138+ plasma blasts [6,7,24,42,43]. Cepok and col-
leagues showed that almost 50% of B lymphocytes in the CSF are plas-
ma blasts, a phenotype which is only infrequently found in the periph-
eral blood of MS patients [6], but which is abundant in the peripheral 
blood of patients with systemic lupus erythematosus [44,45]. Plasma 
blasts in the CSF were found to be discriminated from naïve as well as 
memory B cells by their increased size and density, representing a high-
er activation state [6]. Moreover, it was shown that the quantity of 
CD19+CD138+ plasma blasts in the CSF correlates with intrathecal 
IgG synthesis and inflammatory parenchymal disease activity, as mon-
itored by the number and volume of gadolinium-enhancing lesions in 
T1-weighted magnetic resonance images (MRI) [6,7]. By analyzing 
CD19+CD27+ memory B cells in more detail, two distinct subsets de-
pending on the strength of CD27 expression have been identified. One 
subset is characterized by a high expression (CD19+CD27++) while 
the other exhibits only an intermediate expression of CD27 
(CD19+CD27+) [6]. By further analyzing the two distinct subsets of 
CD19+CD27+ memory B cells for the expression of CD138, high ex-
pression of CD138 was mainly found on CD19+CD27++ B cells. Fur-
thermore, the CD19+CD27++ B cell subset was shown to express lower 
levels of CD19 than naïve CD19+CD27- and memory CD19+CD27+ B 

cells [6]. In addition, CD19+CD27++ B cells express high levels of 
CD38, thereby representing a phenotype comparable with plasma 
blasts [6]. Recently, our group could demonstrate that the number of 
CSF B cells correlates with intrathecal production of matrix metallo-
proteinase-9 (MMP-9) and CxCL-13,two mediators promoting B cell 
migration through the BBB and maintenance of immune responses 
within the CNS [7]. MMP-9, which may be secreted by leukocytes and 
CNS-resident cells under inflammatory conditions, is involved in the 
degradation of the extracellular matrix, thereby promoting BBB leak-
age and subsequent transmigration of leukocytes into the brain [7,46-
48]. CxCL-13 is a key regulator for B cells within lymphoid tissues and 
follicles, produced by stromal cells of germinal centers but also by 
monocytes, macrophages and dendritic cells [49-53]. It was shown sev-
eral times that both mediators, MMP-9 and CxCL-13 are increased in 
the CSF of patients affected with MS as well as neuroborreliosis thereby 
explicating the accumulation of B cells in the CSF [50,54-60]. In addi-
tion, an obvious accumulation of CD19+CD138- mature B cells and 
CD19+CD138+ plasma blasts was observed in the CSF of patients af-
fected with CIS and RRMS, but not in Chronic Progressive MS (CPMS), 
suggesting active inflammation [7]. The quantity of mature B cells and 
plasma blasts was associated with higher disease activity, as measured 
by the number of T2 lesions as well as the presence of gadolinium-en-
hancing lesions, referring to acute brain inflammation and BBB dys-
function [7]. Cepok and colleagues investigated the expression of CD19 
and CD27 on CD138+ B cells in more detail [6]. They found that the 
majority of CD138+ B cells expresses high levels of CD27, HLA-DR as 
well as intermediate to high levels of CD19, a phenotype comparable to 
short-lived plasma blasts [6]. By longitudinally investigating the num-
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ber of CD19+CD138+ plasma blasts in the CSF of 61 MS patients as 
well as 10 patients affected with other inflammatory neurological dis-
eases, Cepok and colleagues showed that plasma blasts persist through-
out the disease course of MS. However they disappear from the CSF of 
patients affected with infectious inflammatory CNS disorders like neu-
roborreliosis or viral meningitis after the clearance of the pathogen [6]. 
In contrast to plasma blasts in the CSF, CD19+CD138- mature B cells 
were shown to persist for years in various inflammatory CNS diseases 
(MS, neuroborreliosis and viral meningitis) [6]. Another study aimed 
to analyze the heterogeneous group of CD19+CD27+ memory B cells 
in the CSF of various inflammatory diseases like MS, CIS, viral menin-
gitis or meningoencephalitis in more detail and found a selective en-
richment of class-switched IgM-IgD-CD27+ memory B cells [42]. In 
contrast, the transmigration of CD19+CD27- naïve B cells from the 
periphery into the CNS was found to be largely prohibited [42]. Since 
the majority of patients suffer from RRMS, analysis of the immune cell 
subpopulations in the CSF during remission and clinical relapses were 
performed. Investigations in five RRMS patients revealed variations in 
the absolute white cell count whereas the distribution of different im-
mune cell subpopulations (monocytes and B cells) remained stable [4]. 
The authors speculate that the patterns of CSF cytology in MS patients 
do not correspond to the various disease phases; however they suggest 
that the variations may reflect individual differences in immune reac-
tivity with a predominance of B cells in some patients and monocytes 
in others. Furthermore, higher numbers of B cells relative to mono-
cytes correlate with faster disease progression [4]. In addition, in a sub-
group of patients suffering from RRMS and SPMS they found that high 
numbers of B cells and low numbers of monocytes are associated with 
a higher progression rate [4]. There are inconsistent reports on the fre-
quency of plasma cells in the CSF of MS patients. While some data 
suggests increased numbers of CD19-CD138+ long-living plasma cells 
in the CSF from MS patients [24], others report only low counts of 
plasma cells with unchanged frequencies, regardless of the disease du-
ration and the MS disease course [6,7]. Moreover, Corcione et al. [24] 
reported CD19+CD38+CD77+centroblasts in the CSF of MS patients. 
In addition to analysis of the CSF B cell composition in untreated MS 
patients, several approaches aimed to evaluate the effect of various MS 
treatments on CSF B cells. Thereby, the effects of natalizumab on CSFB 
cells have been investigated. Natalizumab is a humanized monoclonal 
antibody, specific for very late activation antigen 4 (VLA-4), an adhe-
sion molecule which is expressed by all white blood cells except neutro-
phils. Binding of natalizumabto VLA-4 inhibits the interaction of 
VLA-4 with its ligand vascular cell adhesion molecule 1 (VCAM-1), 
thus preventing leukocyte transmigration into the CNS [61]. By analyz-
ing the number of white blood cells in the CSF, it was shown that na-
talizumab results in a decline in all major leukocyte subsets [61]. This 
effect was sustained even six months after termination of therapy, 
where among others, the numbers of CD19+B cells and CD138+ plas-
ma cells remained lower in treated MS patients, compared to untreated 
MS patients [61]. However, the quantity of lymphocytes reverted to 
normal 14 months after cessation of natalizumab treatment [62]. Since 
beneficial effects of therapies targeting CD20 in MS have been report-
ed, the effects of B cell depletion using rituximab were investigated in 
the peripheral blood and in the CSF [40,63]. Rituximab was found to 
decrease the quantity of B cells in the peripheral blood as well as in the 
CSF [64-67]. By analyzing B cells for the expression of co-stimulatory 
molecules pre- and post rituximab, Piccio et al. found that the total 
number of B cells in the CSF significantly decreased post-treatment. 
However, the proportion of B lymphocytes expressing co-stimulatory 

molecules CD80 and CD86 was significantly increased post-treatment 
[64]. Moreover, it was shown that rituximab effectively depletes B cells 
in the cerebral perivascular spaces, the main CNS compartment in 
which antigen presentation and T cell reactivation occurs [67]. Fingoli-
mod (FTY720), an oral immunomodulatory drug, was recently ap-
proved for the treatment of RRMS [68-70]. One study showed that al-
though fingolimod significantly decreases B cells in the periphery, it 
only had little impact on CSF B cells [71]. In conclusion, the accumula-
tion of B cells, particularly of  CD19+CD27++CD138+plasma blasts, in 
the CSF establishes them as one of the central players in active MS. 
Furthermore, their numbers were found to correlates with intrathecal 
immunoglobulin synthesis, intrathecal production of CxCL-13 and 
MMP-9 as well as acute brain inflammation. Moreover, recent promis-
ing results of novel therapeutic approaches, either targeting the entry of 
leukocytes into the brain or depleting B cells, underpin their impor-
tance in chronic inflammatory demyelinating diseases, like MS.

B cells in Neuroborreliosis
Lyme borreliosis is a multisystem disease caused by infections 

with the spirochete Borrelia (B.)burgdorferisensulato transmitted 
by ticks of the species Ixodes [72-75]. The prevalence of Lyme 
borreliosis ranges from 20-100 per 100,000 in the US to 100-130 
per 100,000 in Europe [76,77]. So far, four human pathogenic 
species of B.burgdorferisensulato have been described [77]. In 
Europe the genospecies B.burgdorferisensustricto, B.garinii, B.afzelii 
and B.spielmanii exist. By contrast, in the US only one human 
pathogenic species, B.burgdorferisensustricto is present [72,77-81]. 
Whereas all genospecies may cause erythema migrans, B.afzelii has 
been mainly associated with Acrodermatitis Chronic Atrophicans, 
B.burgdorferisensostricto with arthritis and B.garinii is predominantly 
associated with neurological manifestations of the disease [78]. Lyme 
neuroborreliosis is a severe inflammatory manifestation affecting the 
peripheral and central nervous system [77,82]. It may lead to multiple 
pathological and clinical symptoms like lymphocytic meningitis, 
meningoencephalitis, cranial or peripheral neuritis and painful 
meningoradiculitis [74,77,83,84]. Acute painful meningoradiculitis 
is the most frequent CNS manifestation observed in Europe [5]. In 
meningoradiculitis it is assumed that the spirochete B.burgdorferi infects 
the brain and the meninges, although the patho mechanism is not fully 
understood so far [5]. In the majority of cases, the immune response 
in the CNS successfully clears the infection, resulting in remission 
of the symptoms [5]. Nevertheless, chronic neurologic diseases, like 
encephalomyelitis can occur in about 10-20% of untreated patients 
infected with B.burgdorferi, even after long periods of latent infection, 
thereby aggravating correct diagnosis [5,76,84]. Neuroborreliosis leads 
to local inflammation in the host and accumulation of leukocytes in the 
CSF [5,85]. MRI studies in late, chronic disease stages showed diffuse 
white matter lesions [86]. In addition to CSF-derived T cells, reactive 
with either B.burgdorferi-derived antigens or CNS-self antigens [87], 
T cells cross-reactive with both were detected [88,89]. Thus indicating 
that autoimmunity triggering the chronic disease is provoked by 
molecular mimicry [88,89]. The presence of antigen-triggered 
immunity is fostered by the presence of oligoclonal IgG and IgM 
bands in the CSF of affected individuals [5]. The presence of intrathecal 
B.burgdorferi-specific antibody production is partly considered to be 
essential for the diagnosis of neuroborreliosis [84]. The intrathecal 
synthesis of immunoglobulins may persist for several months or years 
after treatment [84]. Some approaches have analyzed the targets of 
immunoglobulinsin the CSF of patients affected with neuroborreliosis. 
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These studies detected IgG specific for B. burgdorferi [90,91] but also 
CNS autoantigens [92]. Another study analyzed independently clonally 
expanded CD138+ plasma cells from the CSF and found distinct 
reactivities, for B. burgdorferi-derived antigens and CNS autoantigens, 
thus indicating that mechanisms involving molecular mimicry are 
absent in neuroborreliosis [83]. Cepok and colleagues reported high 
percentages of B cells and plasma cells in the CSF of patients affected 
with B. burgdorferi meningoradiculitis at disease onset, compared to 
non-inflammatory neurological diseases and viral meningitis [5]. 
During the first weeks of recovery, CD19+B cells were found to persist 
or even relatively increase in the CSF, and high B cell counts were 
found even after more than 100 days in the CSF [5]. In contrast to B 
cells, the number of CD19-CD138+ plasma cells in the CSF was found 
to decrease immediately to less than 0.5% one monthafter initiation 
of antibiotic treatment. Furthermore, lower numbers of natural killer 
T cells and monocytes were detected in the CSF of patients affected 
with neuroborrelios is compared to non-inflammatory disorders [5]. 
In addition, it was shown that the percentage of plasma cells correlates 
with the absolute levels of intrathecally synthesized IgG and IgM, 
whereas it does not correlate with B. burgdorferi-specific IgG antibody 
production. However, B. burgdorferi-specific IgG antibody synthesis 
was found to correlate with the percentage of CSF B cells [5]. In contrast 
to variations in the cellular distribution in the CSF, no differences 
of immune cell subsets in the peripheral blood of patients affected 
with neuroborrelios is compared to non-inflammatory controls have 
been detected [5]. Furthermore, it was shown that the lipid moiety 
of Borreliaouter surface protein A (OspA) provokes polyclonal B cell 
activation [93], which can subsequently lead to B cell maturation into 
plasma cells associated with the secretion of B. burgdorferi-specific 
antibodies [72]. The large numbers of infiltrating B cells in the CSF 
[5,6] are probably attracted by the relatively high intrathecal levels of 
CxCL-13, observed in neuroborreliosis [54,77,94]. Within the CSF, 
attracted B cells may mature into antibody-secreting plasma cells, thus 
producing B. burgdorferi-specific antibodies [72]. By longitudinally 
analyzing paired CSF and serum samples from one patient with 
definite neuroborreliosis, Tumani et al. [82] found a mononuclear cell 
pleocytosis, activated B cells and intrathecal humoral immune response 
with IgM predominance as well as blood-CSF barrier dysfunction 
which persisted for several weeks. Like in MS, differences in the 
distribution of various B cell subsets in neuroborreliosis are exclusively 
observed in the CSF, thus underpinning the role of CSF B cells in 
neuroinflammation. Moreover, in the CSF of patients affected with 
neuroborreliosis, intrathecally synthesized IgG as well as IgM, reactive 
against B. burgdorferi-specific antigens as well as CNS autoantigens 
were detected, thus fostering the impact of humoral immunity.

Apart from bacterial infections, B cells are also involved in 
various viral infections of the CNS. B cell and plasma blast counts in 
the CSF were shown to be increased in patients infected with human 
immunodeficiency virus (HIV), compared to patients with non-
infectious CNS disorders. It was shown that the quantity of B cells 
during early and late stages of HIV infections remain stable. This is in 
contrast to plasma blasts which were found in higher numbers during 
early stages of HIV infection. Moreover in HIV, the prevalence of CSF 
plasma blasts was shown to correlate with intrathecal IgG synthesis as 
well as with HIV RNA copy numbers in the CSF. In addition, initiation 
of antiviral treatment in HIV patients resulted in a decrease in the 
number of plasma blasts as well as reduced HIV RNA copy numbers 
within the CSF. The results indicate a HIV-triggered B cell response 

and furthermore, plasma blasts as the main virus-related B lymphocyte 
subset [8].

Conclusion and Outlook
Although MS is widely considered as T cell-mediated autoimmune 

disease of the CNS, there is accumulating evidence that B cells are 
key components in the pathogenesis of the disease. B cells may 
contribute at multiple sites to MS pathogenesis. As shown in Figure 1, 
B cells participate, next to their obvious role in antibody-secretion, in 
antigen-presentation as well as cytokine and chemokine production. 
Furthermore, the successful application of monoclonal antibodies 
targeting CD20 in MS patients confirmed, as stated by Barun and Bar-
Or, “that it is no longer a question of whether B cells contribute, but 
how they contribute, to MS disease activity” [95].

Besides numerous other infectious diseases, B cells play an 
important role in Lyme neuroborreliosis. Via the secretion of 
B.burgdorferi-specific antibodies, B cells in the CNS contribute to the 
clearance of the underlying bacterial infection. 

Although, several mechanisms of B cell-mediated immunity are 
well understood so far, their complex functions are not clarified in 
detail and require further studies. 
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