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Introduction
Every eukaryotic cell has hundreds or even thousands of 

mitochondria which regulate cellular energetics and metabolism. 
Mitochondrial dysfunction increases over time and is observed as an 
accumulation in reactive oxygen species (ROS), as decreases in synthesis 
of electron transport chain proteins and ATP production, and/or as 
changes in mitochondrial size, shape, and membrane potential. This 
dysfunction has been linked to aging [1-3] and a host of age-related 
diseases including Parkinson’s [4], Alzheimer’s [5,6], diabetes [7], and 
others [8,9]. Recent studies have also shown that patients on long 
term HIV/AIDS therapy exhibit many mitochondria related diseases 
including, diabetes, Parkinson’s, and Alzheimer’s [10,11]. These reports 
are consistent with the evidence that mitochondrial dysfunction is the 
side effect of drug treatment [12-14].

A possible cause of mitochondrial dysfunction is damage to the 
many copies of mitochondrial DNA (mtDNA). One form of this 
damage is the gradual accumulation of mtDNA mutations [1]. These 
mutations may adversely affect mitochondrial function, or may cause 
an increased production of reactive oxygen species (ROS), initiating a 
feedback loop of mutations and further ROS generation. Alternatively, 
mitochondria may also become dysfunctional due to the depletion 
of genomes. In fact, certain antiretroviral drugs, such as nucleoside 
reverse-transcriptase inhibitors (NRTIs), used to treat HIV/AIDS, 
inhibit DNA replication [15], resulting in mtDNA depletion [16,17]. 
The NRTI 3'-Azido-3'-deoxythymidine (AZT also known as ZDV) in 
contrast, does not appear to cause mtDNA depletion, but nevertheless 
causes mitochondrial dysfunction [18-20].

AZT may cause dysfunction by damaging mtDNA [21]. This 
damage may come in the form of low frequency random mutations, 
known as mutational load, which may build up gradually until 
mitochondria become dysfunctional and clinical symptoms arise. Thus, 
mutational load rather than depletion of mtDNA could account for 
the negative effects of AZT treatment. According to this hypothesis 
no single mutation reaches a threshold to cause dysfunction, but 
all mutations collectively cause dysfunction, which in turn leads to 
disease. Alternatively mutational load could lower the threshold needed 
for point mutations to cause dysfunction and thus lead to disease. In 
either case, mutational load does not reach the threshold necessary for 
apoptosis due to its low frequency and random nature [22].

Most methods currently used to study mutational load are based 
on conventional PCR amplification followed by Sanger sequencing. 
These approaches are inadequate because they start with populations 
of molecules and therefore can only detect high frequency changes 
in mtDNA. Mutational load by its very nature is not high frequency. 
In fact, failure to detect mutational load may account for studies that 
show either no consensus in mutations as they relate to disease onset 
or mitochondrial dysfunction [23,24]. Two studies have addressed 
the question of mutational load with the proper detection resolution. 
Martin et al. [25] examined peripheral-blood samples taken prior 
to and after NRTI therapy and observed drug-induced sequence 
changes without evidence for positive selection of pre-existing 
somatic mutations. In contrast, Payne et al. [26] examined muscle 
fibres defective for mitochondrial function in naïve and NRTI-treated 
patients and concluded that drug treatment led to clonal expansion of 
pre-existing mutations rather than increased mutagenesis.

This paper investigates whether peak plasma levels of AZT, 7 µM 
[27], damage mitochondrial genomes by increasing mutational load in 
either of two different cell lines. This was accomplished by analysing 
mutations in mtDNA at the digital or near-digital (1-5 copies) level. 
Analysis of single molecules not only allows the cataloguing of 
mutations, but also establishes the context in which those mutations 
occur. Single molecule amplification via LATE-PCR (an advanced form 
of non-symmetric PCR), followed by dideoxy sequencing has been 
shown to reliably detect mutations in mitochondrial DNA [28]. The 
drawback of this method is that hundreds of individual mitochondrial 
genomes have to be sequenced to properly measure mutational load. 
The present paper describes the use of LATE-PCR together with a novel 
probe design called Lights-On/Lights-Off probes [29] to simultaneously 
screen multiple loci in individual mitochondrial genomes for sequence 
changes. These probes generate fluorescent signatures that are unique 
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to each amplified sequence. Any change from a reference fluorescent 
signature indicates the presence of a mutation. This approach greatly 
diminishes the need for sequencing because only signatures that differ 
from the reference are screened and, if desired, sequenced to identify 
the exact nucleotide change.

In this study HepG2 and CCD-1112Sk cells were treated with 7 
µM AZT in culture for thirty days. Mitochondrial genomes were then 
interrogated at the digital or near-digital level using a triplex LATE-
PCR Lights-On/Lights-Off assay. Treatment did not deplete the mtDNA 
over that period of time, but caused a statistically significant increase 
in the frequency of random mutations as compared to untreated cells. 
This increase was observed in all three mtDNA loci examined: hyper 
variable region 2 (HV2), cytochrome c oxidase subunit 2 (CO2), and 
NADH dehydrogenase, subunit 1 (ND1). The presence and identity of 
the mutations were validated by sequencing in a subset of cases. These 
results demonstrate that AZT introduces low frequency sequence 
changes in mtDNA and illustrates the value of LATE-PCR with Lights-
On/Lights-Off probes for analysis of mitochondria mutational load.

Materials and Methods
Culture conditions and AZT treatments

HepG2 liver carcinoma cells and CCD-1112Sk skin fibroblast cells 
were obtained from ATCC (Manassas, VA). HepG2 liver carcinoma 
cells are a good model for studying the effects of drugs such as AZT 
on mtDNA [20]. CCD-1112Sk skin fibroblasts are primary cells that 
served as a control for the HepG2 cancer cells which do not need 
mitochondria to grow [30]. Both cell lines were cultured for thirty days 
in the presence or absence of 7 µM AZT (Sigma, St. Louis, MO). Cells 
were grown in Eagle’s Minimum Essential Medium (HepG2 cells) or 
in Iscove’s Modified Dulbecco’s Medium (CCD-1112Sk cells) obtained 
from ATCC supplemented with 10% fetal bovine serum (BioWest, 
Kansas City, MO), 50 units/mL Penicillin G, 50 units/mL Streptomycin, 
0.25 µg Amphotericin B (HyClone Antibiotic/Antimycotic Solution 
100X) and were incubated at 37ºC and 5% CO2. The media was 
changed every other day. Cell lines were grown to confluency, and then 
trypsinized with 0.25% trypsin (Sigma, St. Louis, MO). After 30 days 
culture cells were collected and frozen in complete media with 5% v/v 
DMSO in liquid nitrogen. Three biological replicates were assessed, 
each with three technical replicates for each condition.

Preparation of mitochondrial DNA
Mitochondrial DNA was isolated as previously described [28]. 

Both treated and untreated samples were processed in parallel to 
avoid introducing any bias. Briefly, one microliter of cultured cells 
(roughly 1000 cells) was lysed in 14 µl of Quantilyse [31]. Before PCR 
amplification mitochondrial genomes were cut once with BamH1 
(Promega, Madison, WI), 37C for 1 hour followed by 74ºC for 15 
minutes. The digestion was carried out in a 20 μl volume consisting 
of 1X reaction enzyme buffer, 0.1 mg/ml BSA, 10 μl mtDNA from the 
above lysate, and 10 units of BamH1. Linearized samples were stored 
at -20ºC.

Digital and near-digital LATE-PCR using Lights-On/Lights-
Off probes for mutation detection 

Assay primers and probes: Lysed DNA samples were first diluted 
to the digital or near-digital level (1-5 copies) as described in Osborne, 
2009. To avoid contamination all PCR preparation was conducted in an 
amplicon-free hood in a clean room, all targets were kept separate from 
PCR reagents at all times, and PCR machines were kept in a separate 

room from the laboratory space as far away from the clean room as 
possible. PCR amplicons and products were never handled in the same 
laboratory space.

The triplex LATE-PCR amplification used three pairs of primers 
that co-amplified the mitochondrial hyper variable 2 (HV2) region 
of the D-Loop, the cytochrome c oxidase subunit 2 (CO2) gene, the 
NADH dehydrogenase, subunit 1 (ND1) gene, and all the primers were 
checked using BLAST and an in-silico PCR program [32] to establish 
that they would not amplify nuclear pseudogenes. The underlined bases 
in the limiting primers and probes were deliberately mis-matched to 
the target sequence.

HV2 Limiting Primer: 5’ AAAGCGGTGTGTGTGTGCTGGG-
TAGGAT

HV2 Excess Primer: 5’ ACTTCAGGGTCATAAAGCCTA-
AATAGC

CO2 Limiting Primer: 5’ AATAGAGGGGGTAGAGGGGGTGC-
TATAGGGT

CO2 Excess Primer: 5’ TCCTTATCTGCTTCCTAGTCCTGTATGC

ND1 Limiting Primer: 5’ AACATAAGAACAGGGAGGT-
TAGAAGTAGGGTCTTGGT

ND1 Excess Primer: 5’ CGCCCCGACCTTAGCTCT

Each pair of primers generated a specific product (HV2, 588 base 
pairs; CO2, 586 base pairs; and ND1, 604 base pairs long). Each of the 
three corresponding single-stranded amplicons was interrogated with 
its own set of Lights-On/Lights-Off probes labelled in its own colour 
and spanning a portion of its total length: HV2, 250 bases; CO2, 300 
bases; ND1, 250 bases (Supplementary Table 1).

Reagents and reaction conditions
A common master mix was used for all experiments. The master 

mix consisted of 1X PCR buffer (Invitrogen, Carlsbad, CA), 3 mM 
MgCl2, 250 nM dNTPs, 50 nM Limiting Primer, 1000 nM Excess Primer 
(HV2), 100 nM Limiting Primer, 1000 nM Excess Primer (CO2), 50 nM 
Limiting Primer, 1500 nM Excess Primer (ND1), 2.5 units of Platinum 
Taq DNA Polymerase (Invitrogen, Carlsbad, CA), 50 nM of the on 
probes, and 150 nM of the off probes in 25 μl reaction volumes. The 
PCR protocol was 95ºC for 3 minutes, followed by 95ºC for 5 seconds, 
65ºC for 45 seconds, and 72ºC for 90 seconds for 75 cycles. This was 
followed by two holding cycles, the first at 75ºC for 10 minutes, and the 
second at 25ºC for ten minutes. Probe signals were acquired during a 
melt from 25ºC to 80ºC in increments of 1ºC every 45 seconds.

Analysis of fluorescent signatures and their changes
Fluorescent signatures characteristic of each amplicon were 

generated by plotting the first derivative of probe signals as a function 
of temperature. Changes in the signature, i.e., shifts to lower or higher 
temperature or appearance or disappearance of peaks and valleys, 
relative to a reference signature were indicative of mutations. To obtain 
reference signatures, 12-14 bulk reactions containing over 1000-copies 
of mtDNA each were amplified and the resulting fluorescent signatures 
were averaged together (Supplementary Figure 1).

In any PCR experiment there are multiple sources of noise or error 
that can make interpretation of a signature shift difficult. Using one 
PCR master mix eliminates pipetting error and day-to-day variance 
of reagents. However, there is still well-to-well variation that can be 
generated by the PCR machine itself. In order to minimize this machine 
noise it was necessary to generate not only a reference signature as 
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described above, but also to calculate the 95% confidence interval of 
each reference signature due to machine noise beyond which mutations 
were scored (Supplementary Figure 1). These confidence intervals were 
defined as three standard deviations of the largest temperature variation 
among all reference replicates at the highest or lowest fluorescent 
values for each signature. Shifted signatures from test samples that had 
more than two temperature points outside these confidence intervals 
were considered a true shift due to mutation rather than noise. These 
objective criteria for scoring mutations eliminate subjective bias during 
mutation assessment. The statistical significance of true shifts was 
calculated using a chi-square test.

Validation of mutant fluorescent signatures

A number of samples with signature shifts were randomly selected 
for validation by Sanger sequencing. Samples were prepared by the 
Dilute-‘N’-Go protocol described previously [28,33]. If necessary, the 
opposite strand was also sequenced to confirm any mutations using the 
method of Jia et al. [34]. Sequencing was performed at Genewiz, Inc. 
(New Jersey).

Measurement of mtDNA copy number

Assay primers and probes: The effect of AZT treatment on mtDNA 
copy number was assessed by measuring the ratio of mitochondrial to 
nuclear DNA (nDNA). A mitochondrial gene and its corresponding 
nuclear pseudogene were co-amplified with LATE-PCR using limiting 
primers specific for each target and a common excess primer to 
achieve the same amplification efficiency. The amplification products 

were detected with two amplicon specific probes whose signal ratio 
at the threshold cycle were used to establish the relative amounts of 
mitochondrial and nuclear DNA. The underlined bases in the limiting 
primers and probes sequences below are mis-matched to the target 
sequence.

mtDNA Limiting Primer: 5’ AACATAGGGTCTTCTCGTCTT-
GCTGTGTTATGC

nDNA Limiting Primer: 5’ AAGTCGACTCCGTGGCTCTCTCA-
GATCATC

Common Excess Primer: 5’ TTTTGCCCCGCCTGTTTACC

mtDNA Probe: 5’ Cal Red 590-GTATACTGGTGATGC-
TAGAGAC-BHQ2

nDNA Probe: 5’ Quasar 670-TTCCGTGGACGTTAGACA-
CATTTCAA-BHQ2

Reagents and reaction conditions: LATE-PCR amplifications were 
carried out in a 25 μl volume consisting of 1X PCR buffer (Invitrogen, 
Carlsbad, CA), 3 mM MgCl2, 250 nM dNTPs, 50 nM each Limiting 
Primer, 1000 nM Excess Primer, 150 nM of each probe, and 1.25 units 
of Platinum Taq DNA Polymerase (Invitrogen, Carlsbad, CA). All 
amplifications were carried out in the Stratagene MX3005P (Agilent 
Technologies, CA). The reaction mixture was initially heated to 95ºC 
for 3 minutes, then 10 cycles of 95ºC for 5 seconds, 65ºC for 20 seconds, 
and 70ºC for 45 seconds. This was followed by 50 cycles of 95ºC for 5 
seconds, 65ºC for 20 seconds, 70ºC for 45 seconds, and 50ºC for 42 
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Figure 1: Reference fluorescent signatures for the HepG2 and CCD-1112Sk cell lines.  Multiple bulk samples (approximately 1000-genomes each) analyzed and 
averaged (A-C).  Confidence intervals (three standard deviations) were then applied to the signature (D-F).  Any signature shift that fell outside of this reference was 
considered a true shift.  The same was done for the CCD-1112Sk amplicons (G-I).
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seconds. The amplification was read in real time at the 50ºC step. The 
Ct values collected during the amplification were used to determine the 
nDNA/mtDNA ratio.

Results
Controls to rule out sample contamination

Detection of mtDNA mutational load requires analysis of 
mitochondrial genomes at the digital or near-digital level (1-5 copies). 
Laboratory contamination is always a risk when working at such low 
copy numbers [28]. Control experiments showed that none of the 
sequence variants scored could be attributed to contamination from 
laboratory personnel or reagents (data not shown). Among those 
experiments one of 96 control reactions without mtDNA generated 

only a HV2 amplicon and two of 96 replicates generated only CO2 
amplicons. No single replicate generated all three amplicons at the same 
time. Thus it is very unlikely that the shifts in the fluorescent signatures 
reported here were due to laboratory contamination.

LATE-PCR Lights-On/Lights-Off analysis of mitochondrial 
mutational load

The LATE-PCR mitochondrial triplex assay co-amplifies three 
mitochondrial loci (HV2, CO2, and ND1) as separate amplicons in a 
single tube. Mitochondrial DNA isolated from treated or untreated 
cells were first diluted to the digital or near-digital level and then 
amplified in the above triplex reaction. The resulting single-stranded 
DNA products were then examined for sequence variations using 
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Figure 2: Every change in fluorescent signature equates to a change in the sequence of the amplicon.  Representative single molecules of the three amplicons, HV2, 
CO2, and ND1 are shown.  Panels A, E, and I show a single molecule that matches the reference.  The sold lines indicate the reference signature, while the dotted 
lines indicate the single molecule.  Panels B, F, and J show a single molecule that differs from the reference signature.  The arrows in panels B, F, and J indicate where 
the single molecule signature differs from the reference signature.  The arrows in panels C, G and K show the nucleotide in the reference sequence that is changed in 
panels D, H, and L.
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three sets of Light-On/Lights-Off probes fluorescently labeled in 
different colors (Supplementary Table 1). Lights-On/Lights-Off probes 
generate fluorescent signatures that are characteristic of the amplified 
sequence. Any changes from a reference fluorescent signature indicate 
the presence of a mutation. The reference fluorescent signature for each 
amplicon in both cell types is comprised of the average fluorescent 
signature from 12-14 replicate samples, each containing more than 
1,000 mtDNA molecules, along with the 95% confidence interval that 
accounts for tube-to-tube variations in the thermal bloc (Figure 1, 
Supplementary Figure 1).

Figure 2, panels A-F, illustrates that the majority of fluorescent 
signatures in digital or near-digital samples are indistinguishable from 
the reference signatures. But Figure 2, panels G-L, illustrates that a 
minority of these samples fell outside of the confidence interval of the 
reference signature. Sanger sequencing of these cases confirmed that 
each of them contained specific sequence variations (Figure 2b, d, f, h, j, 
and l). In no case did a digital or near-digital sample with a fluorescent 
signature shift not have a sequence change. These results validate that 
every time there is a signature shift there is a corresponding mutation 
or mutations.

AZT treatment correlates with an increase in mtDNA 
mutations

In order to determine whether AZT causes mtDNA mutational load 
HepG2 and CCD-1112Sk cells were treated with peak plasma levels 
of AZT for 30 days, and examined at the digital or near digital levels 

as described above. A total of 2,446 wells with 1- 5 copies of starting 
mtDNA (an estimated 12,240 amplicons total) were examined in three 
separate experiments.

All three gene targets in both HepG2 and CCD-1112Sk cells had a 
statistically significant increase in the number of fluorescent signature 
shifts in the AZT treated samples as compared to the non-treated 
samples (Figure 3 and 4 and Tables 1-3). Changes in the HV2 amplicon 
involved shifts to the left of a peak in the fluorescent signature (Figure 
3a), as well as the disappearance or appearance of a peak (Figure 3b and 
c). The fluorescent signature for the ND1 amplicons exhibited similar 
changes (Figure 3g-i). Many of the shifts seen in the CO2 fluorescent 
signature were not shifts to the left, but rather to the right (Figure 3d), 
as well as peaks that disappeared or broadened (Figure 3e and f). In 
addition, the three amplicons of the CCD-1112Sk cells had a similar 
number and type of shifts as those observed in the HepG2 samples 
(Table 1). Selected samples with signature shifts were validated by 
sequencing (Table 3). This analysis revealed that some of the fluorescent 
signature shifts were the result of more than one mutation. In no 
instance did a change in a fluorescent signature occur without a change 
in target sequence.

Combining the results from each of the thirty day experiments 
yielded mutational frequencies that were higher for the AZT treated 
samples compared to non-treated samples (Table 2). Indeed, all AZT 
treated samples had higher rates of mutation. In the case of the HV2 
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Figure 3:  Mutations in the mitochondrial DNA target result in shifts in the fluorescent signature for amplification of HV2, ND1, and CO2.  Representative shifts in the 
fluorescent signatures for the three amplicons in the triplex reaction.  Panels A-C show shifts from the HV2 amplicon, D-F show shifts from the CO2 amplicon, and G-I 
show shifts from the ND1 amplicon.  The dotted line is the reference signature the solid line is the experimental sample.  The error bars are three standard deviations 
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and ND1 targets the rate was twice as high for both cell types.

AZT does not deplete mitochondrial DNA
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Figure 4: Thirty days of AZT treatment results in an increase in mutations in 
the mitochondrial genome.  The number of shifts, and therefore mutations, by 
amplicon, observed for the HepG2 (A) and CCD-1112Sk (B) cell lines after 
thirty days of AZT treatment.  The combined results for all replicates for each 
experiment are in black for the AZT treated samples, and are in white for the 
non-AZT treated samples.  A * represents those samples that have a p-value 
of 0.05 or less.

There are conflicting results in the literature as to whether AZT 
does [17] or does not [18] cause mitochondrial DNA depletion. It was 
therefore necessary to establish whether AZT treatment resulted in 
mtDNA depletion in the two cell lines used here. The ratio of nuclear 
DNA to mitochondrial DNA (see Material and Methods) before 
addition of AZT and after thirty days of treatment was unchanged (data 
not shown). Therefore, we conclude that 7 µM of AZT does not cause 
mtDNA depletion in cultured HepG2 and CCD-1112Sk cells.

Discussion
Long-term treatment with NRTIs, which AZT, used by millions of 

individuals, is but one example, causes a series of pathologies associated 
with mitochondrial toxicity. To date, the mechanism of AZT-induced 
mitochondrial toxicity is still not clear. Indeed, the mutagenic effect of 
AZT and other NRTIs on mitochondrial DNA in vivo is controversial 
[25,26]. In part this is because these drugs are often prescribed as one 
component of highly active antiretroviral cocktails of drugs, which also 
may be increasing mutational load. In addition, HIV infection itself can 
damage mitochondria [35,36]. Thus, under normal conditions there are 
numerous compounding factors that likely increase mutational load 
over time in many cells and entire organs.

This report demonstrates that AZT treatment for thirty days causes 

T30 +AZT T30 -AZT p-value

HepG2
HV2 98 51 0.00001
CO2 73 33 0.00002
ND1 116 68 0.00003

CCD-1112Sk
HV2 101 33 1e-8
CO2 102 79 0.05
ND1 79 39 0.0001

The table shows the number of shifts for all experiments. For the three 30 day 
experiments 783/789 (treated/untreated) wells were analyzed for the HepG2 cells. 
For the CCD-1112Sk cells 781/798 wells were analyzed.  A total of 2,440 wells, an 
estimated 12,240 mtDNA molecules, were analyzed.  P-values were calculated by 
a chi-square test.

Table 1: Number of fluorescent signature shifts seen after thirty days (T30) with and 
without AZT treatment.

HepG2 AZT- HepG2 AZT+ CCD-1112Sk AZT- CCD-1112Sk AZT+

HV2 2.2x10-5 4.2x10-5 1.4x10-5 4.3x10-5

CO2 1.4x10-5 3.1x10-5 3.3x10-5 4.4x10-5

ND1 2.9x10-5 5.2x10-5 1.6x10-5 3.4x10-5

For both HepG2 and CCD-1112Sk cells, the frequency of mutations was higher for 
the AZT treated samples.

Table 2: The frequency of mutations seen in treated and non-treated cells.

Treatment Amplicon Mutation

AZT Treated

HV2

11A
24A
64T
80A
128C – 382A – 396C
181A
198G
295A
320A – 345A
369A – 382C – 388A
369A – 388A
382A – 396C
388A

CO2

7830G
7918T – 7966T – 8117T
7982C
7982C– 8019T
7985T
7986G

ND1
3573A – 3632A – 3670A
3905G
3993C

Non-AZT Treated

HV2

79C
181A
186A-253A-296C
238A
295A
320A – 345A
331A
345A
388A

CO2

7718A
7931C – 7982C
7985T
8087G
8206T

ND1

3847G
3941A
3947A
4001T

Each line is a different sample.  Instances of more than one mutation in a sequence 
are indicated by a hyphen between mutations.

Table 3: Representative mutations found in randomly selected treated and 
untreated samples with signature shifts for all three amplicons.
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a statistically significant increase in mtDNA mutations in vitro in both 
primary and cancer cell lines of different cell types. The fluorescent 
signature shifts indicative of mutations, as proven by previous 
publications [29,37,38] and confirmed here in multiple instances by 
sequencing, were not likely to be the result of amplification errors and 
were not the result of cloning errors [28]. While the total number of 
mutations after thirty days of treatment was relatively large, the number 
of mutations in individual experiments was small (Supplemental Table 
2). Per thirty day experiment an average of 33, 24, and 40 and 34, 34, 
and 26 were seen in the HV2, CO2, and ND1 targets of HepG2 cells 
and CCD-1112Sk cells, respectively. These relatively low numbers of 
mutations in cultured cells are likely to be under estimates for several 
compounding technical reasons. First, the Light-On/Lights-Off method 
underestimates the frequency of sequence changes in mitochondrial 
DNA, because only those signatures shifts that lay outside three 
standard deviations of the reference for two consecutive temperature 
points are scored positive. In addition, some fluorescent signatures are 
due to more than one sequence change as revealed by sequencing (Table 
3). Finally, the fact that each well had 1-5 molecules that are analysed as 
a single fluorescent signature shift also lowers the number of mutations 
recorded. 

Several mechanisms may account for AZT-induced mtDNA 
mutation. The fact that there is no obvious pattern to the observed 
mutations (Table 3) suggests that AZT does not mutagenize mtDNA 
by direct incorporation. Alternatively, AZT could damage mtDNA 
by increasing ROS or damaging proteins, or by interacting with the 
mitochondrial DNA polymerase [18,39]. These hypotheses would 
account for the fact that AZT increases mtDNA mutations in the 
relatively short period of time observed in this study

This report is the first time that the Lights-On/Lights-Off method 
has been specifically used for mutation scanning at the digital or near 
digital level. The method is applicable to a wide variety of situations, such 
as aging and disease pathogenesis, or to test other drugs that are known 
to damage mitochondria, or have been correlated with chronic disease 
syndromes which are likely to be associated with random mutations 
accumulating in a target sequence. In these situations it is not necessary 
to know in advance if the target of interest has a “wild type” sequence, 
since the fluorescent signatures of new variants analysed at the near-
digital level are compared to a fluorescent reference signature generated 
from large populations of starting genomes in which the contributions 
of rare variants are average out. The new method is useful because it is 
rapid, multiplexed, and minimizes the number of samples that actually 
need to be sequenced.
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