

Awake Brain Surgery and the Neuroethics of Consciousness Modulation

Cruse Truog*

Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA

Introduction

Awake brain surgery, also known as awake craniotomy, represents a unique intersection of neuroscience, neurosurgery and ethics. Performed while the patient is conscious, this procedure allows for real-time mapping and monitoring of essential brain functions, such as language, motor skills and sensory processing. It has become a preferred technique for removing brain tumors or treating epileptic foci located near eloquent cortex regions-areas of the brain responsible for critical tasks. Unlike conventional surgeries under general anesthesia, awake craniotomy engages the patient's conscious participation, making it a profound demonstration of the brain's plasticity, the limits of surgical precision and the mysteries of consciousness itself. However, the deliberate modulation of consciousness during surgery-fluctuating between sedation, wakefulness and cognitive task engagement-raises complex neuroethical questions. It analyzes the philosophical, psychological and societal implications of operating on the awake, aware mind and outlines future directions for ethical frameworks in neurosurgical practice [1].

Description

Awake brain surgery is most commonly indicated for patients with low-grade gliomas, epileptogenic lesions, or deep-seated tumors near functional brain areas. The procedure typically follows an "asleep-awake-asleep" protocol: the patient is sedated for scalp incision and craniotomy, awakened for functional testing and then re-sedated for closure. Alternatively, some procedures employ continuous conscious sedation, maintaining a lighter state of awareness throughout. Advanced neuroimaging techniques-such as functional MRI (fMRI), Diffusion Tensor Imaging (DTI) and intraoperative neuronavigation-guide preoperative planning. During the awake phase, cortical and subcortical stimulation are used to map functional areas. Patients are asked to perform tasks like counting, naming pictures, or moving limbs. Disruptions or errors during these tasks help localize and avoid vital areas. The goal is to maximize tumor resection or epileptogenic zone removal while minimizing neurological deficits. This balance requires millimeter-level precision and constant communication between the surgical team and the patient [2].

In awake surgery, consciousness is both a tool and a variable. Patients may be alert but cognitively impaired due to medication or stress. Patients are not merely passive recipients of care; they become active participants in their own surgery. This raises questions about autonomy: can a person exercise agency while under duress, physically restrained and under cognitive stress. Not all patients remember the procedure. For those who do, memories can be empowering or traumatic. Long-term studies show mixed psychological

outcomes, with some patients reporting increased resilience, while others experience anxiety or dissociation. Operating on the brain while the mind is conscious evokes existential concerns. Patients may feel a dissonance between the experience of being 'themselves' and observing their cognitive functions manipulated in real time [3].

Informed consent must include detailed discussion of the conscious experience, including potential discomfort, emotional reactions and cognitive stress. This goes beyond standard surgical risks. Not all patients are suited for awake surgery. Screening for psychiatric conditions, anxiety levels and coping skills is crucial. Preoperative psychological counseling and postoperative debriefing should be standard practice. Surgeons must balance the benefits of functional preservation with the potential psychological harm of conscious surgery. This includes deciding when to convert to general anesthesia if the patient is distressed. Cultural attitudes toward consciousness, bodily integrity and brain intervention vary widely. Surgeons should be sensitive to personal beliefs and incorporate them into the decision-making process. Some ethicists argue that consent should be reaffirmed during surgery, especially if the procedure changes. But is consent given under sedation truly autonomous. This remains a contentious issue [4].

Awake surgery challenges philosophical conceptions of consciousness. From a phenomenological standpoint, being awake during brain surgery forces the patient to confront the duality of mind and brain. Such inquiries bridge neuroscience and philosophy, making awake brain surgery not just a medical procedure but a deeply existential event. Awake brain surgery captures public imagination, often portrayed in media as either miraculous or terrifying. While this attention raises awareness, it can also distort expectations. Some patients may request awake surgery without understanding its demands, while others may reject it due to exaggerated fears. Clinicians must address these narratives by providing accurate, empathetic education. Building public trust in conscious surgery involves transparency, storytelling and patient testimonials that reflect a range of experiences. As awake brain surgery becomes more common, medical education must include training in neuroethics. Neurosurgeons should be versed not only in technical skills but in communication, psychology and ethics [5].

Conclusion

Awake brain surgery stands at the frontier of modern medicine, neuroscience and ethics. By inviting consciousness into the operating room, it challenges conventional notions of surgery, autonomy and the human experience. Patients become participants, not just subjects, in their healing journey. This profound collaboration between mind and medicine demands equally profound ethical reflection.

Consciousness modulation during surgery is not merely a technical feat-it is a moral encounter. Neurosurgeons must approach it with humility, empathy and a commitment to preserving dignity in the most intimate realms of human existence. As technology advances and the boundaries of consciousness continue to be explored, the guiding question must remain: not just what we can do to the brain while awake, but what we should do-with awareness, respect and care.

*Address for Correspondence: Cruse Truog, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA; E-mail: truogcruse@seu.edu

Copyright: © 2025 Truog C. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received: 02 April, 2025, Manuscript No. jcnn-25-167734; Editor Assigned: 04 April, 2025, Pre QC No. P-167734; Reviewed: 15 April, 2025, QC No. Q-167734; Revised: 21 April, 2025, Manuscript No. R-167734; Published: 28 April, 2025, DOI: 10.37421/2684-6012.2025.8.287

Acknowledgement

None.

Conflict of Interest

None.

References

1. Wallington, Sherrie F., Chiranjeev Dash, Vanessa B. Sheppard and Tawara D. Goode, et al. "Enrolling minority and underserved populations in cancer clinical research." *Am J Prev Med* 50 (2016): 111-117.
2. Lee, Eudocia Q., Ugonma N. Chukwueke, Shawn L. Hervey-Jumper and John F. De Groot, et al. "Barriers to accrual and enrollment in brain tumor trials." *Neuro-Oncol* 21 (2019): 1100-1117.
3. Young, Michael J., Robert W. Regenhardt, Thabele M. Leslie-Mazwi and Michael Ashley Stein. "Disabling stroke in persons already with a disability: Ethical dimensions and directives." *Neurology* 94 (2020): 306-310.
4. Regenhardt, Robert W., Michael J. Young, Mark R. Etherton and Alvin S. Das, et al. "Toward a more inclusive paradigm: Thrombectomy for stroke patients with pre-existing disabilities." *J Neurointerv Surg* 13 (2021): 865-868.
5. Unger, Joseph M., Elise Cook, Eric Tai and Archie Bleyer. "Role of clinical trial participation in cancer research: Barriers, evidence and strategies." *Am J Clin Oncol* 35 (2016): 185.

How to cite this article: Truog, Cruse. "Awake Brain Surgery and the Neuroethics of Consciousness Modulation." *J Clin Neurol Neurosurg* 8 (2025): 287.