
Volume 7 • Issue 4• 1000421J Appl Computat Math, an open access journal
ISSN: 2168-9679 

Open AccessResearch Article

Journal of 
Applied & Computational Mathematics 

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679

Selatnia et al., J Appl Computat Math 2018, 7:4
DOI: 10.4172/2168-9679.1000421

Keywords: Average sentinel; Average controllability; Averaged 
observability; Pollution term

2000 Mathematics Subject Classification: Primary 05C38, 15A15; 
Secondary 05A15, 15A18

Introduction
In the modelling of the evolution system type, the source terms as 

well as the initial or boundary conditions may be unknown [1]. Here 
we analyse the problem of identification of pollution term (the source) 
in a systems governed by a heat equation depending on unknown 
parameters in a deterministic manner [2]. We look for a control, 
independent of the values of these parameters that need to introduce 
the sentinel in an averaged sense to be made precise [3]. The notion of 
averaged control for parameter-dependent family of parabolic system 
is introduced by Lions [4] and the sentinel method introduced by Lions 
[5,6] is adapted to the estimation of this incomplete or unknown data 
in the problems governed by parabolic system in general, for example, 
pollution in river or a lake. So since the introduction of the sentinel 
method many authors developed several applications, such as in 
environment, in ecology [3].

The notion of average sentinel, as formulated here, has not been 
analysed until now, this notion is very interested in the identification 
of the missing data when the system is depending on unknown 
parameters [7].

By duality this leads to averaged observability problems, we prove 
the null average controllability of the adjoint system with constraint on 
the averaged control and we give information for the unknown source [8].

Let Ω be a bounded domain in Rd, d ≥ 1, with smooth boundary 
Γand w be an open non-empty subset of Ω [9]. Denote by Q=Ω × (0;T) 
the space time cylinder where the equation holds and ∑=Γ × (0,T) for 
the lateral boundary, we will assume that a parameter  θ ∊ (0,1), and yθ 
(x,t)=y(x,t,θ) the solution of the following system:
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where the diffusivity coefficients a(x,θ), taken to be scalar to simplify 
the study, are assumed to be bounded above and below by positive 
constants, and to depend on the uncertainty parameter θ∊(0,1) in a 
continuous manner. However, the dynamics of the state is governed by 
a parameterized operator A(θ)=div(a(θ)∇yθ) [10].

We assume that y0∊L2(Ω), f∊L2(Q) and so that eqn. (1) admits a 
unique solution
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The motivation of the problem we consider is the following:

We address to the system in eqn. (1) whose initial datum and the 
source term are unknown and the effective value of the parameter 
being unknown [11],
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Where ζ and g are given. However, the terms ˆλζ  and ĝτ  are 
unknown functions with λ,τ are a small reals parameters [12].

We aim at choosing a control that would perform optimally in an 
averaged sense, i.e., so that, rather than controlling specific realisations 
of the ad joint state, the average with respect to is controlled. This 
allows building a control independent of the parameter and dene the 
average sentinel to obtain a good estimation of the source term which 
called pollution term independly of the initial condition called missing 
data [13].

The notion of sentinel permits to distinguish and to analyse two 
types of incomplete data, the pollution term at which we look for 
information independently of the missing term that we do not want 
to identify [14].

In this paper, we study this system with incomplete initial data; we 
use the average sentinel concept; which relies on the following three 
objects: some state equation, some observation function and some 
control function to be determined.
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Abstract
In this paper, we analyse the problem of identification of the pollution term in a heat system when the dynamics 

of the state is governed by a parameterized operator. In this way, we introduce a notion of average sentinel. First, we 
prove the existence of such sentinels introduced by Lions by solving a problem of null average controllability given 
by Zuazua. Secondly, we identify the information for pollution terms by using the average sentinel.
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Setting of the Problem
Let y(λ,τ,θ)=y(x,t,λ,τ,θ) be the unique solution of the problem 

in eqn.(1). We denote by an observation which is a measure of the 
concentration of the pollution taken on a non-empty open subset w at 
the interval time (0,T).
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Let h be some function in L2(w×(0,T)), for any control function 
u∊L2(w×0,T) we introduce the functional Sm(λ,τ) as follows:
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where w is the characteristic functions for the open set w, such that:

w:L2(Ω)→L2(w).

Definition 

Let Sm be a real function in equation in eqn. (4) depending only on 
the parameters λ and τ: Sm is said an average sentinel defined by h if the 
following conditions are satisfied:
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and there exists a average control ( )( )2 0,u L w T∈ ×  such that:

( )( )2 0,
min ,

L w T U
u

υ
υ

× ∈
= 				                   (6)

( )( ) ( )2

0, 0

0, , , 0mSwhere U L w T such that
τ λ τ

υ λ τ
= =

 ∂ = ∈ × = 
∂  

Average Controllability Problem
We consider the function 0yθ  which solve the problem in eqn. (1) 

for λ=τ=0:
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We denoted by
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where yτ
θ  is the unique solution of the problem
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Remark 

The condition in eqn. (5) holds if and only if:
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In order to realize equation in eqn. (9), we introduce the classical 
adjoint system in eqn. (8):
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with qθ (x,t)=q (x,t,θ).

Theorem

Let qθ the solution to the backward problem in eqn. (10), then 
the existence of an average sentinel insensitive to the missing data is 
equivalent to the average null-controllability problem
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,0 ,0 0mq x q x dθ θ= =∫ 			                 (11)

Proof

Multiplying the first equation in eqn. (10) by yτθ  the solution in the 
eqn. (8), and integrating by parts over Q × (0,1) we find
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Since ( )ĝ x is independent of θ, then if (9) is verified we will have

( )
1

0
,0, 0q x dθ θ =∫

Thus, condition in eqn. (4) holds if and only if we have in eqn. (11) 
which is a average null controllability problem.

Characterization of Optimal Control
Theorem 

Solving a problem of the average null-controllability is equivalent 
to finding a control u so that the solution of eqn. (10) satisfies eqn. (11) 
such that
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0
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where ρθ is the solution of in eqn. (16).

Proof

To satisfy in eqn. (10), we separate the two component of in eqn. (10)

q(x,t,θ)=q1(x,t,θ)+q2(x,t,θ)
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which are the solutions of the following system
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And
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so, we have a control u, such that
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Of course, in the present situation, the solution of the adjoint 
system in eqn. (16) of eqn.(14) depends also on the parameter θ :
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with ρ0(x) is a unknown term independent of θ. 

We want find ρ0 such that the averaged control u is given by:
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We assume that q1,θ is independant of θ at time zero.

Then using eqn.(16) in (13), we find:
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Then, for given ρ0(x), the first equation in (16) have unique solution. 
To find ρ0, such that the solution in eqn. (16) satisfied in eqn. (19)
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we define an linear operator ⋀ by
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We must therefore solve in a suitable functional space F, the 
equation
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For realize this , we multiply in eqn. (18) by ρ̂  where 0ρ̂  is the 
solution in eqn. (16) correspondent  to 0ρ̂  who is independent of θ and 
if we integrated  by part over (0,T), we obtain
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by the result of Mizohata [9]
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is an isomorphism, hence the result.

Identification of the Pollution Term
To show how the average sentinel permits to estimate the pollution 

term, we consider yobs be the measured state of the system on the 
observatory w during the interval [0,T], then the measured sentinel 
associate to yobs is given by:
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The pollution term is identified as follows

( ) ( ) ( )
1

0
ˆ , 0,0obsq h d S Sζ λ τ

Ω

Ω = −∫ ∫
Proof

We have

( ) ( ) ( )
0, 0

, 0,0 ,obs
SS S O

λ τ

λ τ λ λ τ
λ = =

∂
= + +

∂

With

( ) ( )
1

0
, w

S h w y dxdtλλ τ
λ Ω

∂
= +

∂ ∫ ∫ 

And

( ) ( ) ( )
0, 0

, , 0,0 ,obs
S S S

λ τ
λ λ τ λ τ

λ = =

∂
= −

∂

Hence

( ) ( ) ( )
1

0
ˆ , 0,0obsq h d S Sζ λ τ

Ω

Ω = −∫ ∫
where yλ is the solution of the following system

( ) ( ) ( )( )

( )

, ˆ, , ,

0

,0 0

y x t
div a x y x t in Q

t
y on

y x in

λ
θ λ

θ

λ
θ

λ
θ

θ ζ
∂

− ∇ =
∂ = Σ

 = Ω




Citation: Selatnia H, Berhail A, Ayadi A (2018) Average Sentinel for a Heat Equation with Incomplete Data. J Appl Computat Math 7: 421. doi: 
10.4172/2168-9679.1000421

Page 4 of 4

Volume 7 • Issue 4 • 1000421J Appl Computat Math, an open access journal
ISSN: 2168-9679 

Conclusion
In this work, we have introduced the problem of identification of 

the pollution term in a heat system when the dynamics of the state is 
governed by a parameterized operator; we have introduced a notion of 
average sentinel to obtain information about the pollution term.
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